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Numerical simulations of turbulent flow in the
electromagnetically levitated metallic droplet using

k − ω SST and Reynolds Stress models

O. Budenkova, A. Gagnoud, Y. Delannoy
Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, F-38000 Grenoble, France

Electromagnetic levitation of a metallic droplet in the microgravity conditions is mod-
elled accounting for the droplet shape variation, its displacement and turbulent character
of the flow in the system. Three different models are applied for description of turbulent
flow in the droplet: k−ω SST model and two models based on Reynolds stresses (RSM),
all of them resulted in a qualitatively similar flow inside a droplet. Use of RSM-based
models leads to a sharper interface of a droplet in volume-of-fluid calculations compared
to the k − ω SST model. Two RSM models predict value of the surface tension close to
a theoretical one, yet, both fail in predicting of viscosity of the droplet’s material.

Introduction In microgravity conditions, electromagnetic levitation (EML)
is used both as an environment and a tool allowing measurements of thermo-
physical properties of liquid metals. At present, experimental procedures with
EML are implemented in MSL-Lab at International Space Station and in TEM-
PUS facility used in parabolic flights [1]. At the beginning of experiment a solid
metallic sample is placed at the center of an electromagnetic inductor (Fig. ??)
where it is retained near the equilibrium position by quadrupole AC magnetic
field. The latter is created with use of alternate current jext,p with frequency
fp ≈ 150 kHz supplied to the inductor with a constant phase shift ∆ϕp = π be-
tween the upper and lower coils. Some amount of heat released in the sample due
to circulation of eddy current serves for sample pre-heating. Further, the sample
is heated, melted and over-heated by supplying to the inductor second alternate
current jext,d with frequency fd ≈ 310 kHz without any phase shift between coils
that creates bipolar AC magnetic field. At required temperature of the sample
supply of jext,d current to the inductor is stopped and re-activated later in differ-
ent modes for short periods of time during the cooling phase of the liquid sample
to get various sets of data. Two high-speed video cameras film the sample from
its lateral side and from the top and temperature of the sample is measured at
different areas with pyrometers.

Figure 1: Scheme of the inductor used in microgravity conditions, lateral and top
view. Positioning current jext,p is supplied with phase difference ∆ϕp = π between
the upper and the lower coils that creates quadruple magnetic field, bipolar mag-
netic field is created with the second current jext,d without phase shift between
coils
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In particular, to measure surface tension and viscosity of liquid melt, the
second (bipolar) AC magnetic field is briefly activated to “squeeze” slightly the
droplet. When this field is switched off, the droplet gradually restores its spherical
shape yet this happens through decaying oscillations between prolate and oblate
spheroid whose eccentricity close to zero [2, 3, 4]. According to the Lamb’s theory
[5], surface tension at interface between liquid and surrounding media is related
to the frequency of surface oscillation, denoted hereafter fγ , while viscosity of the
liquid is defined by decrement of oscillations’ amplitude. This theory assumes only
potential flow inside the droplet due to stretching and compression of the latter,
however, AC magnetic field which retains droplet in space is always active and
corresponding Lorentz force drives recirculating flow inside the droplet. Effect of
the latter on measurement remains unclear despite efforts made to estimate it both
for microgravity and terrestrial conditions [4, 6, 7, 8, 9].

Numerical simulation, which seems to be a unique approach to reveal effect
of convection on behavior of the droplet’s surface, meets difficulties for several
reasons. Firstly, electromagnetic fields, hydrodynamic flow in the droplet and sur-
rounding it media and shape and position of the droplet should be calculated in
coupled manner. Second, in the course of measurement procedure, i.e. during
simulations, character of the flow inside the droplet varies from nearly laminar
to turbulent. The latter originates by rapid motion of droplet surface while re-
circulating flow driven by Lorentz force is characterized by low Reynolds number
and could be supposed laminar. Thirdly, turbulent flow in the droplet belongs
to those kinds of flows for which empirical parameters existing in each turbulent
model are not really defined. One can suppose that choice of turbulent model can
affect simulations results. Indeed, this was confirmed by numerical study of Berry
et al. [7] where electromagnetic levitation of the droplet in microgravity was mod-
eled using laminar, k − ε and RNG models for turbulence and Volume-Of-Fluid
method (VOF) was used to account for shape variation of the droplet. Similar
conclusion was made by Spitans et al. [8] where k − ε, k − ω SST and LES tur-
bulent models were studied for modeling of a droplet levitation with the presence
of the gravity force. In both works [7, 8] electromagnetic force calculated with
a different software was introduced into momentum equations as a source terms
after its interpolation from one grid used for electromagnetic modeling to another
grid for hydrodynamic calculations used in ANSYS FLUENT. Data exchange be-
tween programs solving electromagnetic problem and hydrodynamic one coupled
with shape calculations was made either at each time step or once per several time
steps. Both studies provided good agreement with theory regarding prediction of
the surface tension recalculated from the frequency of droplet’s oscillation. Yet, a
classical relation between viscosity of the droplet and decrement of the oscillations
[5] was not confirmed for viscosity proper to liquid metals.

