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Antibody-based therapies hold promise for a safe and efficient treatment of cancer. The
identification of target tumor cells through a specific antigen enriched on their surface and
the subsequent delivery of the therapeutic agent only to those cells requires, besides the
efficacy of the therapeutic agent itself, the identification of an antigen enriched on the
surface of tumor cells, the generation of high affinity antibodies against that antigen. We
have generated single-domain antibodies (nanobodies) against the voltage-gated
potassium channel Kv10.1, which outside of the brain is detectable almost exclusively
in tumor cells. The nanobody with highest affinity was fused to an improved form of the
tumor necrosis factor-related apoptosis inducing ligand TRAIL, to target this cytokine to
the surface of tumor cells. The resulting construct, VHH-D9-scTRAIL, shows rapid and
strong apoptosis induction in different tumor models in cell culture. The construct
combines two sources of specificity, the expression of the antigen restricted to tumor
cells and the tumor selectivity of TRAIL. Such specificity combined with the high affinity
obtained through nanobodies make the novel agent a promising concept for
cancer therapy.

Keywords: targeted therapy, nanobody, TRAIL, Kv10.1, voltage-gated potassium channel, apoptosis
INTRODUCTION

Antibody engineering is an essential process to improve the efficacy of antibody-based therapeutics.
Beside the whole monoclonal antibody (mAb) formats with their two antigen-binding arms and Fc-
region, which can be modified and gain diverse effector functions, small antibody fragments, like
single-chain fragments (scFv), diabodies, or nanobodies are in the focus of innovative therapeutic and
diagnostic strategies. Nanobodies, the variable domain of (VHH) heavy-chain antibodies from
camelids, play an essential role in this context, because of their particular stability and small size
(15 kDa) (Muyldermans, 2013; Chanier and Chames, 2019). The VHH domain consists of four
framework regions (FR) and three highly variable loops, the complementarity determining regions
(CDR), which form the antigen-binding interface (paratope) and determine the nanobody specificity.
in.org May 2020 | Volume 11 | Article 6861
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Despite the reduced size of their paratope, nanobodies can bind
their target antigen with affinities comparable to those observed in
mAbs (Muyldermans et al., 2001).

In this study we describe the design of a nanobody-based
affinity protein targeting the tumor-associated antigen Kv10.1, a
voltage-gated potassium channel overexpressed in different tumor
tissues and many cancer cell lines (Pardo and Stühmer, 2014;
Ouadid-Ahidouch et al., 2016) and references therein). We have
been interested for many years in the use of voltage-gated
potassium channels, and specifically Kv10.1, as therapeutic
targets in cancer. Outside of the brain, Kv10.1 is shortly
expressed at the end of the cell cycle, where it participates in the
finalization of mitosis. Therefore, at any given time, very few non-
neuronal cells express the channel on their surface (Sánchez et al.,
2016; Urrego et al., 2016). This time-dependent expression pattern
is tightly controlled, and therefore Kv10.1 is at the crossroads of
many transcription factors and non-coding RNAs (e.g., (Lin et al.,
2011; Bai et al., 2013; Wu et al., 2013; Sánchez et al., 2016; Urrego
et al., 2016; Horst et al., 2017; Hsu et al., 2017)). The complex
regulation is often lost in tumors, and Kv10.1 becomes abundantly
expressed in a majority of human cancers (e.g., (Hemmerlein
et al., 2006; Ding et al., 2007; Spohr et al., 2007; Ding et al., 2008;
Menendez et al., 2012; Lai et al., 2014)), indicating that its function
is beneficial for the cancer cell. Inhibition of channel function has
been proposed as a therapeutic strategy (Gómez-Varela et al.,
2007; Downie et al., 2008; De Guadalupe Chavez-Lopez et al.,
2015), and there is evidence that this approach can prolong
survival in patients with brain metastases (Martıńez et al.,
2015). Alternatively, the channel can be used as a marker for
the tumor cell due to its scarce expression in normal tissues
outside of the brain (Hartung and Pardo, 2016). Based on
structural analysis of our already developed mouse-derived scFv
antibody (Gómez-Varela et al., 2007) and the newly isolated anti-
Kv10.1 nanobodies, we generated a new fusion construct with the
apoptosis-inducing ligand TRAIL (Tumor Necrosis Factor-
Related Apoptosis-Inducing Ligand) (Wiley et al., 1995).

