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Highlights 

x The new debiased CATDS SMOS SSS product resolves major issues in the Bay of Bengal 

x New SMOS has a comparable quality with SMAP and Aquarius, but over a full decade 

x Confirms the post-monsoon southward transport of low saline water by the EICC 

x Confirms that this transport is interannually modulated by the Indian Ocean Dipole 
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Abstract 21 

Monsoon rain and rivers bring a large freshwater input to the Northern Bay of Bengal 22 

(BoB), yielding low Sea Surface Salinity (SSS) after the monsoon. The resulting sharp 23 

upper-ocean salinity stratification is thought to influence tropical cyclones intensity and 24 

biological productivity by inhibiting vertical mixing. Despite recent progresses, the 25 

density of in situ data is far from sufficient to monitor the BoB SSS variability, even at 26 

the seasonal timescale. The advent of satellite remotely-sensed SSS (SMOS, Aquarius, 27 

SMAP) offers a unique opportunity to provide synoptic maps of the BoB SSS every ~8 28 

days. Previous SMOS SSS retrievals did not perform well in the BoB. Here, we show 29 

that improved systematic error corrections and quality control procedures yield a much 30 

better performance of the new “debiased v4” CATDS level-3 SSS from SMOS (~0.8 31 

correlation, 0.04 bias and 0.64 root-mean-square difference to more than 28000 32 

collocated in situ data points over 2010-2019). The SMOS product now performs 33 

equivalently to Aquarius, and is slightly inferior to SMAP over the BoB. In particular, 34 

SMAP and SMOS are able to capture salinity variations close to the east coast of India 35 

(r>0.8 within 75-150 km of the coast). They thus capture the seasonal freshening there, 36 

associated with equatorward advection of the Northern BoB low-salinity water by the 37 

East Indian Coastal Current (EICC) after the summer monsoon. The 10-year long SMOS 38 

record further allows to describe the BoB interannual SSS variability, which is strongest 39 

in boreal fall in relation with the Indian Ocean Dipole (IOD). Positive IOD events 40 

induce a weakening of the southward export of freshwater by the EICC, and hence 41 

negative SSS anomalies in the Northern BoB and positive ones along the East Indian 42 

coast. This confirms results from earlier studies based on modelling, sparse in situ data, 43 

or shorter satellite records, but this time from a 10-year long SSS record. Overall, our 44 

study indicates that the new SMOS retrieval can be confidently used to monitor the BoB 45 
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SSS and to study its mechanisms. We end by a brief description of the BoB SSS 46 

anomalies associated with the extreme 2019 IOD event and highlight the very good 47 

performance over the BoB of a new multi-satellite product developed by the European 48 

Space Agency merging SMOS, Aquarius and SMAP data. 49 

Highlights 50 

x The new debiased CATDS SMOS SSS product resolves major issues in the Bay of 51 

Bengal 52 

x New SMOS has a comparable quality with SMAP and Aquarius, but over a full 53 

decade 54 

x Confirms the post-monsoon southward transport of low saline water by the EICC 55 

x Confirms that this transport is interannually modulated by the Indian Ocean Dipole 56 

 57 

Keywords: Bay of Bengal, Sea Surface Salinity, SMOS, SMAP, AQUARIUS, East 58 

Indian Coastal Current, Indian Ocean Dipole 59 

60 
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1. Introduction 61 

The Bay of Bengal (hereafter, BoB) is one of the rainiest areas of the Asian 62 

summer monsoon region. As a result, this relatively small basin receives large 63 

freshwater inputs during and shortly after the summer monsoon, dominantly as rain in 64 

the northeastern basin, but also from two large rivers: the Ganga-Brahmaputra in the 65 

north and the Irrawaddy in the northeast (e.g. Akhil et al., 2014; Chaitanya et al., 2014; 66 

Papa et al., 2010; see Figure 1 for the location of these rivers). This basin is hence 67 

characterized by low surface salinity during and after the summer monsoon (e.g. Rao 68 

and Sivakumar, 2003), leading to a sharp upper-ocean salinity stratification (e.g. Shetye, 69 

1993; Thadathil et al., 2016).  70 

The stabilizing effect of this near-surface freshening is thought to have important 71 

climatic consequences by inhibiting vertical mixing. The haline stratification indeed 72 

reduces the vertical mixing of heat during and after the summer monsoon (e.g. de Boyer 73 

Montegut et al., 2007; Thadathil et al., 2016; Shenoi et al., 2002; Krishnamohan et al., 74 

2018), although the overall influence on climatological sea surface temperature (and 75 

thus rainfall) may be weak due to compensating processes (Krishnamohan et al., 2018). 76 

The salinity stratification also inhibits vertical mixing below tropical cyclones (e.g. 77 

Neetu et al., 2012; Sengupta et al., 2008), thereby reducing the air-sea coupling negative 78 

feedback, and strengthening post-monsoon cyclones (Neetu et al., 2019). It is also 79 

believed to inhibit vertical mixing of nutrients and to reduce marine biological 80 

productivity in the BoB (Prasanna Kumar et al., 2002). For all those reasons, it is 81 

important to monitor Sea Surface Salinity (hereafter, SSS) variations in this basin. 82 

The strong seasonality of the freshwater forcing yields strong SSS seasonal 83 

variations in the BoB. The northeastern BoB indeed experiences an intense freshening 84 
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right after the monsoon, attributable to the freshwater forcing from rivers and rain (e.g. 85 

Rao and Sivakumar, 2003; Akhil et al., 2014). This fresh pool expands southward in the 86 

following months as a narrow fresh tongue in a ~100km wide strip along the East Indian 87 

coast, a feature nicknamed “river in the sea” by Chaitanya et al. (2014). This river in the 88 

sea results from the southward export of the northeastern BoB freshening by the East 89 

Indian Coastal Current (hereafter, EICC), a narrow western boundary current that flows 90 

southward in boreal fall, before vertical mixing restores higher salinities during winter 91 

(Chaitanya et al., 2014; Akhil et al., 2014). The Indian Ocean Dipole (hereafter, IOD; 92 

Saji et al., 1999), an Indian Ocean interannual climate mode, modulates the “river in the 93 

sea” southward expansion, through its remote impact on the EICC (Akhil et al., 2016a; 94 

Fournier et al., 2017; Sherin et al., 2018). At smaller scales, oceanic eddies also induce 95 

meandering of the salinity front, exporting freshwater offshore (Benshila et al., 2014; 96 

Hareesh Kumar et al., 2013; Sengupta et al., 2016; Fournier et al., 2017). 97 

The sparse in situ SSS data has for long prevented a detailed description of 98 

basin-scale BoB SSS variability, especially at the relatively fine spatial scales associated 99 

with the “river in the sea”. Salinity climatologies built from historical in situ data 100 

compilation (e.g. Chatterjee et al., 2012; Antonov et al., 2010) provided a rough 101 

description of the BoB SSS seasonal cycle, but their limited data coverage resulted in an 102 

excessive smoothing of the SSS structure and particularly of coastally confined river in 103 

the sea (Chaitanya et al., 2014). While punctual near-shore cruises provided snapshots of 104 

this coastal freshening (Shetye et al., 1996) as well as its meandering induced by eddies 105 

(Hareesh Kumar et al., 2013), in situ observations are still not dense enough to allow a 106 

systematic and detailed description of the BoB SSS spatio-temporal variability despite 107 

recent improvements due to the Argo program. As an illustration, Figure 1a,b shows that 108 

available in situ observations are not able to capture the basin-scale seasonal mean SSS 109 
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pattern associated with the 2015 positive IOD and the 2016 negative IOD, with a dearth 110 

of in situ data near the coastline where SSS signals are the strongest. The surface salinity 111 

measurements from recent satellite missions may help to improve this description but 112 

satellite monitoring of BoB SSS is complex, because of strong “Radio-Frequency 113 

Interferences” (RFI) in Asia (Oliva et al., 2016), and pollution of the signal over sea by 114 

nearby land signals (Anterrieu et al., 2015).  115 

Three recent spaceborne missions may help improving the BoB SSS description. 116 

Measurements from the Soil Moisture and Ocean Salinity (SMOS) mission of the 117 

European Space Agency (ESA) launched in 2009 have a mean resolution close to 50km, 118 

theoretically sufficient to monitor small-scale structures such as the narrow “river in the 119 

sea”. But unfortunately, because of the complex antennas geometry, the land 120 

contamination and radio frequency interference (RFI) extends up to ~1000km away 121 

from coast (Reul et al., 2013, Oliva et al 2016). The large antenna lobes make the land 122 

contamination very dependent on the orientation of the satellite track relative to the coast 123 

