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Abstract

Perceptual measurement is still the most common method for
assessing disordered speech in clinical practice. The subjectiv-
ity of such a measure, strongly due to human nature, but also
to its lack of interpretation with regard to local alterations in
speech units, strongly motivates a sophisticated tool for objec-
tive evaluation. Of interest is the increasing performance of
Deep Neural Networks in speech applications, but more impor-
tantly the fact that they are no longer considered as black boxes.
The work carried out here is the first step in a long-term re-
search project, which aims to determine the linguistic units that
contribute most to the maintenance or loss of the intelligibility
in speech disorders. In this context, we study a CNN trained
on normal speech for a classification task of phones and tested
on pathological speech. The aim of this first study is to analyze
the response of the CNN model to disordered speech in order to
study later its effectiveness in providing relevant knowledge in
terms of speech severity or loss of intelligibility. Compared to
perceptual severity and intelligibility measures, the results re-
vealed a very strong correlation between these metrics and our
classifier performance scores, which is very promising for fu-
ture work.

Index Terms: speech disorders, Head and Neck Cancer, per-
ceptual evaluation, speech intelligibility, objective assessment,
deep learning, phone classification.

1. Introduction

Speech intelligibility is defined in [1] by “the degree to which
the speaker’s intended message is recovered by the listener”.
When a patient suffers from speech disorders, whether due to
dysarthria, a consequence of a neuro-degenerative disease such
as Parkinson’s disease, or due to a cancer of the head and
neck, this intelligibility can be dramatically degraded. Differ-
ent approaches are currently used in clinical practice to mea-
sure the intelligibility of a patient’s speech and its progress in
the event of rehabilitation or therapeutic treatment (pre / post
surgical operation, radiotherapy, chemotherapy, ...), which are
mainly based on perceptual evaluation [2][3]. However, it is
well known in the literature that perceptual evaluation is subject
to controversy because of its subjective nature, its intra- and
inter-judgment variability and its lack of reproducibility [4]. In
addition, the protocols available for this type of evaluation are
not suitable for a precise analysis of the degree of intelligibility
and its evolution, except from a global point of view. This could
explain why there is no rehabilitation protocol specifically tar-
geted at particular linguistic units to improve the intelligibility
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of patients. In this context, if clinicians need objective and re-
liable measures for the evaluation of speech intelligibility, the
identification of the linguistic units that contribute most to the
maintenance or loss of intelligibility is also a requirement to im-
prove clinical protocols for patient management.

If the integration of deep learning-based approaches in the
field of clinical phonetics can be considered as recent com-
pared to the fields of speech or vision processing [5, 6], the
literature now reports numerous studies linking deep learning
and speech impairment. This reluctance towards deep learn-
ing came mainly from the lack of large corpora of patholog-
ical speech available, a major obstacle in the field of clinical
phonetics, but a predominant factor in training systems based
on deep neural networks. However, advances in neural archi-
tectures as well as transfer learning techniques applied to deep
learning have largely enabled this opening up. Among these
works, we can cite [7, 8, 9, 10].

The study presented in this paper is one of the main objectives
of a long-term research project, which is the search for linguis-
tic units playing a significant role in speech intelligibility, and
therefore in its loss in the event of speech disorders. Inspired
by [11] and [12] on the modeling of the characteristics of the
different phonemic units of speech through deep learning, the
long-term research work that we are carrying out is based on an
original approach we propose, dedicated to the identification of
these linguistic units from an acoustic point of view. This over-
all approach is based on three steps: (1) Modeling the character-
istics of phonemic units of “normal” speech thanks to a system
based on deep learning dedicated to a basic task of phone classi-
fication considered as the most relevant, (2) The transfer of this
deep learning modeling into a prediction task of intelligibility
typically in the context of normal and disordered speech, (3)
Investigating the representational properties of the model and
its capacity in yielding reasonable interpretation of the phone-
mic unit contribution in speech intelligibility and its variation
(improvement or alteration). Concerned by the step 1, this pa-
per presents the deep neural network architecture chosen for
the modeling of the phonemic units on “normal” speech and ex-
amines its behaviour when exposed to disordered speech (here
patients with Head and Neck Cancer). The rest of the paper is
dedicated as follows. Section 2 describes corpora implied in this
work. Section 3 provides a detailed description of step 1 of the
overall proposed approach. Section 4 presents the experimental
validation of this step 1. Finally, conclusions and perspectives
on the rest of the work will be given in section 5.
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2. Corpus