Present work continues this series of numerical study of electromagnetic lev-
itation of a droplet and uses Reynolds Stress models for turbulent flow which
were not considered in previous simulations. ANSYS Fluent is used to obtain
non-stationary solution of hydrodynamic equations coupled with calculations of
shape of the droplet due to use of VOF model. Electromagnetic problem is solved
with home-made module based on user-defined functions and implemented into
ANSYS Fluent as an add-on library [9, 10]. Use of only one software allows us
to make modeling with unique calculation grid, i.e. to avoid problems of data in-
terpolation. Unsteady modeling is performed using iterative segregated approach
and update of distribution of electromagnetic forces required for hydrodynamic
equations and distribution of electrical conductivity required by electromagnetic
equations is done at each iteration within a time step.
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1. Problem description The problem is considered axially symmetric
and a volume-of-fluid (VOF) approach was adopted to treat the droplet displace-
ment and to model further the oscillation of its surface. In experiments inductor
with sample are placed inside a sealed quartz chamber which is generally filled
with argon to decrease oxidation and evaporation of the sample, that is taken into
simulations.

1.1. Volume-of-fluid model The principle of the Volume-Of-Fluid (VOF)
method is to use a single set of momentum and energy equations for all fluids
in the system and to track a volume fraction αi of each of fluids throughout the
calculation domain in each mesh cell, providing that, for example, for two liquids

α1 + α2 = 1

Zone of transition of αi from unity to zero corresponds to the interface between
participating fluids. Surface tension is introduced into momentum equation as
volume force Fγ , and is given by Eq.1 if only two fluids exist in the system.

Fγ = 2γ
α1ρ1k1∇α2 + α2ρ2k2∇α1

ρ1 + ρ2
with ki = ∇ · ∇αi

|∇αi|
(1)

here γ is a surface tensions between two fluids, ρ1 and ρ2 are proper densities of
each of fluids and ki is a curvature of the interface. Lorentz forces obtained from
solution of electromagnetic problem as explained below and given by Eq.7 are also
introduced into momentum equations. Density and viscosity in hydrodynamic
equations are calculated using linear mixture laws which for any physical property
ψ with proper values ψ1 and ψ2 in each of two fluids is given as

ψ = α1ψ1 + α2ψ2 (2)

This applies also to calculation of electric conductivity σ.
Whole calculation domain with the part where hydrodynamic simulations

were made are shown in Fig. 2. Similar to experiment, the second fluid surrounding
the sample is argon. Since treatment of conditions at the droplet interface is made
with VOF approach, non-slip boundary conditions for hydrodynamic equations
are required only at surface of inductor coils and at chamber walls. Simulations
are performed for microgravity environment and temperature related effect are not
considered. Turbulent models used in simulations are discussed in the subsection
1.3.

1.2. Electromagnetic calculations Modeling of electromagnetic phenomena
is based on calculation of the components of magnetic vector potential A and
scalar electric potential V related by following equations

∇2Ai = µ0σ

(
∇Vi +

∂Ai

∂t

)
(3)

∇ · (σ∇Vi) = ∇ ·
(
σ
∂Ai

∂t

)
(4)

∇ ·Ai = 0 (5)

here index i = p, d corresponds to the field created either by positioning current
(i = p) or by heating current (i = d), µ0 = 4π ·10−7 H/m is magnetic permeability
of the free space, σ is electric conductivity of the media defined for the liquid
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Figure 2: Scheme of the calculation domain in (r, z) meridional plane: whole
domain with central chamber filled with argon (left) with zoom to the central part
on the droplet and (right). Electromagnetic simulations are performed throughout
the whole domain, hydrodynamic calculations are done inside domain marked with
green color

zone via the mixture law given above by Eq. 2. Condition given by equation 5
corresponds to Coulomb gauge and is used implicitly in equations 3-4. External
current is imposed in the coil of inductor as explained in appendix A. Further,
magnetic inductions and density of electric current for each of field can be found
from solutions obtained for A and V as

Bi = ∇×Ai and ji = σ

(
−∇V − ∂Ai

∂t

)
(6)

Then Lorentz force due to interaction of eddy current and AC magnetic field inside
the droplet is given as

FL,i = ji ×Bi (7)

Consequently, force FL,p which exists due to circulation in the coil positioning AC
current jext,p retains the droplet while force FL,d, which appears due to activation
of heating current jext,d, is used to deform the droplet, i.e. to trigger its oscillations.