(Boutin et al., 2018). Until recently, this resulted in virtually useless SSS retrievals in the 124 

BoB (Boutin et al., 2013; Subrahmanyam et al., 2013; Akhil et al., 2016b). The land 125 

contamination mitigation is conceptually simpler for the two other spaceborne missions 126 

of the National Aeronautics and Space Administration (NASA), namely the 127 

Aquarius/Sac-D mission launched in 2011 and the Soil Moisture Active Passive (SMAP) 128 

mission launched in 2015 (Meissner et al., 2018; Fore et al., 2017). Given the resolution 129 

of its main antenna lobes, Aquarius however only provides SSS measurements at an 130 

effective resolution of ~150km, which can only resolve the BoB large-scale SSS patterns 131 

but not the “river in the sea” (Akhil et al., 2016b). In addition, the Aquarius mission 132 

ended in 2015 due to an unrecoverable hardware failure. In contrast, SMAP provides 133 

SSS retrieval at a spatial resolution similar to that of SMOS, and suffers from lighter 134 
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land contamination issues compared to SMOS (Reul et al., 2013). As a result, SMAP 135 

provides unprecedented views of small-scale BoB SSS features, including the influence 136 

of mesoscale eddies and of the IOD on the river in the sea (Fournier et al., 2017). As 137 

already demonstrated in Fournier et al. (2017), Figure 1c,d indeed illustrates that the 138 

river in the sea extends ~800 km further south in fall 2016 (negative IOD) than in fall 139 

2015 (positive IOD), hence providing the first observational confirmations of previous 140 

modelling results (Akhil et al., 2016a). 141 

Monitoring the full spectrum of SSS variations in the BoB however requires 142 

longer time series than those currently provided by SMAP. A recent reprocessing of 143 

SMOS data with an improved correction of systematic errors and refined quality control 144 

procedures (Boutin et al., 2018) demonstrated that SMOS data could provide a data 145 

quality close to that of SMAP. This recent dataset may allow monitoring the BoB spatio-146 

temporal SSS variations over a longer period (~10 years) than SMAP (~5 years). In the 147 

current paper, we analyse an updated version of this dataset to investigate whether the 148 

most recent SMOS reprocessing can provide accurate SSS retrievals in BoB, especially 149 

near the coast. SSS patterns derived from this new product in fall 2015 and 2016 are 150 

indeed very similar to those depicted by SMAP (Figure 1e-f), suggesting that it may be 151 

useful to complement SMAP data before 2015. Section 2 describes our methodology and 152 

datasets. Section 3 assesses how the Boutin et al. (2018) reprocessing improves the 153 

SMOS SSS retrieval in the BoB, based on a comparison to available in situ observations, 154 

to previous SMOS retrieval and to Aquarius and SMAP retrievals. Section 4 takes 155 

advantage of the 10-year long (2010 to 2019) SMOS record to describe BoB SSS 156 

seasonal cycle and interannual variability. Section 5 provides a summary and discussion. 157 

We also briefly discuss the very promising performance over the BoB of a new merged 158 

SMOS-Aquarius-SMAP data product developed by the European Space Agency (ESA). 159 
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 160 

2. Dataset and methods  161 

2.1. SSS datasets 162 

We analyse SSS datasets derived from different satellites (SMOS, Aquarius and 163 

SMAP). The SMOS-old and Aquarius datasets are described in more details in Akhil et 164 

al. (2016b), and the SMAP dataset in Fournier et al. (2017). Their most salient 165 

characteristics are summarized below. 166 

The SMAP platform was launched on 31 January 2015 and began operating from 167 

April 2015. We use the version-4.3 SMAP SSS, gridded Level-3 dataset, distributed by 168 

the “Jet Propulsion Laboratory (JPL)”, at 8-days temporal and 0.25° spatial resolution. 169 

This product is available from the 6th April 2015 to near real time (Yueh et al., 2013, 170 

2014) and is analysed up to 30th December 2019 in the present paper. For Aquarius 171 

(Lagerloef et al., 2008), we analyse the Version-5, Level 3 gridded, SSS dataset, 172 

released by the NASA “Physical Oceanography Distributed Active Archive Center 173 

(PODAAC)”, which provides 7 day running-means at 1° resolution, between August 174 

2011 and June 2015. The approximate effective resolution is ~60km for SMAP and 175 

150km for Aquarius. A description of the products version, data repository, temporal 176 

and spatial resolution and analysed period is provided in Table 1. 177 

As mentioned in the introduction, we also analyse two versions of the SMOS 178 

data.  The first one (“SMOS-old” in the following) is the dataset described in Akhil et al. 179 

(2016b); i.e. the version-2, Level-3 gridded SMOS SSS research product, produced by 180 

the “CATDS/Ifremer”, at a horizontal resolution of 0.25° for 10-day running means. The 181 

second dataset (“SMOS-new” in the following) is the Level-3 gridded SMOS SSS 182 
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‘debiased’ version-4  (Boutin et al., 2018) generated by the “LOCEAN/ACRI-ST 183 

Expertise Center”, with resolution of 0.25° for 9-day running means, from January 2010 184 

to September 2019. The effective resolution of these two datasets is approximately 185 

70km. SMOS-old SSS were de-biased using a crude method which did not take the 186 

geometry of the coast into account and excluded pixels that were too far away from the 187 

in situ climatology in 5°x5° pixels. SMOS-new uses an improved systematic error 188 

correction near land, and a less rigorous quality control of the radiometric measurements 189 

in regions where the SSS variability is large, as in Boutin et al. (2018). One of the main 190 

changes between the ‘debiased’ version-4 we use here and ‘debiased’ version-2 in 191 

Boutin et al. (2018) is an improved adjustment of the absolute SSS close to coast, by 192 

adjusting the upper quantile of the SMOS SSS to the ISAS in situ climatology (Gaillard 193 

et al., 2016) instead of the median (equation 4 of Boutin et al., 2018). This significantly 194 

improves the comparison of SMOS ‘debiased’ v4 to SMAP SSS, relative to the 195 

‘debiased’ v2 (not shown). 196 

 197 

2.2. In situ salinity data 198 

The in situ dataset used to quantitatively validate these satellite products gathers 199 

all the BoB SSS measurements in the “World Ocean Database” (hereafter WOD; Boyer 200 

et al., 2018; Garcia et al., 2018) over the 2010 to 2019 period. The main contributors to 201 

this dataset are Argo profilers (“Array for Real-Time Geostrophic Oceanography”, 202 

Roemmich et al., 2009). This dataset also includes XCTD (“eXpendable Conductivity-203 

Temperature-Depth”) profiles, moored buoys data, ocean drifters and glider data. As 204 

WOD gathers different data sources, the depth at which these measurements are 205 

retrieved varies from 1 to 5m. As discussed in Chaitanya et al. (2015) and Akhil et al. 206 
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(2016b), the error arising from these diverse sampling depths is negligible relative to 207 

horizontal SSS variations within retrieved data grid cells in this region. This dataset 208 

includes more than 28000 valid measurements but its coverage is rather heterogeneous 209 

as indicated in Figure 2a, with a dense sampling in the central BoB but sparse data close 210 

to the coasts and in the Andaman Sea. These in situ data are binned into a 1° x 1° 211 

monthly gridded dataset by taking the median of individual measurements in every bin. 212 

A similar gridding is performed for the various satellite datasets. We further define four 213 

BoB sub-regions that are outlined on Figure 2b. The NBoB (“Northern BoB”, 86°E to 214 

94°E and 16°N to 23°N) exhibits the largest SSS variations. The WBoB (“western 215 

BoB”, 80°E to 84°E and 6°N to 16°N) encompasses the “river in the sea” during fall. 216 

The ANDA (“Andaman Sea”, 94°E to 99°E and 6°N to 18°N) also host a prominent 217 

variability. The CBoB (“Central BoB”, 84°E to 94°E and 6°N to 16°N) is the region of 218 

weakest variability.  219 

We also use the 15˚N and 90˚E RAMA (“Research Moored Array for African-220 

Asian-Australian Monsoon Analysis and Prediction”; McPhaden et al., 2009) mooring 221 

salinity data at 5m-depth to validate the satellite at this location. The mooring does not 222 

provide 5m data after May 2018, so the validation of the satellite with RAMA is 223 

restricted to the January 2010 to May 2018 period. The newly updated climatology - 224 

WOA18 (Zweng et al., 2018) with 0.25˚X0.25˚ degree horizontal resolution is also used 225 

for qualitatively validating the satellite data salinity seasonal cycle in Figure 8. 226 