Both corpora used in this paper are described below.

The BREF corpus is composed of French read-speech
records produced by 120 speakers, recruited in the region of
Paris, while reading texts from newspapers. Developed in
90’s, this corpus was designed to provide continuous speech
for the development and the evaluation of Automatic Speech
Recognition systems and for phonological variation modeling
[13]. In this paper, read-speech records from 65 female and 47
male speakers are used, representing about 115h of speech.
Based on the reading texts, all the speech productions were
aligned automatically by using a forced-alignment system,
commonly based on a Viterbi algorithm and three-state
context-independent Hidden Markov Models (HMM) trained
on separate French speech data. Thus, temporal frontiers of all
the phones in speech records are available.

The C2SI-LEC corpus is a sub-part of the French speech

corpus, recorded within the C2SI project between 2015 and
2017 [14]. The overall corpus includes patients with Head and
Neck Cancers (oral cavity or oropharynx) and control speakers,
recruited in the southwest of France. All patients underwent
dedicated treatment consisting of surgery, and/or radiation ther-
apy, and/or chemotherapy. During the recording protocol de-
signed specifically for the C2SI project, all speakers were asked
to record different speech production tasks (sustained /a/ vow-
els, isolated pseudo-words, text or sentences reading, image de-
scription and brief interviews to get spontaneous speech).
Different perceptual evaluations were conducted by a jury of 5
to 6 experts (clinicians or speech therapists) including measures
of speech severity and intelligibility, on a 0-10 scale (0 - major
speech disorder; 10 - no speech disorder), on both the text read-
ing and image description tasks, and measures of the voice qual-
ity, the degree of alteration of resonance, prosody and phonemic
production on a 0-3 scale (0 - no disorder; 3 - major disorders)
on the image description task. Ratings given by the experts ac-
cording to each kind of measurement are averaged to provide
unique values for each speaker. It is important to point out that,
even designated as speech intelligibility, the related perceptual
assessment task has to be more considered as a comprehensibil-
ity measurement as reported in [15] since it integrates contex-
tual information in addition to the acoustic-phonetic informa-
tion, in the speech decoding process. Indeed, the text used in
the protocol is relatively short and may be memorized during
evaluation by experts (if it is not already known). This proba-
bly leads to an overestimation of speech intelligibility measures
for the patients notably since experts can deduce the heard text
despite speech production errors. Severity being assessed tak-
ing into account the overall speech signal degradation, it is less
influenced by the undesirable effect of text memorizing. This
difference can explain why statistics presented in figure 1 show
a smaller variation of intelligibility ratings compared to those
of severity (as well as to phonemic alteration even if the scale is
not comparable).
In this study, the focus is made on the reading task only, con-
sidering 89 speech records produced by 82 patients (7 pa-
tients were recorded twice during two different sessions) and 25
records for 24 control speakers (a control speaker was recorded
twice in the same session). This sub-corpus is named C2SI-
LEC in the rest of the paper. The perceptual assessment of the
speech severity (LEC-Sev) and intelligibility (LEC-Intel) on the
reading task as well as the phonemic alteration (DES-Phon) on
the image description task is concerned here.
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Figure 1: Perceptual evaluation by an expert jury : box plots of the
different measures of speech severity (LEC-Sev), speech intelligibil-
ity (LEC-Intel), and phonemic alteration (DES-Phon)

Based on the reading text (systematically corrected in case of
reading errors), all the speech productions were aligned auto-
matically, by applying the same system as described for the
BREF corpus.

