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ABSTRACT
To what extent do human-robot interactions (HRI) rely on social
processes similar to human-human interactions (HHI)? To address
this question objectively, we use a unique corpus. Brain activity and
behaviors were recorded synchronously while participants were
discussing with a human (confederate of the experimenter) or a
robotic device (controlled by the confederate). Here, we focus on
two main regions of interest (ROIs), that form the core of “the social
brain”, the right temporoparietal junction [rTPJ] and right medial
prefrontal cortex [rMPFC]. An new analysis approach derived from
multivariate time-series forecasting is used. A prediction score
describes the ability to predict brain activity for each ROI, and
results identify which behavioral features, built from raw recordings
of the conversations, are used for this prediction. Results identify
some differences between HHI and HRI in the behavioral features
predicting activity in these ROIs of the social brain, that could
explain significant differences in the level of activity.
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1 INTRODUCTION
Recently, “second-person neuroscience” was proposed as a newway
for “the study of real-time social encounters in a truly interactive
manner” [22], and the approach described in this paper addresses
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this endeavor. It is part of a larger project that previously involved
recording of the data and preparing the corpus for sharing with the
community. This unique corpus combines synchronized behavioral
and neurophysiological recordings during natural human-human
and human-robot natural interactions (HHI and HRI). The partic-
ipant’s brain activity was continuously scanned with functional
magnetic resonance imaging (fMRI) while having natural conversa-
tions with a human (confederate of the experimenter) or a robotic
head (controlled by the confederate, unbeknownst of the participant
who believed the robot to be autonomous).

The methodological challenge is to understand relationships
between complex behaviors and activity in the social brain dur-
ing unconstrained interactions. It poses one major difficulty: what
to use as explanatory variable? The approach used here was de-
scribed previously in [5]. In a nutshell, behaviors are recorded
and processed to build time-series, used in turn for the analysis of
neurophysiological data. This approach allows the analysis to go
further than the simple comparison between HHI and HRI already
published for this corpus [3].

Finding pertinent relationships between behavioral time-series
and neurophysiological time-series is another challenge for which
a new approach is presented here, based on a branch of machine
learning, namely time-series forecasting [13]. The method is used
to identify which behavioral time-series are required to predict
brain activity in specific brain regions, and their respective weights.
We present a preliminary result obtained using this methodology
focusing on two core regions of the social brain, in the the Me-
dial PreFrontal Cortex (MPFC) and TemporoParietal Junction (TPJ).
Given the increase of activity between HHI and HRI reported pre-
viously in these areas, our hypothesis is that different behaviors
will be associated to the activity in these areas during these two
conditions. Alternatively, the same behaviors associated with dif-
ferent levels of activity will suggest a top-down "switch" akin to
the "intentional stance" for these areas [8].

2 DESCRIPTION OF THE CORPUS
2.1 Justification of the paradigm
The theoretical grounds underlying the choice of experimental par-
adigm, the procedures to acquire and prepare the corpus both for
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behavioral and neurophysiological data, and the bases of the ma-
chine learning machinery developed for its analysis have already
been published. We will summarize the main points for this paper
to be self-contained, but suggest to read the references provided in
each section for more details. In order to investigate natural social
interactions, it is essential that participants are unaware of the real
purpose of the experiment. For this purpose, a cover story was
developed responding to a complex set of specifications. The exper-
iment is described as a neuromarketing experiment. A company
wants to know if discussing with a fellow or an Artificial Intelli-
gence about the images of a forthcoming advertising campaign is
enough to guess the objective of the campaign [5]. The cover story
is credible, there is a common, but loose, goal for the conversation,
the conversations are truly bidirectional, and there is a legitimacy
for talking with a robot.

Our objective isn’t to test how an autonomous agent works,
but how individuals’ behavior changes depending on the nature
of the agent. For this reason, participants believed the robot to be
autonomous, but to avoid erratic responses during the recordings,
a Wizard of Oz procedure was favored in which the confederate
selects prerecorded responses expressed by the retroprojected con-
versational robotic head (Furhat robotics1) on a touchscreen.