2.3. Ancillary datasets 227 

For Sea Level Anomalies (SLA), we use AVISO dataset 228 

(“www.aviso.oceanobs.com/fr/accueil/index.html”; Ducet et al., 2000), which merges 229 

data from different altimeters. The BoB surface circulation is obtained from the GEKCO 230 
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(“Geostrophic and Ekman Current Observatory”; Sudre et al., 2013) surface current 231 

available from October 1992 to present. This product includes both surface geostrophic 232 

currents derived from altimetry and the Ekman flow derived from scatterometer winds. 233 

We use satellite-derived monthly estimates of Ganges-Brahmaputra river discharge at 234 

the river mouths (Papa et al., 2010), estimated from the joint use of in situ level-235 

discharge rating curves and altimetry-derived water level at the river mouth (Papa et al., 236 

2012). This dataset is unfortunately available up to 2016 only. 237 

In the following section, we will define several climate modes indices. Those 238 

indices are traditionally defined from Sea Surface Temperature (SST), for which we use 239 

NOAA OI-SST v2 data 240 

(https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html). But we 241 

will see that a SST-based index maybe not the best choice for the Indian Ocean Dipole 242 

(IOD), and will propose alternatives, in particular based on Outgoing Longwave 243 

Radiation (OLR, a proxy of deep atmospheric convection) or Wind Stress (the force 244 

exerted by wind per unit ocean surface). Wind stresses up to August 2019 are calculated 245 

from the ERA-Interim daily winds by using the bulk formula     CDU*|U|, where   246 

the density of the air, CD the drag coefficient (here assumed to be 1.2 x10-3), and U the 247 

wind vector at 10-m height. We use the National Oceanic and Atmospheric 248 

Administration interpolated OLR data 249 

(https://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html).  250 

2.4. Climate indices 251 

We will relate interannual SSS variations in the BoB to well-known modes of 252 

climate variability. The Indian Ocean Dipole (Saji et al., 1999) peaks in boreal fall 253 

(typically September-November). In its positive phase, the IOD is characterized by cold 254 
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SST anomaly along the coast of Java and Sumatra and warm SST anomaly over the 255 

western Indian Ocean (Fig. 3b). Because of this SST anomaly pattern, a classical index 256 

proposed to characterize the IOD is the Dipole Mode Index (hereafter DMI; Saji et al., 257 

1999), defined as the September-November (SON) average difference between SST 258 

anomalies in the western (50° to 70°E and 10°N to 10°S) and eastern (90° to 110°E and 259 

10°S to 0°) equatorial Indian Ocean.  260 

It has been argued before that the DMI not only tracks dynamical perturbations 261 

associated with the IOD, but also more high frequency SST anomalies driven by 262 

synoptic atmospheric variability (e.g. Dommenget and Jansen, 2009), and that some 263 

other indices may be more accurate to represent the ocean-atmosphere coupling that 264 

characterizes the IOD (e.g. Shaaban and Roundy, 2017). Positive IOD events are for 265 

instance also characterized by reduced atmospheric convection in the eastern Indian 266 

Ocean, as evidenced by the positive OLR anomalies in this region (Fig. 3b). It has hence 267 

been suggested that an OLR based index could better distinguish IOD events than the 268 

classical SST-based DMI index (Shaaban and Roundy, 2017). We have thus defined an 269 

OLR-based Dipole Index (hereafter, ODI) inspired from that of Shaaban and Roundy 270 

(2017), but simply defined as average SON OLR interannual anomalies in the western 271 

(50° to 70°E and 10°N to 10°S) equatorial Indian Ocean minus those in the eastern (90° 272 

to 110°E and 10°S to 0°) equatorial Indian Ocean. Those are the same boxes as those 273 

used for the DMI, and their choice is justified by the statistically significant OLR signals 274 

there (Fig. 3b). 275 

Positive phase of IOD are also associated with easterly wind stress anomalies 276 

over the eastern Equatorial Indian Ocean (Fig. 3a). We have thus defined a Wind stress-277 

based Dipole Index (WDI) as the average SON zonal wind stress anomaly over the 278 



 

 13 

eastern equatorial Indian Ocean (EEIO, 5°N-5°S; 75°E-100°E). Those wind stress 279 

anomalies induce a clear basin-scale Sea Level Anomalies (SLA) response (e.g. Webster 280 

et al. 1999; Suresh et al. 2018), with downwelling (i.e. positive SLA) along the south 281 

central Indian Ocean (Fig. 3a) in boreal fall (Webster et al. 1999; Keerthi et al., 2013) 282 

and upwelling (i.e. negative SLA) along the java Sumatra coast. We hence also defined a 283 

SLA-based Dipole Index (SDI) as the average SON SLA in the south central Indian 284 

Ocean SCIO, 5°S-15°S; 65°E-90°E) minus that near the Java/Sumatra coast (JSC; 0°-285 

10°S; 95°E-105°E).  286 

The time evolution of the four IOD indices (the classical DMI and our SDI, 287 

WDI, and ODI indices) over the 1993-2018 period is displayed on Figure 3c. While all 288 

these indices share a lot in common, the DMI index departs from all the other indices in 289 

both 2017 and 2018, two years within our 2010-2018 study period. Statistics in Table 2 290 

indicate that the DMI is the least consistent with the other indices (Table 2), with 291 

correlations ranging from 0.83 with the ODI to 0.89 with the SDI. In contrast, the SDI is 292 

strongly correlated with the WDI (correlation 0.97) a to a slightly lesser extend with the 293 

ODI. I.e. the IOD ocean-atmosphere signals seem to be better characterized by its SLA, 294 

OLR (atmospheric convection) and wind stress signals than by the DMI. This is not only 295 

true over the entire 1993-2018 period, but even more over our 2010-2018 study period 296 

(number in brackets in Table 2). In the text, we will thus use the SDI to characterize the 297 

IOD, and find that SSS interannual anomalies are more correlated with the SDI than 298 

with the DMI. We will not mention correlations with the ODI and WDI for the sake of 299 

brevity, but these two last indices also yield higher correlations with the IOD signals that 300 

we will discuss. In short, the SDI, ODI or WDI are better indices of the IOD than the 301 

DMI. 302 



 

 14 

Finally, we will also use the Nino3.4 index, which corresponds to SSTA 303 

averaged over central equatorial Pacific (170°W-120°W; 5°N-5°S) from November to 304 

January, to characterize the El Niño Southern Oscillation (ENSO) phase. The IOD is 305 

indeed often phase-locked with ENSO (e.g. Annamalai et al. 2003), and it is sometimes 306 

delicate to distinguish a signal caused by one or the other (e.g. Currie et al. 2013; 307 

Keerthi et al. 2013). 308 

 309 

3. Validation 310 

In this section, we evaluate SMOS-new SSS dataset in terms of spatial coverage 311 

and agreement with in situ observations. We first illustrate the much better performance 312 

of SMOS-new against SMOS-old dataset (section 3.1), and then focus on SMOS-new 313 

and compare its performance to that of the Aquarius and SMAP datasets (section 3.2). 314 

3.1. SMOS-new vs. SMOS-old 315 

Figure 2 displays the percentage of 1° x 1° monthly values that can be retrieved 316 

from in situ, SMOS-old, SMOS-new, Aquarius and SMAP data. As discussed in Akhil 317 

et al. (2016b), many pixels of the SMOS-old product are flagged as bad values (Fig. 2c), 318 

in particular over the northern BoB. As a result, SMOS-old only achieves a nearly 319 

complete coverage south of 15°N, with a northward decrease of the data coverage down 320 

to < 10% close to the Ganges-Brahmaputra estuary. In contrast, the SMOS-new product 321 

achieves a complete coverage over the entire domain (Fig. 2d). This coverage is far 322 

better than the one achieved from in situ data (Fig. 2b,d). In situ data typically achieves a 323 

~20% coverage in central BoB, but does neither sample coastal regions nor the 324 

Andaman Sea. SMOS-new has thus a superior coverage to SMOS-old and very superior 325 

coverage to in situ data. 326 
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Figure 4 compares SMOS-new and SMOS-old observations against in situ data. 327 

The statistics for this comparison are provided for the entire datasets, but also between 328 

brackets for common data between SMOS-old, SMOS-new and in situ data, to allow a 329 

fair comparison. Both sets of statistics in fact indicate a clear improvement of SMOS-330 

new relatively to SMOS-old, with an increase in correlation (~0.8 vs. 0.6) as well as a 331 

reduction of the bias (~0.1 vs. -0.14) and root mean square difference (rmsd; ~0.6 vs. 332 