TRAIL is an attractive candidate for cancer treatment and for
the design of antibody-fusion constructs since it has been
demonstrated that it is able to selectively induce apoptosis in
cancer (Ashkenazi et al., 1999). TRAIL is expressed on the
surface of immune cells and binds to five different receptors.
Two of them, TRAIL-R1 and TRAIL-R2, induce caspase
activation and apoptotic cell death after ligand binding.
TRAIL-R3 and TRAIL-R4 are decoy receptors, also expressed
on the cell surface but lacking functional intracellular death
domains. Membrane-bound TRAIL (on the membrane of
immune cells) shows increased ability to induce receptor
clustering and more efficient activation of the apoptotic
signaling (Muhlenbeck et al., 2000; Von Karstedt et al., 2017),
and this can be mimicked by functionalization with agents
binding to surface antigens (Wajant et al., 2001). Conversely,
soluble TRAIL has also been shown to induce an inflammatory
response that can result in higher migration of the tumor cells
and thereby tumor spread (Zhou DH, 2013; von Karstedt et al.,
2015; Hartwig et al., 2017). Active targeting of TRAIL to cancer
cells by fusion with an antibody moiety targeting a tumor-
Frontiers in Pharmacology | www.frontiersin.org 2
associated antigen enriched in tumor cells results not only in
increased accumulation of the fusion proteins at the tumor site,
but also mimics membrane-bound presentation of TRAIL, thus
allowing higher efficacy and less inflammatory response. We and
others have already shown the improved activity of antibody-
TRAIL fusion constructs (Stieglmaier et al., 2007; Bremer et al.,
2008; Hartung et al., 2011; Hartung and Pardo, 2016).

The homotrimeric structure of active TRAIL can lead to
decreased therapeutic efficiency by dissociation into the
monomeric subunits. To overcome this drawback, in this study
we used the single-chain variant of TRAIL (scTRAIL), a fusion of
three single TRAIL fragments via short peptide linkers that
shows enhanced apoptosis induction (Seifert et al., 2014; Hutt
et al., 2018; Siegemund et al., 2018). The properties of
nanobodies (small size, high stability and solubility, high
affinity (Jovcevska and Muyldermans, 2020) have been already
used in combination with TRAIL. Nanobodies against EGFR
fused to TRAIL have shown efficacy against tumor cells resistant
to both strategies (inhibition of EGFR and activation of TRAIL)
when used separately (Zhu et al., 2017).

In this study, we describe a high affinity construct, VHH-D9-
scTRAIL, that targets a TRAIL variant with enhanced
proapoptotic activity to tumor cells in cell culture models. The
construct combines the specificity of Kv10.1 as tumor-associated
antigen with the small size and high stability of nanobodies and
the efficacy of scTRAIL as a promising candidate to overcome
resistance to conventional chemotherapy.
RESULTS