2.2 FMRI experiment and data processing
Participants (n=25 in the full corpus) came to the MRI center and
were presented with a fellow (a gender-matched confederate of the
experimenter) and the robot. The cover story was presented and
the participant installed in the scanner. The participant underwent
four sessions of approximately 8 minutes of scanning comprising
six experimental trials as follows: an image is presented, then a
1-minute discussion takes place, alternatively with the human and
the robot. At the end of the recordings, we recorded 12 trials of
1-minute with the human and the robot for each participant.

fMRI data processing followed standard procedures and has
been described in details [3]. fMRI data analysis first relied on
the general linear model implemented in the toolbox Statistical
Parametric Mapping [18], imported into the Conn toolbox [24]
that automatizes the extraction of BOLD time series in regions
of interest. A continuous time-series of 385 points covering the 8
minutes (repetition time: 1.205 seconds) were extracted for each
Region of Interest (ROI), each session and each participant.

2.3 Regions of interest
For this paper, we investigated a question related to the theoretical
framework of philosopher Daniel Dennett, namely the intentional
stance [8]. It claims that when interacting with humans, we adopt a
specific stance as we ascribe mental states to this rational agent. In
contrast, we adopt a different stance when interacting with robots,
despite the fact that they can appear and behave as humans. It
is still debated in robotics today [25], and neuroimaging offers an
unique opportunity to address this question aswemeasure objective
neurophysiological markers of cognitive processes.

The intentional stance entails the ascription of mental states
such as beliefs, desires, knowledge to others. It parallels a theoreti-
cal framework at the core of social cognitive neuroscience, namely
1https://www.furhatrobotics.com; [1]

Theory of Mind (ToM), that describes one’s ability to ascribe hidden
mental states, such as intentions, desires or beliefs, to oneself and
to others. The neural bases of this ability has been intensively inves-
tigated with neuroimaging techniques, identifying two key areas in
the cortex that are differentially activated when ascribing mental
states versus physical states. In the first significant finding, partici-
pants in a Positron Emission Tomography (PET) scanner believed
they played stone-paper-scissors with a human or a computer [10],
and the only significant difference was an increase of activity in
the medial prefrontal cortex (MPFC). The same region, as well as
the right temporoparietal junction (TPJ), also had reduced activity
when the partner was believed to be a robot endowed with with
AI [6]. The very rude contrast HHI versus HRI we performed on
this corpus [3] identified increased response in the right TPJ. The
statistical threshold for the contrast HHI versus HRI was lowered
(p < 0.001 uncorrected, unpublished data) to identify a cluster in
the MPFC. We selected the two "social brain" ROIs from the Brain-
netome parcellation of the human brain [9] that contained these
rTPJ and rMPFC clusters.

There is a possible implication of the superior temporal gyrus
(STS) in mentalizing, but this is controversial given the central
role of this region in language (see for example [21]). We decided
to include the left STS, given the left hemisphere dominance for
language processing in right handed participants, to elucidatewhich
aspects of behaviors are more pertinent for this region. Finally, we
also included a control region in which the signal is not related to
mental processing, a mask of brain white matter (WM).

3 METHODOLOGY
We implemented a machine learning process for the prediction of
brain activity based on conversational behavioral data. A particular-
ity of our approach compared to related work looking for features
that cause the activation of a brain area ([4, 7, 15, 26]) is that it
allows to quantify the predictive weights of the behavioral features.
Therefore, it provides additional information about the association
between behavioral features and the activity of a brain area.

The models of the proposed process are trained based on data of
the corpus described in Section 2. The main steps are:

• Extracting behavioral features time-series from raw behav-
iors recorded in different modalities during conversations.

• Resampling and synchronizing behavioral features with re-
spect to the BOLD signal frequency.

• Using feature selection method to select a subset of relevant
features for each ROI.

• Predicting the discretized BOLD signal of each ROI based on
the selected features.

3.1 Features extraction
The multimodal recordings of behaviour contains 3 types of raw
data: video, speech (audios and transcriptions) and eye-tracking.
Note that we don’t have the video of the participants, as they were
inside the fMRI scanner during the experiment. Therefore, we have
speech recorded for both the participant and the conversant (hu-
man or robot), the videos of the conversant only, and eyetracking
recordings of the participant only. The aim of feature extraction is
to derive high-level behavioral features from this multimodal raw
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Figure 1: The three regions of interest investigated in this paper, from left to right. In purple, the left posterior STS region
(lSTS). In red, the right medial prefrontal cortex (rMPFC) and right temporoparietal junction (rTPJ).

data, features that describe the behavioral events happening during
the conversation. These features are presented in Supplementary
Table, and in more details in [20]. For speech, we built time-series
IPU (Inter-Pausal Units2) by IPU (e.g., for lexical richness) or word
by word (e.g., for Feedback and Discourse Markers). For facial fea-
tures, we used Openface software ([2]) to detect facial landmarks,
action units), head pose and gaze coordinates from the video of the
conversant. Eyetracking features were extracted directly from the
output of Eyelink1000 system. From this data we calculated other
features characterizing where the participant was looking (Face,
Eyes, Mouth), with the use of the detected landmarks points of the
conversant combined with the gaze coordinate of the participant.
Features were re-sampled to have the same number of observations.