3. Methodology

As mentioned above, this study is part of a long-term project,
which aims to determine the linguistic units playing a signifi-
cant role in the maintenance or loss of the speech intelligibil-
ity in speech disorders. As the first step, the modeling of the
characteristics of a set of French phonetic units, based on deep
learning and centered on a task of phone classification is inves-
tigated. We believe that these choices are the most relevant for
the objective sought.

The deep neural network architecture, we describe below, is
trained on a large corpus of normal speech to permit the mod-
eling of the phonetic units - 31 French phones plus silence. It
is then tested on disordered speech corpus, including patients
and control speakers, in order to examine its behaviour in terms
of classification performance (capacity of generalization on un-
seen data) but also in terms of correlation with different kinds
of perceptual measures, and notably measures of speech intelli-
gibility, given our long-term research objective.

3.1. CNN based modeling

In light of its competitive accuracy for the phone classification
task in the literature, we choose the Convolutional Neural Net-
work (CNN) architecture in our work. The input of our CNN
is a context window of 11 acoustic frames, each having 40 log
Mel-filter bank energy features along with their first and second
derivatives. These features are computed on a 20ms window
with an overlap of 10ms between two adjacent frames, and thus
stable acoustic features for classes such as phones serving as an
input to two pairs of convolution and pooling layers.

Following a recipe similar to [12], the convolution layers apply
a set of 3x5 filters to extract the local characteristics concen-
trated along the frequency axis, then producing respectively 32
and 64 activation maps. The max-pooling layers apply respec-
tively 1x3 and 1x2 filters providing a lower frequency resolution
features that contain more useful information to be processed by
higher layers of the neural network. The task of classification is
then performed by three fully connected layers of 1024 neurons.
We apply a ReLLU activation function followed by a dropout of
0.4 to the output of each of the fully connected layers. Our
main goal is to minimise the categorical crossentropy loss func-
tion using the stochastic gradient descent algorithm. Finally, an
output softmax layer corresponds to the posterior probability of
each class associated with the 31 French phones and silence.



3.2. CNN training and validation

To train our proposed model, we use the BREF corpus described
in section 2. After extracting the features as reported above, we
conduct an input data normalization by subtracting the mean
and by dividing by the standard deviation, both statistics are
computed at the speaker utterance level.

Since the phone distribution within the BREF corpus is highly
imbalanced, we adopt a random undersampling technique to
handle disproportional distribution of classes and thus prevent
the classifier from being biased towards the majority class.
Then, we partition our data into 3M samples for the training set
and 300K for the validation set, an almost 90%-10% data parti-
tioning. For the CNN training, an initial learning rate of 0.001
following an exponential decay schedule and an early stopping
strategies is utilized. For a first evaluation of our model, a BREF
test set is prepared aside containing a total of 1M samples, al-
most 2 hours and 45 minutes of speech spread over 1489 ut-
terances. We fix such a complete set for further analysis. In a
later phase, the evaluation is made on C2SI-LEC dataset (about
350K samples), described in section 2, seeking the goal of this
work.

4. Results

Our main purpose from training a CNN for a task of phone clas-
sification is to evaluate its phonetic feature encoding capability
in order to prepare the ground for the long-term objective : the
extraction of relevant linguistic units related to speech intelligi-
bility variation. To be able to explore this CNN capability, its
performance is measured, at the frame level, using a balanced
accuracy metric. In order to deal with the classification task
involving phone imbalanced datasets, this metric consists in av-
eraging the correct classification rate computed for each con-
cerned phone. Therefore, we will be referring to this balanced
accuracy whenever talking about CNN performance metric in
the rest of the paper.