Generation of Anti-Kv10.1 VHH
Nanobodies
Anti-Kv10.1 nanobodies were generated by immunization of a
llama with a Kv10.1-derived antigen, already successful in
generating mouse anti-Kv10.1 mouse mAb (Hemmerlein et al.,
2006). The antigen encompasses the E3 segment of the channel,
which corresponds to the extracellular linker between S5 and S6
transmembrane segments and is remarkably long in this channel
family, and extends to the pore loop. With the aim to induce
tetramerization of the target sequences, E3 was fused to the C-
terminal tetramerizing coiled-coil of the channel (Jenke et al.,
2003). The resulting antibody response is therefore likely to
target the extracellular (exposed) domains. The construct
contains also thioredoxin (TRX) to increase solubility and
stability (Lavallie et al., 1993). Figure S1 shows a schematic
view of the antigen and its conservation among mammalian
species. After immunization, the resulting phage display library
of 1.3x107 clones was rescued within the helper phage KM13 and
enriched through 9 rounds of depletion on immobilized TRX
and incubation with different concentrations of the antigen. 186
clones where then screened on the antigen and negatively on
TRX, resulting in 30 hits. Of those, ten clones were amplified and
induced for nanobody production. Sequencing revealed nine
independent clones (Figure 1). A detailed look to the primary
structure of those binders revealed clustering into two classes,
May 2020 | Volume 11 | Article 686
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with pronounced differences in complementarity determining
regions (CDR) 2 and 3. Nanobodies VHH-C4 and VHH-D9
shared a remarkably short CDR 3 and therefore had a lower
molecular weight compared to all other tested clones (Figure
S2). CDR1 was relatively conserved in all antibodies, and the
framework (FR) regions were conserved throughout all
positive binders.
Frontiers in Pharmacology | www.frontiersin.org 3
We next estimated the apparent affinities of the VHH
antibodies for the recombinant antigen by ELISA (Figure 2A).
All nanobodies showed affinities in the submicromolar range, but
the two clones with shorter CDR3 (C4 and D9) had clearly
higher apparent affinities (Kd of 81 nM and 11 nM respectively;
Table 1, Figure 2A). It is worth pointing out that those two
antibodies share sequence homology with the mouse monoclonal
FIGURE 1 | Sequence alignment of the anti-Kv10.1 nanobodies. CDR1, 2, and 3 are underlined. Residues are colored according to chemistry. Note the strong
similarity between C4 and D9, especially the conserved CDR2 and the short CR3.
May 2020 | Volume 11 | Article 686
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antibody showing highest affinity against this region in our
previous studies (mAb62), which was the starting sequence for
our single chain antibody scFv62 (Hartung et al., 2011).

The affinity of these two antibodies was also assessed by
surface plasmon resonance (SPR) to determine affinity (KD),
association (ka), and dissociation (kd) constants. A serial dilution
of nanobodies D9 (3.12 nM to 200 nM, Figure 2B) and C4 (25
nM to 400 nM, Figure 2C) was flown as analyte over the
recombinant antigen used for immunization immobilized on
the SPR chip. Affinities of 1.8 mM and 78 nM for C4 and D9,
respectively, were determined by using a 1:1 Langmuir model
resulting in comparable KD values as previously determined for
D9. Interestingly, C4 is characterized by both, a slower
association and a slower dissociation compared to D9.
Construction of VHH-D9-scTRAIL Fusions
Given its superior binding properties, we selected the nanobody
D9 for subsequent studies. Our model for the design of a targeted
Frontiers in Pharmacology | www.frontiersin.org
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therapy against Kv10.1 includes proteins fused to TRAIL, which
have shown efficacy in vitro and in vivo. Since single chain
TRAIL (scTRAIL, a tandem repeat of three TRAIL subunits to
maintain trimeric structure) is superior in inducing apoptosis to
monomeric TRAIL (Siegemund et al., 2018), we decided to use
this strategy for the VHH fusion. scTRAIL was also fused to our
previously reported scFv62 antibody (Hartung et al., 2011) to
compare the behavior of the two types of antibodies. Figure 3
shows schematically the structural differences of our validated
scFv62-TRAIL (Hartung et al., 2011) and the new scTRAIL
fusions. The constructs were produced in CHO-K1 cells using
the pSecTag system to get the product secreted into the medium.

VHH-D9-scTRAIL Maintains Affinity
and Specificity
We first checked whether fusion of the antibodies to scTRAIL
impairs the affinities and/or the specificities of the antibodies.
The two scTRAIL fusions, scFv62-scTRAIL and VHH-D9-
scTRAIL were analyzed for their binding affinity to the
recombinant antigen h1x, which is the same protein used to
rise both antibodies. We also tested affinity for a similar protein
derived from the closely related channel Kv10.2, that is, the E3
domain of Kv10.2 and its tetramerizing coiled-coil (h2x). As
shown in Figure 4, the apparent affinity to h1x and h2x was
A

B C

FIGURE 2 | Affinity of the anti-Kv10.1 nanobodies. (A) Apparent affinities of the VHH antibodies determined by ELISA against the antigen used for immunization.
The values resulting from the fit are listed in Table 1. D9 and C4 showed the highest affinity. (B) Affinity and kinetics of binding of VHH C4 on h1x immobilized on a
surface plasmon resonance (SPR) sensor chip. The concentration used in each sesorgram is listed in the main text. R.U.: resonance units. (C) SPR sensorgrams for
nanobody D9.
TABLE 1 | Apparent affinity of the nanobodies determined by ELISA.