3.2 Feature selection
We use feature selection techniques before applying prediction
models to improve the prediction by selecting the most relevant
predictors, and at the same time to find the smallest set of features
predicting the ROI. There are two categories of feature selection
techniques. The first are Wrapper methods, i.e., methods that use
the prediction model recursively to eliminate features with low im-
portance scores. Here, ModelSelect uses the classifier by executing
first the model with all features, then selecting the top-k features
based on their importance scores. The second category are filter
methods, that select variables based on the relationships between
the variables and independently from the prediction model used.
We use two filter methods: Ranking based on mutual informa-
tion (MI-rank) selects variables without the need of the classifier.
It ranks variables based on their Shannon mutual information with
the target variable. K-medoid based method (k-medoids) is an
extension of the previous method. It first groups close predictive
variables into clusters using the k-medoids algorithm (maximizing
intra-class mutual information, and minimizing mutual information
between classes), then selects one variable from each group based
on the mutual information with the target variable. This method
is designed to work with multimodal data, as grouping variables
before ranking them partly solves the problem of dependencies
between variables belonging to the same modality.

3.3 Prediction setup
Human-human and human-robot data are treated separately in
order to compare them. For each agent, the obtained data consist
of 13248 observations. The training data consist of 18 participants
2An IPU is a speech block bounded by pauses and coming from a single speaker [16].

from 24, the test data are the observations of the remaining 6 par-
ticipants (i.e., 25% of all data). We applied the ADASYN algorithm
on the training data [12] to address the problem of imbalanced
data. The problem of imbalanced data occurs in our case because
some ROIs are activated rarely during conversations, depending
on the participants and their behaviors. This algorithm generates
new observations by considering the distribution of the data. Then,
we performed a 10-fold-cross-validation on training data to find
the appropriate parameters of the classifier based on the F-score
measure. Finally, we train the model with the selected parameters
and evaluations are made on test data.

3.4 Prediction formulation
we first binarize the BOLD signal measured by fMRI as we want to
predict whether a brain area is active or not as the original signal
is continuous. The discretization method uses the mean of observa-
tions as a threshold after normalizing data of each participant.

The BOLD signal recorded as fMRI response to a behavioral
event follows the Hemodynamic Response Function (HRF)[11]. This
function peaks with a delay around five seconds that can vary
somehow depending, for example, on the brain area. Other factors,
such as saturation of the signal (see detailed examples in chapter 14
of [18]), make it difficult to consider a deconvolution of the BOLD
signal. To handle this variability, our prediction model attempts
to predict the discretized bold signal at time t based on sequence
of observations of behavioral features that happened previously
between 𝑡 −4𝑠 and 𝑡 −7𝑠 . Therefore, lagged variables of each feature
are considered. This is a temporal classification problem that can
be expressed as follows:

𝑌 (𝑡) = 𝑓 (𝑋 𝑡−𝜏1:𝑡−𝜏2
1 , . . . , 𝑋

𝑡−𝜏1:𝑡−𝜏2
𝑘

) +𝑈 (𝑡),

where 𝑌 is the discretized BOLD signal, {𝑋1 (𝑡), 𝑋2 (𝑡), . . . , 𝑋𝑘 (𝑡)}
are 𝑘 behavioral variables. 𝑋 𝑡−𝜏1:𝑡−𝜏2

𝑖
are the lagged variables of the

𝑖𝑡ℎ behavioral feature 𝑋𝑖 , 𝜏1 = 7𝑠 , 𝜏2 = 4𝑠 , and𝑈 (𝑡) represents the
error of the model.

We already used this methodology in previous works [13, 14],
where we tested several classifiers (Logistic regression, SVM, Long
Short Term Memory network) to predict brain areas involved in
speech perception and production and face perception. We found
that the Random Forest classifier outperforms the others. Here, we
only use the Random Forest classifier, and we try to improve the
predictions with feature selection.