0.95). This clear improvement remains valid when comparing both datasets separately 333 

for the four regions displayed in Figure 2b (not shown). As shown in Figure 4, this 334 

improvement is partly due to the tendency of SMOS-old to overestimate low SSS (in the 335 

25-32 pss range) and to underestimate high SSS (above 34 pss), which largely 336 

disappears in SMOS-new. 337 

This broad analysis demonstrates the clear improvement of SMOS-new relative 338 

to SMOS-old and we will focus in the following on a more thorough evaluation of 339 

SMOS-new, in comparison with SMAP and Aquarius. 340 

3.2. SMOS-new vs. Aquarius and SMAP 341 

Figures 2d,e,f allow comparing the spatial coverage of SMOS-new, Aquarius and 342 

SMAP. The three products achieve a full coverage in most of the BoB, and only differ 343 

through their spatial resolution and coverage close to coasts. SMAP intermittently 344 

provides a couple of additional values close to coasts relative to SMOS-new. Both 345 

products are clearly superior to Aquarius in terms of data coverage, due to the lower 346 

resolution of Aquarius and some missing values in grid-points in the vicinity of coasts. 347 

Figure 5 further provides statistics for comparisons between satellite products 348 

and co-located in situ data over their common periods (August 2011 to June 2015 for 349 

SMOS-New vs. Aquarius on Figure 5a; April 2015 to October 2019 for SMOS-new vs. 350 
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SMAP on Figure 5b), i.e. these statistics are strictly comparable as they compare the 351 

satellites to identical common in situ samples. SMOS-new and Aquarius have an almost 352 

identical performance (r~ 0.8, rmsd ~ 0.65 and bias ~ 0.15). One may however argue 353 

that this is not a fair comparison, since SMOS SSS has a higher spatial resolution (0.25° 354 

for the new SMOS product) than Aquarius (1°). We have hence re-gridded SMOS to the 355 

Aquarius 1° grid through spatial averaging. The resulting 1° SMOS-new has an almost 356 

identical fit to observations compared to SMOS-new on its native grid. This is a bit 357 

surprising, because there are a lot of fine-scale (< 1°) salinity structures in the BoB (e.g. 358 

Wijesekera et al., 2016), and one would thus expect finer-resolution product to capture 359 

them better, and yield less representativity errors. The almost equivalent performance of 360 

SMOS-new product at these two resolutions could either arise from the fact that the 361 

SMOS-new product effective resolution is about 70km in the BoB, or that SMOS has 362 

grid-point, unphysical noise, and whatever is gained in term of representativity is lost 363 

due to this noise. SMAP behaves slightly better than SMOS-new in the BoB (Fig. 5b), 364 

with slightly higher correlation (0.85 vs. 0.81) and lower rmsd (0.59 vs. 0.65). It does, 365 

however, have a slightly larger bias (0.08 vs. 0.11). 366 

Figure 5 evaluated the three remotely sensed SSS over the entire BoB. This 367 

validation has also been performed separately for the NBoB, WBoB, CBoB and ANDA 368 

regions (not shown), resulting in a similar conclusion: statistics of comparison with in 369 

situ SSS are generally equivalent with Aquarius and SMOS-new, and slightly better with 370 

SMAP than both products. Aquarius however performs slightly better than SMOS-new 371 

in the central BoB but this is compensated by a better SMOS-new performance in the 372 

Northern BoB and Andaman regions. Figure 6 provides an alternative regional 373 

validation of the SMOS-new dataset, by plotting box-averaged time series of in situ and 374 

SMOS-new SSS, both for co-located data at in situ points (continuous lines) and for the 375 
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box-average SMOS-new data (dashed line), for the NBoB, WBoB, CBoB and ANDA 376 

regions. Figure 6 first clearly demonstrates that the in situ data sampling is clearly not 377 

sufficient for estimating the box-averaged SSS (compare the red dashed and continuous 378 

lines), especially in the NBoB and ANDA boxes. This figure also indicates an 379 

outstanding phase agreement between SMOS-new and in situ collocated data, with 380 

correlations exceeding 0.8 in all boxes other than CBoB. The correlation is weakest for 381 

the CBoB region (0.75), where the SSS variability is the weakest, hence yielding an 382 

unfavourable signal to noise ratio. 383 

Since the central BoB seems to be a region where SMOS-new performs slightly 384 

worse than elsewhere in the BoB (Fig. 6), we provide a comparison of SMOS-new, 385 

SMAP and Aquarius with monthly-averaged salinity at 5 m depth from the 15°N and 386 

90°E RAMA mooring in Figure 7. This comparison confirms that SMOS-new has a 387 

degraded performance relative to SMAP and Aquarius in the central BoB, with lower 388 

correlations and higher rmsd to in situ data (both over the entire period or when 389 

compared based on the same observational sample). Despite this degraded performance 390 

compared to other products, SMOS-new still captures SSS variability in the central BoB 391 

relatively well, with a 0.79 correlation and 0.40 pss rmsd over the entire period (January 392 

2010- May 2018). Even if SMOS-new performs less accurately in the central BoB, it is 393 

still perfectly capable of detecting interannual anomalies such as the ~2 pss freshening 394 

events in 2012, 2013, 2014 and 2017 (Fig. 7).  395 

Another traditionally difficult region for satellite products to accurately retrieve 396 

SSS is the coastal region of WBoB, due to more prevalent RFI (Oliva et al., 2016) and 397 

contamination by signals from land (land brightness temperatures being typically about 398 

twice larger as those over the sea). This is particularly unfortunate along the East Indian 399 
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coast, where the “river in the sea” is associated with strong seasonal and interannual SSS 400 

signals (Chaitanya et al., 2014; Akhil et al., 2014; Akhil et al., 2016a). In order to infer 401 

whether satellite data can be trusted in this region, Figure 8 provides the correlation 402 

between the three satellite products and co-located data points and the standard deviation 403 

of their difference (STDD), as a function of the distance to the east coast of India (within 404 

10˚N-20.5˚N, 78˚E-90˚E). In all products, the correlation drops close to the coast. This 405 

drop only occurs very close to the coast in SMAP (from r~0.9 at 100km to 0.85 at 406 

50km), which is a clearly superior product along the east coast of India. The decrease at 407 

the coast is however weaker for SMOS-new (from r~0.8 at 200km to r~0.75 at 50km off 408 

the coast) than for Aquarius (r~0.83 at 350km to r~0.65 at 150km). Comparing the 409 

amplitude of the unbiased error (estimated as the standard deviation of the difference 410 

between the product and in situ data) with the amplitude of SSS variations for each 411 

product (estimated from the product and in situ data standard deviation) further allows 412 

evaluating if the accuracy of the measurements is smaller than the signal, i.e. if the 413 

signal to noise ratio is favourable. This is not so much the case for Aquarius, for which 414 

the STDD is ~80% of the amplitude of the variability at 150 km away from the coast. 415 

SMOS-new and SMAP both allow to retrieve data closer to the coast, and to clearly 416 

monitor the increase in variability due to the “river in the sea” in the last 200 km from 417 

the coast. While the STDD increases close to the coast in both products, this typical 418 

error remains smaller than the signal to be measured, with a signal twice larger than the 419 

noise for SMAP. This result thus indicates that SMOS-new and SMAP are both able to 420 

capture the coastal SSS variations associated with the “river in the sea”, with a better 421 

performance for SMAP. However, Figure 8a-c also indicates that the typical error 422 

becomes closer to the STD away from the coast (at 500km), illustrating that the lower 423 

SMOS-new performance in the central BoB (Fig. 6c) is indeed partly due to weaker 424 
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signal-to-noise ratio there, as suggested above. 425 

4.  Bay of Bengal SSS variability from a decade of SMOS data 426 

In the previous section, we have established the capability of SMOS-new, SMAP 427 

and Aquarius datasets to map large-scale variability of SSS in the BoB, including the 428 

regions close to the East Indian coast for SMOS and SMAP. In this section, we will 429 

describe the ability of these datasets to describe the BoB SSS seasonal cycle and 430 

interannual variability. We will then take advantage of the 10 years of SMOS data to 431 

describe BoB seasonal cycle. As SMOS-new record only extends up to September 2019 432 

and the dominant modes of interannual variability peaks during and after September, the 433 

analysis of interannual SSS variability is restricted to 9 years (January 2010 to 434 

December 2018). We will however describe the SSS variability associated with an 435 

unusually strong IOD event in 2019 using August-December 2019 SMAP data (and 436 

show that it is consistent with SMOS-new data over August and September 2019). 437 