4.1. Confusion Matrix analysis

In this section we evaluate our classification model performance
on two corpora, BREF and C2SI-LEC (control speakers only)
test sets on the basis of balanced accuracy, and through an anal-
ysis of phone confusion matrices given in figures 2 and 3 re-
spectively. For readability purposes and to highlight the most
relevant confusions, we split each of the confusion matrices into
two parts: the first one regroups oral and nasal vowels as well
as nasal consonants while the second regroups the voiced and
voiceless plosive and fricative consonants.

The model performance is impressive when evaluated on
BREF test data reaching a balanced accuracy of 82% with co-
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Figure 2: Confusion matrices (CM) on BREF test - (left) Sub-CM
grouping oral/nasal vowels, and nasal consonants - (right) Sub-
CM grouping voiced and voiceless consonants
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Figure 3: Confusion matrices (CM) on C2SI-LEC control -
(left) Sub-CM grouping oral/nasal vowels and nasal consonants
- (right) Sub-CM grouping voiced and voiceless consonants

herent phone confusions. When evaluated on the C2SI-LEC
dataset, our model gives 74% of balanced accuracy on healthy
control utterances, which is still a significant accuracy. This can
clearly confirm that our CNN is able to generalize to new data,
considering the fact that BREF and C2SI-LEC do not share nei-
ther the same conditions (recording equipment and location),
nor the same speakers on which the model was trained.

While analyzing individually the confusion matrices for both
BREEF test and C2SI-LEC corpora, we can clearly observe that
classification errors are somehow logical and have sense since
confusions are generally made between phones sharing most of
their phonemic features. Indeed, regarding fricative consonants
- voiced (/v/, /z/, I3/, noted as ’vv”, ’zz”, ”jj” in CM) and voice-
less (/f/, s/, /[/, noted as "ff”, ’ss”, ”ch” in CM) - or plosive
consonants - voiced (/b/, /d/, /g/) and voiceless (/p/, /t/, /k/), il-
lustrated in the right sub-CMs in figures 2 and 3, confusions are
observed inside a phonetic class (for instance 3% confusion be-
tween /b/ and /d/ on BREF corpus) or, on the voicing distinctive
feature inside a phonetic class (4.2% confusion between /g/ and
/k/ belonging to the voiced and voiceless plosive class respec-
tively on BREF corpus). By comparing both left sub-CMs, two
major differences can be observed. Regarding the left sub-CM
issued from the C2SI-LEC corpus in figure 3, the first one con-
cerns the nasal vowels, which are subject to strong confusions
with both oral vowels and nasal consonants (/n/ and /m/). This
difference can be explained by the recruitment region of speak-
ers for both corpora, exhibiting a major Parisian accent for the
BREEF corpus (the closest to standardized French), and a major
southwestern accent for the C2SI-LEC corpus. Indeed, it is re-
ported in the literature that nasal vowels can be produced with
a less complete nasalization in speech exhibiting a southwest-
ern accent, no more dealing with nasal vowels but rather with
a combination of an oral vowel followed by a nasal consonant,
typically the case of the LEC-C2SI corpus and the observed
nasal vowel confusions. The second difference reflects the fact
that speakers from the southwest region can have a more re-
duced phonological system of vowels compared to the Parisian
speakers, since the mid vowels are not in a distinctive opposition
(e.g. épée” vs “épais”). This can explain the strong confusions
observed notably between /¢/ and /e/ vowels, respectively noted
as “ai” and “ei” in the CM.