ROI Feature selection Codes of the selected features Features importance F-score

HHI

lSTS mi-rank [1-c, 10-c, 4-c, 5-c] [0.71, 0.17, 0.1, 0.02] 0.71

rTPJ k-medoids [1-p, 1-c, 10-c, 34, 29, 7-p] [0.33, 0.21, 0.17, 0.14, 0.09, 0.07] 0.62

rMPFC k-medoids [1-c, 25, 21, 26, 16, 1-p, 28, 19, 27, 21, 38,
9-c, 14]

[0.19, 0.13, 0.09, 0.09, 0.08, 0.07, 0.07,
0.05, 0.04, 0.03, 0.03, 0.02, 0.02]

0.60

HRI

lSTS mi-rank [1-c] [1.0] 0.68

rTPJ k-medoids [1-c, 35, 1-p, 16, 12-p,11-p, 9-p, 29] [0.62, 0.15, 0.06, 0.05, 0.03, 0.02, 0.02,
0.02]

0.62

rMPFC modelSelect [37, 19, 21, 26, 18, 25, 26] [0.22, 0.21, 0.12, 0.06, 0.06, 0.06, 0.05] 0.62
Table 1: Results of prediction evaluations for Human-Human and Human-Robot Interactions (HHI and HRI resp.). For each
region of interest (ROI) indicating the codes of the selected features (see Supplementary Table), and their importance scores
(Bold: Importance > 0.1). Features code ending with "-p" are for the scanned participant, with "-c" are for the confederate.

4 RESULTS AND DISCUSSIONS
The results are presented in Table 1. It contains the best F-scores
obtained, as well as the best feature selection method and the as-
sociated features and their importance. To reproduce the results,
the input features and the code source are available online3. The
results show that filter feature selection methods perform better
than the wrapper method, which was selected once as best method.
And as we expected, in one hand, the mi-rank method allows to
have the best predictions for lSTS area in both HHI and HRI, as it
involves one main modality. K-medoids works better for rTPJ and
rMPFC, which involve features from multiple modalities.

Results indicate that the system is able to predict brain activity
in lSTS, rTPJ and rMPFC higher than chance, while it is not possible
for the white matter (F-scores not different from 0.5), as expected
given the absence of task-related activity in this tissue. A second re-
mark relates to the contrast between lSTS on the one hand and rTPJ
and rMPFC on the other hand. The former was selected as being
an area strongly devoted to language, while some speculate about
its involvement in social cognition. The MI Rank was sufficient for
significant prediction in both HHI and HRI, and speech activity of
the confederate strongly dominates the list of features used for pre-
dicting, even being the only feature in the case of HRI. In the case
of HHI, only one other confederate linguistic features represents
than 10% of importance. Perceiving voices is enough to activate
the STS [19]. Altogether, these results strongly comfort that the
left posterior superior temporal sulcus region is devoted to speech
perception. Concerning the “social cognition” areas, a number of
preliminary remarks can be made. Importantly, increased activity
for for the contrast HHI compared to HRI were found in the two
ROIs [3]. which has been interpreted as the neural consequence
of the adoption of an intentional stance in HHI, but not HRI. The
feature selection method and the F-scores are similar for the two
areas and the two interlocutors. Such similarity is in line with the
hypothesis that these two areas have both similar and complex (6
to 13 features used for prediction) functions. Considering the rTPJ,
speech activity (feature 1 for participant and confederate) is respon-
sible for more than 50% of the predictive power for both HHI and

3https://github.com/Hmamouche/NeuroTSConvers

HRI, while the other features (focusing on feature with importance
> 0.1 indicated in bold in Table 1) are different between HHI and
HRI. For HHI, we found one speech (Type-token ratio) and one
facial (smiles) from the conversant, while the participant’s saccades
are used in HRI. Important features to predict the activity of the
rMPFC differ between HHI and HRI. The conversant’s speech and
mouth movements represent 22% of the predictions for the former,
while the participant’s speed of gaze and the conversant’s head
rotations and action unit 2 together provide 55% of the prediction
importance for the later. Altogether, there are differences between
the features identified in HHI and HRI at this preliminary stage. For
example, for both rTPJ and rMPFC, features used to predict HHI
all relate to the conversant, emphasizing its importance in social
cognition, while for HRI, the most important feature is from the
participant’s behavior (eye movements), which is not particularly
pertinent for social cognition. Further work is needed to better
compare the results for the two agents.