4.1. Seasonal cycle 438 

Figure 9 displays seasonal SSS maps constructed from the WOA18, SMOS-new, 439 

SMAP and Aquarius products, over the full period over which each product is available. 440 

While the SMAP (4-5 years) and Aquarius (3-4 years) records are too short to provide a 441 

precise estimate of the seasonal cycle, we underline that we only intend a qualitative 442 

comparison of the three satellites seasonal cycle with that from WOA18 (we already 443 

performed a quantitative comparison to in situ data in section 3). The newly available 25 444 

km-resolution WOA18 has finer structures than previous versions, which were 445 

excessively smooth (Akhil et al. 2014). It captures meridional SSS variations, with 446 

lowest SSS in the Northern BoB in SON (i.e. after the large rainfall and river runoff 447 

peak towards the end of the Southwest monsoon, e.g. Chaitanya et al., 2014). WOA18 448 
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also captures better fine-scale features such as the sharp SSS gradients at the river 449 

mouths and the post-monsoon “river in the sea” along the Western BoB, although this 450 

freshwater tongue hugging the East Indian coast is discontinuous in this dataset (Fig. 451 

9c). The three satellite datasets reveal a similar seasonal salinity pattern, with low 452 

salinity (below 30 pss) close to the Ganges-Brahmaputra and Irrawaddy river mouths 453 

from June to February, but SMOS and Aquarius fail to capture the SSS signature of 454 

those two rivers during the dry season (MAM). The “river in the sea”, associated with 455 

equatorward advection of the low salinity water in the Northern BoB by the southward 456 

post-monsoon EICC (Akhil et al., 2014; Chaitanya et al., 2014) is clearest in SMOS-new 457 

(Fig. 10a) and SMAP during boreal fall, where its freshening signature can be tracked as 458 

far south as the east coast of Sri Lanka. In contrast, Aquarius and WOA18 display a less 459 

coastally-trapped and more discontinuous freshening along the East Indian coast that 460 

does not reach the Sri Lankan east coast. Overall, SMOS-new and SMAP thus tend to 461 

display finer-scale structures than the other datasets. 462 

Figure 10b further displays a SSS (contours) and along-shore currents (colors, 463 

with blue/negative indicating southward currents) latitude-time section, averaged within 464 

200 km of the East Indian coast (red box in Fig. 10a). This Figure is comparable to 465 

Figure 6 in Akhil et al. (2014) modelling study or Figure 8 of Chaitanya et al. (2014) 466 

observational study and displays very similar features. The Northern BoB starts 467 

freshening in June onward during the monsoon onset, reaches its lowest climatological 468 

SSS in September, and goes back to pre-monsoon values by January-February. The 469 

southward expansion of this low salinity water along the East Indian coast coincides 470 

with the development of the southward EICC in October, while the return to pre-471 

monsoon values starts occurring before the EICC turns northward (Fig. 10b), as pointed 472 

out by Akhil et al. (2014) and Chaitanya et al. (2014). Through a detailed upper ocean 473 
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salinity budget, these last studies demonstrated that advection is the main cause for the 474 

“river in the sea” southward expansion, while vertical mixing strongly contributes to 475 

restoring the coastal SSS to pre-monsoon values. The 10-year long SMOS-new dataset 476 

yields salinity variations that are consistent with those conclusions. 477 

4.2. Interannual variability 478 

The insufficient in situ data coverage (Fig. 2a,b) only allows a rough description 479 

of the observed BoB SSS interannual variations. Based on gridded in situ data products, 480 

Pant et al. (2015) and Chaitanya et al. (2015) both reported strong interannual SSS 481 

variations in the western BoB. The observational study of Pant et al. (2015) and the 482 

modelling results of Akhil et al. (2016a) indicate that the IOD plays a prominent role in 483 

driving interannual SSS variability in boreal fall, in the northern and western BoB. Both 484 

studies indicate that the IOD remotely drives current anomalies through the coastal 485 

Kelvin waves propagation, which modulates the EICC intensity. The remote control of 486 

the IOD on the EICC is confirmed by the observational & modelling study of Sherin et 487 

al. (2018), which however does not discuss the resulting SSS anomalies. Here, we take 488 

advantage of the 9 year-long SMOS-new dataset to investigate if satellite SSS data 489 

yields a consistent description to that in those studies.  490 

Figure 11 confirms that largest year-to-year SSS variations in the northern and 491 

western BoB occur during September-November in the SMOS-new data, in agreement 492 

with Akhil et al. (2016a) modelling study. We have hence performed an “Empirical 493 

Orthogonal Function” (hereafter, EOF) analysis on the September to November (SON) 494 

average SSS anomalies (Fig. 12). We focus on the first EOF as it represents 43.2% of 495 

the total SSS anomalies variance, compared to less than 20% for higher modes. It is 496 

associated with opposite polarity SSS anomalies in the northern and western BoB (Fig. 497 
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12b). Its principal component (PC1) has a 0.65 to 0.84 correlation with the four different 498 

IOD indices described in the method section (significantly different from zero above the 499 

95% confidence level when considering each year as an independent sample). The 500 

correlation with ENSO is much weaker (r=0.07), and not statistically significant. This 501 

confirms that the leading mode of SSS anomalies in the BoB is strongly related to the 502 

IOD variability, with positive IOD events generally leading to negative SSS anomalies 503 

in the northern BoB and positive SSS anomalies along the west coast of BoB, in 504 

agreement with Akhil et al. (2016a) modelling study and Pant et al. (2015) in situ data 505 

analysis. The correlation with PC1 is largest when considering the SDI (SLA-based IOD 506 

index, r~0.84). This indicates a tight relation between the BoB SSS interannual 507 

anomalies and the SLA (and hence circulation) anomalies associated with the IOD, 508 

consistently with the results of Pant et al. (2015) and Akhil et al. (2016a). Because of 509 

this tight link, and because the DMI erroneously points to IOD events to 2017 and 2018 510 

(Fig. 3c), we will hereafter mostly use the SDI as our best indicator of the IOD 511 

circulation anomalies. 512 

Red arrows on Figure 12b display the GEKCO surface current anomalies 513 

obtained through a linear regression on PC1 time series. They indicate northward current 514 

anomalies along the East Indian coast, i.e. EICC weakening. The associated SLA signal 515 

(Fig. 12c) confirms that the EICC weakens during positive IOD events, in association 516 

with upwelling coastal Kelvin waves emanating from the equatorial region, as suggested 517 

by previous studies (Aparna et al., 2012, Akhil et al., 2016a, Suresh et al. 2018; Sherin et 518 

al., 2018). The EICC normally exports Northern BoB fresh water southward along the 519 

East Indian coast (Fig. 10a). Positive IODs weaken the EICC, hence resulting in a 520 

weaker southward fresh water export along the East Indian coast, qualitatively consistent 521 

with the typical negative anomalies in the northern BoB and positive anomalies in the 522 
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western BoB (Fig. 12b). This is qualitatively consistent with the role of advection.  523 

Figures 13 and 14 further allow detailing the year-to-year SSS variations along 524 

the East Indian coast over the 2010-2018 period and their main drivers. Figure 13 shows 525 

the SDI, and the SSS and along-shore currents latitude-time section along the Indian 526 

coast (red box in Fig. 10a). This period encompasses two positive IOD years (2011 and 527 

2015) and two negative IOD years (2010, 2016; Fig. 13a). The EOF analysis in Figure 528 

12ab and the case study of Fournier et al. (2017) indicate that the “river in the sea” tends 529 

to be less (more) developed during positive (negative) IOD years. This is confirmed by 530 

Figure 13bc: no clear “river in the sea” and positive SSS anomalies along the East Indian 531 

coast are depicted in 2011 and 2015, while a clearer “river in the sea” and negative SSS 532 

anomalies are seen in 2010 and 2016. The 2016 negative SSS anomalies are weak, 533 

however, and there are other years (such as 2013) that can also yield negative SSS 534 

anomalies along the East Indian coast. This indicates that the IOD is not the sole 535 

controller of year-to-year SSS variations along the East Indian coast, and we will come 536 

back to this point in the discussion. 537 

Let us now examine the year-to-year variations of SSS in the two regions with 538 

the strongest SSS variability (East Indian coast and northern BoB) in more details. 539 

Figure 14 displays time series of Northern BoB Ganges-Brahmaputra runoff anomalies, 540 