One way to overcome this drop in CNN performance, in terms
of accuracy, is to fine-tune our model using the C2SI-LEC con-
trol data. This alternative goes beyond all consideration because
we deal with a very limited amount of data that we require for
further analysis purposes. We can thus far justify the accuracy
degradation observed on the C2SI-LEC corpus and consider
that we achieve a low generalization error reflecting the clas-
sification performance and eliminating the possibility that the
model is subject to an overfitting.
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Figure 4: Scatter plots of different perceptual measures versus model balanced accuracy on the LEC-C2SI control and patient speakers

4.2. Correlation between perceptual measures and model
performance

Now that we have a relatively accurate model against dataset
variation, we can assume that any significant degradation in the
model performance, while typically testing on patient’s utter-
ances issued from C2SI-LEC corpus, is consistent with the de-
gree of speech quality degradation and thus with the percep-
tual ratings of that patient. To highlight this idea, we evaluate
our model per speaker (control speakers and patients), and we
calculate the correlation between the CNN balanced accuracy
and their corresponding perceptual measures notably intelligi-
bility, severity and phonemic ratings. Figure 4 plots respec-
tively the LEC-Sev, LEC-Intel, and DES-Phon perceptual mea-
sures against the balanced accuracy calculated on each speaker
record. The corresponding Pearson correlation coefficients,
noted r and calculated between the balanced accuracy scores
and perceptual measures for the overall set of speakers are also
provided. These figures, whatever the perceptual measures ob-
served, show a coherent behaviour by comparing the control
speakers and patients, represented by blue and green dots re-
spectively, in terms of balanced accuracy but also of perceptual
ratings. Indeed, the blue dots are concentrated on the upper
right (resp. down right for the phonemic alteration) where we
have the highest severity and intelligibility scores (resp. the
lowest phonemic alteration scores) as well as the highest bal-
anced accuracies, reflecting a high quality of speech. Moreover,
we can clearly see that the severity rating has the strongest cor-
relation, with a 0.91 r-value, with our model accuracy. While
we expect a value roughly the same as the LEC-Sev r-value,
the LEC-Intel r-value deteriorates to 0.78. The first interpreta-
tion coming to mind is that our CNN model is not as efficient
in encoding speech intelligibility characteristics as for severity.
However, with regard to the remark differentiating intelligibility
and comprehensibility underlined in section 2, this r-value de-
crease as well as the difference with the severity rating could be
easily explained, the severity focusing more on speech sounds
- which is closer to our CNN model objective - rather than on
the spoken message as with intelligibility. Finally, correlation
between the model accuracy and the phonemic alteration rating
(DES-Phon), shown in figure 4c, is slightly lower than for sever-
ity score but still very strong. Although this perceptual rating
was not assessed on the reading task, but on the image descrip-
tion, a very high r-value up to —0.88 is reached. Regarding the
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initial goal of modeling the characteristics of phonemic units,
this r-value still confirms the phonetic modeling capabilities of
the CNN-based architecture chosen.

5. Conclusions and perspectives

This paper investigates the encoding capability of a CNN-based
deep learning architecture to finely model distinctive phonetic
characteristics. This first study is part of a long-term research
project dedicated to the characterization of speech intelligibility
in disordered speech. Involved in a basic task of phone classifi-
cation, even the most relevant for the final objective, the CNN-
based model is trained on a large corpus of normal speech.
Confronted to disordered speech, the encoding capability of
this CNN-based model for the targeted task is demonstrated
through a very high correlation between its phone classifica-
tion rates and different perceptual measures available for both
patients and control speakers present in the disordered speech
corpus. Indeed, correlation coefficients of 0.91, —0.88, 0.78
with speech severity, degree of phonemic alteration and speech
intelligibility ratings respectively are reached. The high perfor-
mance of the CNN-based model observed for the task of phone
classification, in terms of global accuracy rates, as well as these
r-values make us confident in its involvement in the second
step of the long-term project dedicated to the prediction of the
speech intelligibility, still based on phonemic unit characteristic
modeling.

In these future works, particular attention will be paid to the per-
ceptual measurement of speech intelligibility available within
the corpus of speech disorders involved, which is nevertheless
necessary (for prediction purposes), but which we have pointed
out in because of its moderate reliability (patients’ overestima-
tion of speech intelligibility). Indeed, a more reliable measure
of speech intelligibility specifically developed for this purpose
[15] will be investigated in this context.
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