Nanobody A9 A12 C4 D9 F5 F6 G1 G4
Kd (nM) 223 343 87 11 470 177 431 943
May 2020 | Volume 11 | Article 686
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assessed by ELISA. Plates were coated with the antigen (h1x or
h2x) and a commercial TRAIL ELISA kit was used for detection.
It is unclear how accurate the absolute values for apparent
affinity are because of the stable trimeric structure of TRAIL in
the construct, but the relative values should be informative as to
how scFv and VHH compare to each other. The apparent
affinities of scFv62-scTRAIL and VHH-D9-scTRAIL constructs
measured in these experiments were 280 pM and 29 pM,
respectively. The large difference observed between the
apparent affinity of VHH-D9-scTRAIL and of VHH-D9 alone
may be explained by the different methods used to detect the
nanobody alone (His-Tag, one epitope per antibody molecule)
and the fusion construct (TRAIL, which is trivalent). VHH-D9-
scTRAIL showed a 10-fold higher apparent affinity to the antigen
than scFv62-scTRAIL. Therefore, both constructs retain affinity
for h1x. Both also maintain specificity, because none of the
constructs showed binding to h2x (Figure 4, black symbols).
Frontiers in Pharmacology | www.frontiersin.org 5
VHH-D9-scTRAIL Induces Apoptosis in
Kv10.1 Positive Tumor Cells
In the next step, we studied the efficacy of the VHH-D9-scTRAIL
construct in inducing apoptosis in Kv10.1-expressing human
prostate cancer cells (DU-145) in conventional cell culture. To
analyze the process of apoptosis induction we used the live-cell
imaging system IncuCyte and a caspase assay to quantify
apoptosis induction over time. Activation of caspase 3/7 is
reported as an increase in fluorescence (Figure 5A).

Due to its low toxicity in the time window tested,
cycloheximide (CHX) was used subsequently as sensitizer for
all in vitro experiments. Figure 5A shows the development of the
apoptotic signal in DU-145 cells over time after treatment with
different concentrations of the two scTRAIL fusion constructs
over time. Comparison of the apoptotic signals in response to
scFv62-scTRAIL and VHH-D9-scTRAIL shows more efficient
and faster apoptosis induction by VHH-D9-scTRAIL starting
FIGURE 3 | Comparison of the predicted structures of the constructs. The three-dimensional structure of scFv62 as a monomer, its assembly as a functional trimer,
and the three-dimensional (3-D) structures of scFv62-scTRAIL and VHH-D9-scTRAIL are depicted with the different moieties in different colors (blue, green and
magenta for scFv62, red for VHH and light brown for TRAIL). The TRAIL trimer structure corresponds to PDB ID 1dg6 (Hymowitz et al., 2000). The structures of
scFv62 and VHH-D9 have been modelled using AbodyBuilder (Leem et al., 2016). The PDB files can be found in Supplementary Information.
A B

FIGURE 4 | Apparent affinity and selectivity of scFv62-scTRAIL and VHH-D9-scTRAIL. h1x and h2x antigens were immobilized on ELISA plates and incubated with
different concentrations of the relevant fusion proteins. Binding of the fusion was measured by detection of TRAIL. Results on scFv62-scTRAIL are shown in (A), and
those of VHH-D9-scTRAIL in panel (B). Black line and symbols correspond to h2x, which produced weak signals in both cases. Red color indicates data obtained
with h1x. Error bars indicate standard deviation.
May 2020 | Volume 11 | Article 686
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after 4 h of treatment. Analysis of the apoptotic signals at 12 h
after treatment and different concentrations of both scTRAIL
constructs illustrates the clear difference in the intensity of
apoptosis induction between them, three times more in the
case of VHH-D9-scTRAIL, although its EC50 (~20 nM) was
higher than that of scFv62-scTRAIL (~2 nM; Figure 5B).