5 CONCLUSION
Here we have described an innovative methodology to investigate
which behavioral features are required to explain the activity in
brain areas devoted to social cognition, recorded while participants
were having uncontrolled conversations with a human or a hu-
manoid robot. We focused on four regions on the basis of simple
assumptions: white matter should not be predictable, the left STS
should be related to language, and regions of the social brain should
be related to complex social signals. Preliminary results fit our hy-
potheses. Some differences were found between the behavioral
features used to predict activity in social brain areas, not so much
in the language perception area lSTS between HHI and HRI. We pre-
viously proposed that we adopt a different stance based on the level
of activity of these areas. Further work is needed to interpret the
differences found with the current analysis, still under development.
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Modality Features Code Description Details

Li
ng

ui
st
ic
fe
at
ur
es

Speech-activity 1 Is the interlocutor speaking? Based on time-aligned IPU transcript.

Overlap 2 Both interlocutors speaking? idem.

Laughter 3 Laughter occurrences Based on word-level time-aligned transcripts

Filled pauses 4 Filled_pauses occurrences Based on word-level time-aligned transcripts
: "euh", "heu", "hum", "mh"

Feedback 5 Conversational Feedback occurrences Based on word-level time-aligned transcripts
: ’oui’ (yes), ’ouais’ (yeah, ’non’(no), ’ah’,
’d’accord’(right), ’ok’ + Laughters

Discourse Markers 6 Occurrence of words used to keep speech
organized

Based on word-level time-aligned transcripts
: ’alors’(so), ’mais’(but), ’donc’(therefore),
et(’and’), ’puis’(then), ’enfin’(finally),
’parceque’(because), ’ensuite’(after)

Spoken Particles 7 Occurrence of (final) spoken particle
items

Based on word-level time-aligned transcripts :
’quoi’, ’hein’,’ben’,’bon’(well), mais (but), ’bref’
(in short)]

Interpersonal 8 Merge of inter-personal linguistic fea-
tures

Merge of (Filled-pauses, Feedback, Discourse
Markers, Spoken Particles and Laughter)

Turn Latency 9 Time to take the turn Based on time-aligned IPU transcript.

Type-token ratio 10 Type-token ratio Based on time-aligned transcript: (number of
different tokens) / (total number of tokens).

Lexical-richness 11 Lexical richness measure Based on time-aligned transcript: (number of
adjectives + number of adverbs) / (total num-
ber of tokens) [17].

Polarity and Subjectivity 12-13 Sentiment analysis metrics Based on time-aligned transcript [23].

Fa
ci
al
fe
at
ur
es

gaze-angle-x, gaze-angle-y 14, 15 Gaze angle coordinates Based on conversant video frame by frame.

pose-T(x, y,z), pose-R(x, y,z) 16,17 Head rotation and translation estimation -

Head-translation-energy 18 Kinetic energy of head translation -

Head-rotation-energy 19 Kinetic energy of head rotation -

AU01_r, AU02_r, AU06_r, AU26_r 20-24 Facial Action Units involved in smiles,
surprise and speech production resp.

-

Mouth-AU 25 Facial movements related to mouth. Sum (AU10_r, AU12_r, AU14_r, AU15_r,
AU17_r, AU20_r, AU23_r, AU25_r, AU26_r)

Eyes-AU 26 Facial movements related to eyes. Sum (AU01_r, AU02_r, AU04_r, AU05_r,
AU06_r, AU07_r, AU09_r)

Total-AU 27 Global representation of all facial move-
ments.

Sum of all action units.

Emotions 28-33 (’Happiness’, ’Sadness’,’Surprise’, ’Fear’,
’Anger’, ’Disgust’)

Probabilities detected from conversant video
frame by frame.

Smiles 34 Smile’s probability estimation. idem.

Ey
et
ra
ck
in
g
fe
at
ur
es

Saccades 35 Occurence of Saccades Based on gaze coordinates of the participant,
recorded using the Eyelink1000 system.

Vx, Vy 36, 37 Speed of the gaze coordinates. -

Face 38 Occurrences of looks on the face. -

Eye 39 Occurrences of looks on the eye. -

Mouth 40 Occurrences of looks on the mouth. -

Supplementary table: behavioral features extracted.
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