SSS anomalies in the northern and western BoB as well as along-shore current 541 

anomalies along the East Indian coast over the 2010-2018 period. The dashed line shows 542 

the part of the interannual anomalies that are attributable to the IOD (obtained as the part 543 

that is linearly related to the IOD, through regression on the SDI). In general, the 544 

interannual variability of the northern BoB freshwater fluxes is quite independent from 545 

that of the IOD over the period we consider (r~-0.4 between Ganges-Brahmaputra runoff 546 
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and SDI). There is, however, a stronger control of the Northern (r~-0.7) and 547 

southwestern BoB SSS (r~0.8) and along-shore current (r~0.7) anomalies by the IOD, as 548 

discussed earlier.  549 

For instance, the northern BoB exhibits the strongest anomalous saltening in 550 

2010 and 2016 (plain lines in Fig. 14b) in agreement with typical negative IOD years 551 

(compare the dashed and plain lines for these two years in Fig. 14b). The northern BoB 552 

freshens during the 2011 and 2015 positive IOD years, but more than would normally be 553 

expected in 2011. The anomalous saltening along the East Indian coast is strongest in 554 

2011 and 2015, consistent with a positive IOD those two years (Fig. 14d). The 555 

anomalous freshening along the East Indian coast is however weaker than expected in 556 

2016 (e.g. weaker than in 2012, a neutral IOD year). This underlines again that, with 557 

only 40% of the variance explained at the basin scale, the IOD is not the sole 558 

phenomenon that controls the interannual SSS variability in the BoB. Snapshots of the 559 

SSS (not shown) for instance suggest that a mesoscale eddy resulted in exporting a lot of 560 

freshwater from the “river in the sea” to the basin interior in 2016, hence diverting the 561 

fresh water from its along-shore southward path, and resulting in the relatively weak 562 

SSS anomalies for a negative IOD year in 2016. 563 

Finally, some years with no IOD event can be associated with non-negligible 564 

SSS anomalies in the BoB. Let us focus on year 2012, which exhibits a positive but 565 

modest IOD index value. This year is associated with anomalously fresh SSS anomalies 566 

in the northern BoB, larger than what expected from the IOD index value that year (Fig. 567 

14a). This behaviour may be attributable to anomalously strong Ganges-Brahmaputra 568 

runoff in 2012 (Fig. 14a,b). This is coherent with Akhil et al. (2016a) modelling results 569 

that indicate that the second EOF of BoB SSS variability during boreal fall is associated 570 
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with northern BoB SSS variations in response with the Ganges-Brahmaputra interannual 571 

anomalies. We will discuss this further in section 5.2. A strong anomalous freshening in 572 

the northern BoB is also observed in 2017, a year with a very weak IOD index value. 573 

The unavailability of Ganges-Brahmaputra runoffs data after 2016 however prevents 574 

assessing the role of freshwater forcing on this anomalous event.  575 

4.3.  The 2019 positive IOD  576 

The availability of SMOS data until September 2019 and of SMAP data up to 577 

present gives us the opportunity to describe the anomalous SSS pattern in the BoB 578 

related to the extreme positive IOD event in fall 2019 (Doi et al., 2020). We used the 579 

common SMOS and SMAP period to compute interannual anomalies, and the common 580 

August and September 2019 months indeed confirm that SMOS and SMAP are quite 581 

consistent over these two months. We will thus focus on SMAP to describe SSS 582 

anomalies associated with the strong 2019 IOD.  583 

The circulation and SSS anomalies in October-November 2019 are qualitatively 584 

consistent with those deduced from the Figure 12 EOF analysis, with a weaker than 585 

usual EICC associated with salty anomalies along the southern portion of coast of India, 586 

and fresh anomalies in the Northern BoB. The salty anomaly along the entire coast of 587 

India, associated with an unusually weak EICC had actually already started in August 588 

and September, when the fresh anomaly was more confined to the vicinity of the 589 

Ganges-Brahmaputra river mouth. While those anomalies are roughly consistent with 590 

those of the EOF analysis, they are very large, possibly due to the very large IOD 591 

amplitude in 2019 (Doi et al., 2020). There is also a very strong modulation of the 592 

salinity field by mesoscale activity, as noted previously by Fournier et al. (2017). 593 

Finally, the case of 2019 suggests that the EOF analysis pattern develops in two stages, 594 
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first with positive SSS anomalies along the coast of India, and then with negative 595 

anomalies in the Northern BoB. The exact timing of this development and strong 596 

modulation by the mesoscale field suggest that more years will be needed in order to 597 

obtain a robust estimate of the dominant pattern of IOD-induced SSS variability in the 598 

BoB from remotely sensed data. This is further discussed in section 5.  599 

 600 

5. Summary and Discussion 601 

5.1. Summary 602 

Past studies have underlined that the BoB SSS distribution can influence the 603 

intensity of tropical cyclones and the marine productivity by acting as a barrier to the 604 

upward mixing of colder water and nutrients into the surface mixed layer (Prasanna 605 

Kumar et al., 2002; Neetu et al., 2019). This is a strong motivation for a reliable 606 

monitoring of the year-to-year SSS variations in the BoB. In this paper, we show that 607 

currently available in situ data are not sufficiently dense to allow a proper mapping of 608 

the fine SSS structure in the BoB, even at seasonal timescale. In contrast, the SMOS, 609 

Aquarius, and SMAP satellite missions can provide synoptic maps of the basin SSS 610 

every ~8 days with a resolution of ~50-100 km. The first attempts to estimate BoB SSS 611 

from SMOS were unsuccessful (Boutin et al., 2013; Subrahmanyam et al., 2013; Akhil 612 

et al., 2016b), because of a suboptimal processing of systematic errors and too stringent 613 

quality control in that dataset. The new processing of Boutin et al. (2018) introduces an 614 

improved systematic-error correction and better accounts for the amplitude of the SSS 615 

signal during the quality control. Over the BoB, this results in a 100% spatial coverage 616 

for ¼° SSS maps every 4 days over the 2010-2019 period that capture the basin-scale 617 

SSS variability well (0.81 correlation, 0.10 bias and 0.65 rms-difference relative to more 618 
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than 26000 collocated 1-4 m depth in situ data over the basin). Comparison with SMAP 619 

and Aquarius data further indicate that the new SMOS processing has a similar 620 

performance to Aquarius (but better spatial resolution) and slightly inferior performance 621 

to SMAP over the BoB. The new SMOS processing has a degraded performance in the 622 

central BoB but still compares well with RAMA mooring data at 15°N-90°E (0.79 623 

correlation, 0.00 bias and 0.37 rms-difference). Despite errors that increase toward the 624 

coast of India, SMOS and SMAP still retain a favourable signal-to-noise ratio, and high 625 

correlations with available in situ observation datas close to the coast (r~0.74 for SMOS 626 

and 0.83 for SMAP 75 km away from the coast). 627 

The advantage of the SMOS new processing relative to SMAP and Aquarius is 628 

the length of its record (~10 years), that allows examining the BoB SSS seasonal cycle 629 

and interannual variability and to compare it with previous studies, based on either 630 

modelling or sparse in situ data. The new SMOS processing confirms that the largest 631 

seasonal signals are related to a northern BoB freshening during and shortly after the 632 

southwest monsoon, and its southward expansion along the west coast of India in fall, 633 

due to advection by the EICC. The strongest interannual variability occurs during 634 

September-November, in association with the IOD. Remote forcing associated with the 635 

IOD modulates the EICC intensity through coastal Kelvin waves radiating from the 636 

equatorial strip to the western BoB. The EICC is anomalously weak during positive IOD 637 

events, resulting in less southward freshwater export, and hence negative SSS anomalies 638 

to the north of the BoB and positive SSS anomalies along the East Indian coast. 639 

Opposite anomalies occur during negative IOD events. These anomalies are however 640 

modulated by other processes than the IOD. For instance, Ganges-Brahmaputra River 641 

discharge variations seem to also contribute to northern BoB SSS anomalies during 642 

some years. Similarly, eddies induce strong offshore transport, and thus modulate SSS 643 
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along the East Indian coast. 644 

5.2. Discussion 645 

Let us first compare the results of the present study with previous analyses. 646 

Previous studies of the BoB SSS either relied on modelling or on sparse in situ data that 647 

do not resolve the strong salinity gradients. First, the present study confirms large SSS 648 

seasonal signals in the northern BoB during and after the monsoon (e.g. Akhil et al., 649 

2014; Rao and Sivakumar, 2003). Most importantly, it confirms that a fresh salinity 650 

tongue associated with steep salinity gradients develop along the East Indian coast after 651 

the summer monsoon, in agreement with sparse observations from cruises (e.g. Shetye et 652 

al., 1993; Hareesh Kumar et al., 2013), modelling results (Jensen, 2001; Akhil et al., 653 