In terms of response to therapy, it is generally accepted that
three-dimensional (3-D) cultures are more similar to the real
tumors than 2-D cultures. Because a relevant difference between
Frontiers in Pharmacology | www.frontiersin.org 6
the two constructs is size, likely affecting the ability to penetrate
the tumor, we set out to test efficacy of the constructs on the
growth and viability of tumor spheroids. We used a DU-145-
derived cell line that expresses constitutively the fluorescence
reporter protein mVenus (Hartung et al., 2011). We measured
over time the change in size of the spheroids by determining the
surface occupied by green fluorescence by live cell imaging in the
IncuCyte system (Figure 5C). Both constructs inhibited
the growth of the spheroids with similar efficacy (Figure 5D);
A B

C

D

FIGURE 5 | Apoptosis induction by scFv62-scTRAIL and VHH-D9-scTRAIL on DU-145 cells. (A) Cells seeded in 96 well plates were treated with 370 pg/ml
(triangles) or 3.7 ng/ml (circles) of scFv62-scTRAIL (corresponding to 4.3 pM and 43 pM, blue) or VHH-D9-scTRAIL (corresponding to 5.2 pM and 52 pM, green),
and apoptosis was measured over time using a green fluorescent caspase reporter. All conditions induced apoptosis, but especially VHH-D9-scTRAIL produced a
large fraction of apoptotic cells as early as 8 h after the start of treatment. (B) Dose-response of the apoptosis induction by scFv62-scTRAIL (blue) and VHH-D9-
scTRAIL (green). (C) Representative images of spheroids produced by fluorescent (mVenus) DU-145 cells and submitted to the indicated treatments. (D) Relative
size of the spheroids treated with the fusion constructs at 300 pg/ml and 3 ng/ml (corresponding to 4.2 and 42 pM for VHH-D9-scTRAIL and 3.5 and 35 pM for
scFV62-scTRAIL). The values in response to lower doses of the constructs did not differ from the control (open black circles), while higher doses reduced spheroid
size for both scFv62-scTRAIL (blue) and VHH-D9-scTRAIL (green). All data presented as means ± SD.
May 2020 | Volume 11 | Article 686
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the spheroids grew one-half of the controls during the time of the
experiment in the presence of higher doses of scTRAIL
constructs (3 ng/ml).

The lack of a difference in efficacy between both fusion
constructs was surprising, because VHH-D9-scTRAIL was
more potent than scFv62-scTRAIL in 2-D cultures, and it is
also expected to have improved tumor penetration and higher
affinity, and thereby a stronger effect in spheroids. We
hypothesized that this could be due to the fast growth of DU-
145 spheroids. Therefore, we performed similar experiments
using the pancreatic cancer cell line Capan-1, which on one
hand shows slower growth, and on the other hand is strongly
influenced by co-culture with stromal cells.

In standard 2-D culture, both VHH-D9-scTRAIL and
scFv62-scTRAIL effectively induced apoptosis in the presence
of CHX in Capan-1 cells. As expected, VHH-D9-scTRAIL had a
more intense effect, corresponding to its higher affinity to Kv10.1
(Figure 6A). When grown as single culture, spheroids of Capan-
1 cells showed remarkable apoptosis in the presence of both
scTRAIL constructs, both in quantitative terms (Figure 6B) and
morphologically (Figure 6C and Video S1). VHH-D9-scTRAIL
was again remarkably more efficacious than scFv62-scTRAIL
inducing apoptosis in this model. The effect was even more
evident when the spheroids were formed by a mixture of Capan-
1 and stellate cells (RLT-PSCs (Jesnowski et al., 2005); 4,000 cells
of each type at the time of seeding). In order to distinguish
between tumor and stellate cells, RLT-PSC were stably
transfected with the red fluorescent reporter mCherry protein.
Live imaging of the spheroids (Figure 6D, Video S1) revealed
that the stellate cells were not affected by the presence of the
constructs, but the apoptosis induction was fast and intense in
the tumor cells, measured as green fluorescence originated by
cleavage of caspase 3/7 substrate, with apoptosis already
observed 12 h after the start of treatment (Figure 6E). We
used the surface occupied by red fluorescence from the RLT-
PSC to normalize for the size of the spheroid. The lower dose of
VHH-D9-scTRAIL used (300 pg/mL) was similarly efficacious as
the higher dose of scFv62-scTRAIL (3 ng/ml).
DISCUSSION

In this work, we have combined the specificity for tumor cells
and accessibility of Kv10.1 with the advantages of nanobodies
and of scTRAIL to generate a fusion construct with enhanced
apoptosis inducing activity targeting different tumor cells.