2014), observations collected directly at the coast (Chaitanya et al., 2014) and a case 654 

study using SMAP data (Fournier et al., 2017). It also confirms that the IOD is the 655 

dominant contributor to BoB SSS interannual variability, as suggested from in situ 656 

observations (Pant et al., 2015), modelling (Akhil et al., 2016a) or a case study with 657 

SMAP data (Fournier et al., 2017). Our results also show a clear link between those SSS 658 

anomalies and the EICC modulation in response to the IOD remote influence through 659 

coastal Kelvin wave circumnavigating the BoB, confirming the modelling results of 660 

Akhil et al. (2016a).  661 

But our results also illustrate that, with 43% of explained variance, the IOD is 662 

not the only phenomenon to control the boreal fall BoB SSS anomalies. Akhil et al. 663 

(2016a) modelling study found a second EOF mode (16% of the total variance) 664 

associated with local SSS anomalies in the northern BoB in response to Ganges-665 

Brahmaputra River discharge variations. While those discharge variations seem to 666 

qualitatively match some of the deviations from the expected IOD signals over the 667 
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period we consider (Fig. 14), the higher order EOFs of the SMOS data or a regression to 668 

Ganges Brahmaputra runoff data do not reveal any consistent signal with those 669 

discussed by Akhil et al. (2016a). We suspect that this is because the SMOS satellite 670 

record is still too short to extract the weaker-amplitude variability (relative to the IOD 671 

signal) associated with the Ganges-Brahmaputra river discharge variations. We also find 672 

possible influences of mesoscale eddies in modulating the SSS interannual signals along 673 

the East Indian coast, consistent with Fournier et al. (2017). Finally, wind intensity may 674 

also partly control SSS variations through their impact on vertical mixing, which has 675 

been shown to have a prominent vertical mixing processes in eroding the upper-ocean 676 

salinity stratification in the BoB (Akhil et al., 2014, 2016a).    677 

We have attempted a budget approach to estimate the processes that explain the 678 

seasonal and interannual variability of SSS more quantitatively. We were however not 679 

able to close the budget, and we suspect that this is associated with the large 680 

uncertainties on the mixed layer depth estimate, that translate into large uncertainties on 681 

the estimation of the effect of rain and runoff freshwater fluxes. We hence think that an 682 

approach combining modelling and a validation by in situ observations would currently 683 

be the best approach to explain the mechanisms of SSS variability. The good agreement 684 

between the SMOS SSS seasonal cycle and that described by Akhil et al. (2014) and 685 

with the IOD-induced SSS signals in Akhil et al. (2016a) hence suggest that advection is 686 

the main process that induces the seasonal southward expansion of the Northern BoB 687 

freshwater along the East Indian coast and its interannual modulation. The existence of a 688 

second mode of interannual variability of the northern BoB, in relation with Ganges-689 

Brahmaputra runoff variations in Akhil et al. (2016a) modeling study yet has to be 690 

confirmed from direct observations. Future research, relying on the synergy between 691 

satellite and in situ observations along with modeling will be essential in order to tackle 692 
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and answer those scientific questions. 693 

A first step in that direction is the recent release of a merged dataset, that 694 

combines the SMOS, Aquarius and SMAP satellite retrievals into a single SSS dataset, 695 

as part of the Climate Change Initiative (CCI) of the European Space Agency (ESA). A 696 

description of this dataset and its data are both available from http://cci.esa.int/salinity for 697 

details. The CCI SSS dataset has the advantage of providing calibrated global SSS fields 698 

over a long 9-year period (2010-2018), as SMOS, but also to further reduce SSS errors 699 

by also using the Aquarius and SMAP data. Figure 16 provides a first evaluation of the 700 

quality of this product for the BoB, by comparing its fit to co-located in situ data over 701 

the SMOS-new, Aquarius and SMAP data periods. Note that, as for Figure 5, only 702 

common data samples to each pair of datasets are used to compute the statistics in each 703 

panel of Figure 16. This analysis demonstrates that the CCI-SSS product performs better 704 

than any of the single-satellite datasets over their common period. This is also the case 705 

when this analysis is performed for the BoB subregions on Figure 2b (not shown). This 706 

analysis indicates that CCI-SSS product is likely to be the best alternative to describe 707 

and understand the BoB SSS variability in future studies. As this dataset becomes 708 

longer, it will allow an increasingly accurate description of the BoB SSS interannual 709 

variability. 710 
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 933 

Name 

in this 

paper 

Obtained from Product 

version 

Temporal 

resolution 

Spatial grid 

resolution 

Analyze

d period 

SMOS-

old 

https://www.catds.fr/Produ

cts/Available-products-

from-CEC-OS/CEC-

Ifremer-Dataset-V02 

“SSS_SMOS_

L3_CATDS_C

ECOS_V02” 

10day running 

mean maps 

every 10 days 

0.25˚X0.25˚ May 2010 

to June 

2017  

SMOS-

new 

https://www.catds.fr/Produ

cts/Available-products-

from-CEC-OS/CEC-

Locean-L3-Debiased-v4 

“L3_DEBIAS_

LOCEAN_v4” 

9day running 

mean maps 

every 4 days 

0.25˚X0.25˚ January 

2010 to 

September 

2019 

Aquariu

s https://podaac.jpl.nasa.gov/

dataset/AQUARIUS_L3_S

SS_CAP_7DAY_V5  

“L3m_7D_SCI

_V5.0” 

7day running 

mean maps 

every 7days 

1˚X1˚ August 

2011 to 

June 2015 

SMAP https://podaac.jpl.nasa.gov/

dataset/SMAP_JPL_L3_S

SS_CAP_8DAY-

RUNNINGMEAN_V43  

“L3V4.3_SSS_

8DAYS_R130

80” 

8day running 

mean maps 

every day 

0.25˚X0.25˚ April 2015 

to 

December 

2019 

Table 1. Sea Surface Salinity products used in the current study. More details on the 934 

differences between the two SMOS datasets used in this study can be found on the 935 

CATDS (Centre Aval de Traitement des Données SMOS) website at 936 

“https://www.catds.fr/content/download/68781/file/OS_L3_products_Differences_and_937 

ProsCons.pdf”. 938 
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Correlation DMI SDI ODI WDI 

DMI 1 (1) 0.89 (0.86) 0.83 (0.74) 0.88 (0.78) 

SDI 0.89 (0.86) 1 (1) 0.91 (0.92) 0.97 (0.96) 

Table 2. Correlation between the four IOD indices used in this study over the 1993-2018 940 

period, with values over the 2010-2018 study period within brackets The DMI index is 941 

the SSTA-based index introduced by Saji et al. (1999). ODI (Outgoing longwave 942 

radiation-based dipole index) is the alternative index proposed by Shaaban and Roundy 943 

(2017). We also propose two indices that focus on the oceanic dynamical response based 944 

on sea level anomalies (SDI for Sea level Dipole Index) and zonal wind stress anomalies 945 

(WDI for Wind stress Dipole Index). The definition of these four IOD indices is detailed 946 

in Figure 3 and in the method section. The correlations provided in this table are all 947 

significantly different from zero above the 99% confidence level, considering each year 948 

as an independent sample. 949 
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  951 

Figure 1. September to November (SON) average map of (a, b) World Ocean Data 952 

(WOD) sea surface salinity (SSS), (c, d) SMAP SSS (color) and GEKCO currents 953 

(vector), (e, f) SMOS-new SSS (color) and GEKCO currents (vector) for (1st column) 954 

2015 and (2nd column) 2016. The location of the Ganges-Brahmaputra (GB) and 955 

Irrawaddy (IRR) estuaries, the two main river systems in to the Bay of Bengal (BoB), 956 

are marked on the panels.  957 
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 959 

Figure 2. (a) Total number of WOD in situ observations, per year and per 1˚x1˚ boxes 960 

above 5m depth. (b - f) Percent of months with SSS data from (b) WOD (only 1˚x1˚ 961 

pixels having more than 5 data per month are considered as valid SSS data), (c) SMOS-962 

old, (d) SMOS-new, (e) Aquarius and (f) SMAP. See Table 1 for the time period 963 

covered by each dataset. The star indicates the [15˚N, 90˚E] RAMA mooring location. 964 
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 966 

 967 

Figure 3. Regression of interannual anomalies of (a) wind stress (vectors) and sea level 968 

(colors) and (b) SST (colors) and Outgoing Longwave Radiation (OLR, W.m-2, 969 

contours) onto the DMI in September-October-November (SON) over the 1993-2018 970 

period. Values are masked only when they are not significantly different from zero at the 971 

90% confidence level. (c) Time series of the four IOD indices used in this study over 972 

1993-2018 period. The sea level dipole index (SDI) is computed as the SLA difference 973 

between the south central Indian Ocean and Java/Sumatra Coast (see black frames on 974 

panel a denoted respectively SCIO and JSC). The wind stress dipole index (WDI) is 975 

taken as the zonal wind stress averaged over the eastern equatorial Indian Ocean (see 976 

blue box denoted EEIO on panel a). The OLR-based index (ODI) is computed as the 977 

difference of OLR anomalies between the western Indian Ocean and the southeastern 978 

Indian Ocean (see black frames on panel b denoted respectively WIO and SEIO, those 979 

are the same boxes as those used to define the DMI by Saji et al. 1999). Correlations 980 

between these different indices are provided on Table 2. The shading on panel (c) 981 

highlights the 2010-2018 period, for which the interannual variability of Sea Surface 982 

Salinity is analyzed in the current paper. 983 
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 984 

 985 

Figure 4. Scatterplot of co-located WOD Bay of Bengal (BoB) SSS against (a) SMOS-986 

old (2010-2017) and (b) SMOS-new (2010 to 2019). The correlation (r), bias, and root-987 

mean-square difference (rmsd) to the WOD data are indicated on each panel (the number 988 

in brackets provide those statistics for the common period to WOD, SMOS-old and 989 

SMOS-new).  990 
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 992 

 993 

Figure 5. (a) Bar diagrams of statistics of comparisons between co-located SMOS-new 994 

and Aquarius with in situ data over their common period (August 2011 to June 2015) 995 

and over the entire BoB. (b) Same as (a) but for SMOS-new & SMAP (April 2015 to 996 

October 2019). The statistics on this figure are strictly comparable, since both satellite 997 

datasets on each panel are compared to their common co-located in situ data sample. The 998 

Y-axis scale in the middle is common to both panels. The correlation has no unit, and 999 

the RMSD and bias are in °C. 1000 

  1001 
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 1002 

Figure 6. Timeseries of averaged co-located SMOS-new (red continuous line) and 1003 

WOD SSS (black continuous line) within the (a) NBoB, (b) WBoB, (c) CBoB and (d) 1004 

ANDA regions (see figure 2 for their definitions). The corresponding statistics are 1005 

indicated on each panel (these statistics differ from the ones in Figure 7, because these 1006 

are based on box-averaged quantities, not on individual co-located measurements). The 1007 

red dashed curve shows the box averaged SMOS-new data in each region (different from 1008 

the red full curve because it accounts for values everywhere in the box, not just for co-1009 

located values with in situ data).  1010 
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 1011 

 1012 

Figure 7. Time series of the salinity at 5m depth from the 15°N-90°E RAMA mooring 1013 

(black) and co-located SMOS-new (red), Aquarius (green) and SMAP (blue) satellite 1014 

data. The correlation (r), bias and root-mean-square difference (rmsd) of each dataset to 1015 

RAMA are given in red for SMOS-new, green for Aquarius and blue for SMAP. The 1016 

number in brackets give the SMOS-new statistics for the period common to Aquarius (in 1017 

green) and SMAP (in blue). 1018 

  1019 
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 1020 

1021 
  1022 

Figure 8. (a) Standard deviation (STD, °C) of co-located SMOS-new SSS (red) and 1023 

WOD SSS (black), and standard deviation of their difference (STDD, °C, green) as a 1024 

function of distance to the coast (40-km wide bins) from east coast of India 10˚N-20.5˚N 1025 

and 78˚E-90˚E. (d) Correlation coefficient between SMOS-new SSS (blue) and co-1026 

located WOD SSS as a function of distance to the coast (40-km wide bins) from east 1027 

coast of India 10˚N-20.5˚N and 78˚E-90˚E. (b, e) Same as a, d but for SMAP. (c, f) 1028 

Same as a, d but for Aquarius (but using 100-km wide bins). 1029 

1030 
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 1031 

 1032 

Figure 9. Seasonal climatology of SSS in the BoB from (a-d) WOA18, (e-h) SMOS-1033 

new (January 2010-September 2019), (i-l) SMAP (April 2015-December 2019) and (m-1034 

p) Aquarius (August 2011-June2015). 1035 

  1036 
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 1037 

Figure 10. (a) Climatological SON SMOS-new SSS (color) and SON GEKCO surface 1038 

current (vectors). The red frame on panel (a) indicates the region used for the latitude-1039 

time section on panel (b). (b) Latitude-time section of the SMOS-new SSS (contours, 1040 

pss) and GEKCO along-shore current (color, negative values indicate southward current) 1041 

seasonal cycle in the coastal box defined in (a). 1042 

  1043 
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 1044 

Figure 11. Standard deviation of SMOS-new (January 2010-September 2019) SSS 1045 

interannual anomalies for (a) MAM, (b) JJA, (c) SON and (d) DJF. The black frame on 1046 

panel (a) indicates the box that is used for the latitude-time section in Figure 12. 1047 

  1048 
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 1049 

Figure 12. (a) Time series of the normalized principal component (PC1) of the first 1050 

mode from an empirical orthogonal function (EOF) analysis of SON SMOS-new SSS 1051 

interannual anomalies (black), normalized SON SLA-based Dipole Mode Index (SDI, 1052 

red, see figure 3 and method section for definition) and ENSO index (Niño34, green) 1053 

over the 2010-2018 period. The correlation of PC1 with the four different IOD indices 1054 

and Nino3.4 index defined in the method section are indicated at the bottom of the panel. 1055 

(b) Regression of SON SMOS-new SSS interannual anomalies (SSS’, color) and 1056 

GEKCO surface current interannual anomalies (Current’, vectors) to PC1 over the 2010-1057 

2018 period. Signals that are not significantly different from zero at the 90% confidence 1058 

level are masked. (c) Regression of SON AVISO SLA (shading), GEKCO surface 1059 

current interannual anomalies (vectors) to SON SDI over the 2010-2018 period. The 1060 

frames on panels (b) and (c) are used in Figure 14.  1061 
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 1062 

Figure 13. (a) Bar diagram of average SON SLA-based dipole index (SDI) from 2010 to 1063 

2018. Latitude time section along the East Indian coast (boxes on Figure 10a and 11a) of 1064 

monthly (b) SMOS-new SSS (colors, pss) and GEKCO along-shore current (Contour, 1065 

cm/s; only southward currents are plotted as continuous contours every 0.1 m.s-1), (c) 1066 

SMOS-new SSS interannual anomalies (colors, pss). The blue (red) frames delineate the 1067 

September-November period of the two negative (positive) IOD years in 2010 and 2016 1068 

(2011 and 2015). 1069 

  1070 
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  1071 

Figure 14: Time series of June to December for (a) Ganges-Brahmaputra River 1072 

discharge anomaly (GBA, Blue; converted in mm.day-1 in NBoB oceanic area depicted 1073 

on Figure 2b), (b) SSS anomaly in NBoB (red), (c) along-shore current anomaly (blue) 1074 

in northwestern BoB (NWBoB, i.e. 2˚ from the coast along the east Indian coast; 14°N-1075 

20.5°N; see frame on Figure 12c), (d) SSS anomaly (red) in southwestern BoB 1076 

(SWBoB; 80°E-82°E-10°N-16°N; see frame on Figure 12b). Doted lines correspond to 1077 

“typical” IOD signals, obtained by regressing interannual anomalies on the normalized 1078 

SDI). Bars indicate the SON period (red for positive IOD years, blue for negative years 1079 

and grey for normal years, derived from the SDI). Stars represent the mean SON values. 1080 

The correlation (r) between the SON SDI and SON interannual anomalies of each 1081 

variable is given on each panel.  1082 
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 1083 

Figure 15: (a-b) August and September 2019 SMOS-new SSS anomalies (color) 1084 

overlaid with GEKCO current anomaly (vector). (c-f) August to November 2019 SMAP 1085 

SSS anomalies (color) overlaid with GEKCO current anomaly (vector). For this plot, the 1086 

climatology is computed using the common June 2015 to May 2019 SMOS-new and 1087 

SMAP period.  1088 
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 1089 

Figure 16: Bar diagrams of comparisons between satellite products and co-located in 1090 

situ SSS data over the entire BoB. The merged CCI-SSS product (2010 to October 2018) 1091 

is compared with (a) SMOS-new, (b) Aquarius and (c) SMAP over their common 1092 

periods. The statistics on this figure are strictly comparable, since both satellite datasets 1093 

on each panel are compared to the same common in situ data sample. 1094 