The use of scTRAIL, besides enhanced efficacy, leads to size
reduction, since the construct contains just only one antibody
unit instead of three; however, it also requires higher affinity
antibodies. scTRAIL has been shown to bind with affinity of
approximately 1 nM to the TRAIL-R2 receptor; therefore, to take
advantage of binding to the tumor antigen, the affinity of the
antibody needs to be higher (Hutt et al., 2018). Therefore, to
improve antibody affinity, we generated a series of single domain
antibodies, which can achieve very high binding affinity
Frontiers in Pharmacology | www.frontiersin.org
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combined with smaller size and better stability (Xenaki et al.,
2017; Chanier and Chames, 2019). Two of the isolated VHHs
showed high apparent binding affinity, in one case (D9) in the
low nM range. Interestingly, the two nanobodies with highest
apparent affinity show a remarkably short CDR3, with just six
residues. Comparative analysis of 90 different nanobody
sequences identifies a mean CDR3 length of 15 residues
(Mitchell and Colwell, 2018), which also holds true for most of
the VHHs identified in our screening.

We show that the two constructs carrying scTRAIL, scFv62-
scTRAIL, and VHH-D9-scTRAIL retain high affinity for the
antigen and are selective between Kv10.1 and its closest relative,
Kv10.2 (Ludwig et al., 2000), indicating that the furoin to the
cargo did not alter the binding activity of the antibody moiety.
The apparent affinity of VHH-D9-scTRAIL, in the pM range as
determined by ELISA, was much higher than that of the VHH
before fusion (nM). This could be due to the different approaches
used to detect binding. For the VHH alone, ELISA detection used
the His-tag from the vector for phage display. The tag was
removed to generate the fusion construct, and therefore we
needed to use an anti-TRAIL ELISA for detection of VHH-D9-
scTRAIL. The presence of three TRAIL subunits per molecule of
VHH could be responsible for the apparently higher affinity.

The efficacy of apoptosis induction of the new constructs was
tested in vitro in DU-145 cells, a human prostate cancer cell line
that had served already as a model for scFv62-TRAIL, a construct
using monomeric TRAIL (Hartung et al., 2011; Hartung and
Pardo, 2016). In this study, DU-145 cells also showed to be
highly sensitive to the scTRAIL-based fusion, with and EC50 in
the low nanomolar range. The effect of VHH-D9-scTRAIL
required higher dose despite its higher affinity for the antigen
(EC50 in the tens of nM), but the onset of the effect was faster
and apoptosis induction was more intense than that of scFv62-
scTRAIL. In spheroid experiments, however, both constructs
were similarly efficacious in terms of growth inhibition. We did
observe very intense apoptosis in DU-145 spheroids treated with
both constructs, but the setup of the experiment makes
quantification difficult. DU-145 spheroids are very compact,
and do not change morphology upon treatment. Experiments
using, e.g., two-photon microscopy will be needed for a more
accurate quantification of apoptosis induction. Another factor
that could influence the outcome is the fast growth of DU-145
cells (doubling time of approximately 29 h), which doubled the
diameter of the spheroid in approximately 72 h.

In the human pancreatic cancer derived Capan-1,
characterized by a much slower growth (doubling time of
approximately 60–80 h), both fusion proteins induced intense
apoptosis in standard 2D culture, with VHH-D9-scTRAIL being
more potent than scFv62-scTRAIL. Tumor spheroids formed by
Capan-1 cells alone are less compact than DU-145 spheroids, but
compact spheroids were formed in the presence of RLT-PSC
stellate stromal cells. Under both conditions, single culture or co-
culture, both fusion constructs induced strong apoptosis also in
this cell model. Clear apoptosis was detectable as early as 12 h
after the start of treatment when using 3 ng/ml of the constructs,
earlier in the case of VHH-D9-scTRAIL. The lower
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concentration used, 300 pg/ml, was also efficacious in the case of
VHH-D9-scTRAIL, while the effect was less clear for
scFv62-scTRAIL.

In summary, we generated in this study novel nanobody-
based antibody-scTRAIL fusion constructs, whose binding unit
shows high affinity for Kv10.1 and that are able to efficiently
Frontiers in Pharmacology | www.frontiersin.org 8
induce apoptosis of cancer cells. VHH-D9-scTRAIL was
consistently faster and more potent than the scFv version.

Further investigations and in vivo studies are necessary to
characterize other properties of VHH-D9-scTRAIL. The small
size and remarkable stability of nanobodies as compared to other
antibody forms should be advantageous in the therapeutic
A

C D

E

B

FIGURE 6 | Apoptosis induction by scFv62-scTRAIL and VHH-D9-scTRAIL on Capan-1 cells. (A) Cells seeded in 96 well plates were treated with 3 ng/ml of
scFv62-scTRAIL (35 pM, blue) or VHH-D9-scTRAIL (42 pM, green), and apoptosis was measured over time using a green fluorescent caspase reporter. VHH-D9-
scTRAIL produced a larger fraction of apoptotic cells. (B) Apoptosis induction in Capan-1 spheroids of 0.3 ng/ml (triangles) or 3 ng/ml (circles) VHH-D9-scTRAIL
(green) or scFv62-scTRAIL. The effects were similar to those observed in two-dimensional (2-D) culture, albeit delayed in time. (C) Representative images of
spheroids produced by Capan-1 cells and treated as indicated. Green fluorescence indicates caspase 3/7 activation. (D) Representative images of spheroids
produced by Capan-1 cells co-cultured with stellate cells and treated as indicated. Red fluorescence identifies stellate cells (mCherry), while green corresponds to
caspase activation. (E) Apoptosis induction in Capan-1 spheroids cocultured with RLT-PSCs expressing mCherry relative to the size of the compact spheroid.
Apoptosis was detected as green fluorescence, and the size of the compact spheroid was inferred from the area of red fluorescence from stellate cells. There was
fast and intense induction of apoptosis when 3 ng/ml (circles) VHH-D9-scTRAIL (green) or scFv62-scTRAIL were added to the medium. 0.3 ng/ml (triangles) showed
little apoptosis induction. All data presented as means ± SD.
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setting, but pharmacokinetic studies including tissue
penetration, biodistribution, stability, and blood clearance will
be required to confirm this assumption. Importantly, also for the
potential use of the nanobody for diagnostic applications, it
remains to be demonstrated that the increased efficacy of VHH-
D9-scTRAIL is due to its high affinity for the antigen. It is still
possible that the nanobody fusion induces a conformational
change in scTRAIL that results in more efficient apoptosis
induction, a possibility that merits careful consideration. The
antigenic region is virtually identical in all Kv10.1 mammalian
orthologs. This level of conservation will be important to predict
potential undesired effects in preclinical models.
MATERIAL AND METHODS

Immunization and Phage Display
An adult male llama (Lama glama) was immunized
subcutaneously at days 1, 20, 41, and 65 with 100 µg of the
h1x antigen (E3-S5-pore segment fused to the C-terminal coiled
coil domain of Kv10.1 and to thioredoxin). A phage display
library was built as previously described (Behar et al., 2009).
Briefly, the genes of VHH were amplified by RT-PCR using total
RNA extracted from purified peripheral blood mononuclear cell
and cloned into a phagemid vector to generate library of 1.3×107

transformants. The library was created by the Nanobody
platform of CRCM (Cancer Research Center of Marseille).

Phage display was performed as described (Even-
Desrumeaux and Chames, 2012). For depletion against TRX,
selection was performed using immobilized TRX or h1x on
magnetic M450 Epoxy beads (Life Technologies). Both beads
and phages were blocked with 20% BSA in PBS for 1 h at 4°C,
and then incubated with the immobilized TRX (2 h, 4°C). The
supernatant of the TRX slurry was then incubated on
immobilized h1X for selection. The beads were washed 9 times
with PBS plus 0.1% Tween 20 and twice with PBS and treated
with 1 mg/ml trypsin for 30 min to elute the phages. 186 colonies
of bacteria (E. coli TG1TR) infected with the output phages (3
sterile controls) were picked, grown overnight and transferred to
round bottom 96 well plates and induced with Isopropyl b-D-1-
thiogalactopyranoside (IPTG) overnight. The culture
supernatants were used for screening by the enzyme linked
immunosorbent assay (ELISA).

scFv62-scTRAIL and VHH-D9-scTRAIL
Constructs
Design and construction of the mouse-derived scFv has been
described earlier (Hartung et al., 2011). The nanobodies against
Kv10.1. The scTRAIL sequence was cloned together with scFv62,
or VHH D9 into the multiple cloning site of the pSecTag2A
plasmid. The fusion protein was expressed without the tags
encoded in the pSecTag2A plasmid, which were eliminated by
mutagenesis. The pSecTag2A protein expression vector with the
corresponding insets was transfected into CHO-K1 cells. The
plasmid carries the murine kappa light-chain leader peptide
upstream of the multiple cloning site, and therefore directs the
produced fusion protein through the ER and Golgi, resulting in
Frontiers in Pharmacology | www.frontiersin.org 9
excretion to the culture supernatant. Single clones were isolated
from the transfected CHO-K1 cells and selected for those that
showed the highest levels of secreted Ab-scTRAIL into the
medium. Transfected cells were selected with Zeocin (3µg/ml
in culture medium). For overexpression, the cells were cultured
in a protein- and serum-free CHO medium [Panserin C6000
(PAN Biotech)] for five days at 30°C. The presence of the desired
construct in the culture supernatant was confirmed by Western
blot. No signal from other proteins was detected after
electrophoresis and Comassie blue staining, and the
supernatants were used without further purification. The
product concentration was determined using the Human
Quantikine TRAIL ELISA kit (R&D Systems) according to the
manufacturer protocol against immobilized h1x. The expression
yields ranged from 200-300 µg/L of culture.

ELISA
96-well plates were coated overnight with 500 ng of h1x, h2x or
TRX in 100 ml TBS per well in a wet chamber at room
temperature. To block unspecific binding, wells were blocked
with 2% (VHH ELISA) or 3% BSA (TRAIL ELISA) in TBS or
PBS for 1 h. The VHHs (E. coli culture supernatants) or Ab-
scTRAIL constructs were incubated at different concentration in
200 ml TBS for 2 h with shaking, and washed three times. VHH
were detected by mouse anti-His antibody (Millipore) and a
secondary anti-mouse, peroxidase conjugate (GE Healthcare).
TRAIL signals were detected using anti-TRAIL conjugate and
the detection buffer (R&D Systems, Quantikine TRAIL ELISA
kit) according to the manufacturer’s protocol.

Cell Culture
DU-145 and Capan-1, were purchased from ATCC, and CHO-
K1 from DSMZ. Capan-1 cells were cultured in RPMI 1640 with
10%FCS; DU-145 in DMEM with 10% FCS and CHO-K1 cells in
Ham’s F-12 medium with 10% FCS at 37°C in humidified 5%
CO2 atmosphere. All media were purchased from Gibco Thermo
Fisher Scientific. Transfection of Ab-scTRAIL in CHO-K1 cells
was done with Lipofectamine 3000 (Thermo Fisher Scientific) as
recommended by the manufacturer.

Spheroids were cultured in round bottom ultra-low
attachment 96-well plates (Corning) at a density of 5,000 cells/
well or 4,000 Capan-1 and 4,000 RLT-PSC cells per well in 2%
Matrigel (Corning) and centrifuged at 1000xg for 10 min.
Spheroid formation was monitored continuously in the
IncuCyte system and treatments were added once spheroids
were formed.

Apoptosis Measurement
Cells or spheroids seeded in 96-well plates were monitored using
the IncuCyte live-cell imaging system Essen Biosciences). Cells
and spheroids were treated with the Ab-scTRAIL constructs in
the presence of 8.9 µM cycloheximide (CHX) and Caspase 3/7
reagent (Essen Biosciences, red or green as required; 1:1,000 as
recommended by the manufacturer). Caspase 3/7 reagent
substrate crosses the cell membrane and its cleavage by
activated caspase-3/7 results in the release of a DNA dye and
fluorescent staining of nuclear DNA.
May 2020 | Volume 11 | Article 686

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Hartung et al. Nanobody-scTRAIL Targeting Kv10.1
Statistical Analysis
Data were analyzed using GraphPad Prism v.8 and are
represented as mean ± SD. At least two biological replicates
were performed for each analysis. Monolayer cell culture
experiments were performed in triplicates, with two images per
well and time point. Spheroid experiments were imaged also in
triplicate wells, with a single image per well (covering the whole
spheroid) at each time point.
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