Solution of electromagnetic problem is performed with complex harmonics
that produces system of equations corresponding to initial one given by Eqs.3-4
but for real and complex part of all variables, details are presented in the Appendix.
Then spatial discretization of obtained equations is formulated for finite volume
method and is implemented into ANSYS FLUENT via User-Defined functions. It
should be stresses that boundary conditions at the surface of the droplet are not
required since the latter, in fact, does not exist in VOF approach but is presented as
a thin spatial layer with variable properties. Conditions at the external boundary
of the calculation domain shown in Fig. 2 are discussed in the Appendix A.

1.3. Turbulent models In simulations we tested k − ω SST model and two
Reynolds Stress model (RSM). The first approach was chosen due to its ability to
treat most of “canonic” flows while Reynolds stress models were chosen because

4



they are suitable for anisotropic flows. All these models are built on the assumption
that velocity components and pressure of flow can be presented as a composition
of their mean and fluctuating values: ξ =< ξ > +ξ′. The k − ω SST model uses
the Boussinesque approximation which relates Reynolds stress tensor composed of
mean values of products of the velocity’s fluctuating components Rij =< u′iu

′
j >

with gradients of the mean velocity via eddy viscosity (turbulent viscosity) ηt.
This value is supposed to be isotropic and is related to the kinetic energy of
the pulsating components kt, and to specific dissipation of the latter per unit of
time. Description of the turbulent flows using model k−ω SST results in two more
differential equations for kt and ω, which are solved simultaneously with continuity
and momentum equations for the mean flow component. Equations for kt and
ω contain additional semi-empirical terms which ideally should be defined from
experimental measurement and which are aimed to capture the specific character
of the flow depending on the external conditions.

Reynolds Stress model does not use the Boussinesque approximation and dif-
ferential equations required for calculation of components of Rij tensor are solved
along with Navier-Stokes equations whereas closure semi-empirical relations are
used for higher correlation terms and for their derivatives. The difference between
two RSM models used in simulations lies in treatment of a pressure-strain term
φij =< p(∂u′i/∂xj + ∂u′j/∂xi) > which appears in equations for Rij . One model,
linear pressure-strain model, denoted hereafter as RSM-ε, relates φij to turbulent
energy kt and to its dissipation ε. Another chosen model, low-Re Stress-Omega
model, denoted hereafter RSM-ω, presents pressure-strain term φij with turbulent
energy kt and its specific dissipation ω, similar to k − ω SST model. Two more
options are proposed in ANSYS FLUENT for the treatment of the same term, but
were not tested. For details the reader is proposed to refer to documentation [11].

2. Results Simulations were made for a liquid sample initially having a
spherical shape with the radius R0 = 3.26mm, same as in experiments. Values
for surface tension, dynamic viscosity and density were taken equal to those mea-
sured in the experiment: γ = 1.7N/m, ηNi = 0.008Pa·s, and ρNi = 8000kg/m3,
respectively. This set of data corresponds to a Ni-based material for which electric
conductivity can be taken σ = 106S/m. For the argon which fills the chamber the
following values were taken for density and dynamic viscosity ρNi = 1.62kg/m3

and ηAr = 0.000021Pa·s.
At initial state a spherical droplet is placed near the equilibrium position, i.e.

with its centre at (r0, z0), in axial symmetry r0 = 0. In terms of VOF approach
this means that initial distribution of volume fractions α1 corresponding to the
droplet is:

α1(r, z) =

{
1, if (r − r0)2 + (z − z0)2 ≤ R2

0

0, otherwise
(8)

and rest of volume containing the inductor and the sample is filled with a gas.
At t > 0 positioning current jext,p is activated in the inductor that leads to slight
deformation of the droplet and its oscillations as a whole in the vertical direction.
When the droplet is nearly stabilized, electric current jext,d to trigger its deforma-
tion is activated for a period of 0.1s, then this current is stopped and relaxation
of the droplet back to its equilibrium shape is observed. The following expressions
are adopted to estimate the maximal horizontal radius and vertical diameter of
the droplet Rr and Dz during simulations:

Rr = max(r · α1) (9)

Dz = max(z · α1)−min(z · α1) (10)
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here r and z is radial and axial coordinate.

2.1. Results for the droplet before triggering its oscillations Instantaneous
flow patterns inside the droplet obtained with k − ω SST model, RSM-ε and
RSM-ω models once the droplet is almost stabilized consist of two pair of vortices:
two smaller vortices are near droplet’s equator and two others are near the poles
(Fig. 3). The flow calculated with RSM-based models and presented for the same
moment of time is almost identical but the shape of vortices is slightly different
from that calculated with k − ω SST model. This can be probably assigned to
small displacement of the droplet which persist in calculations with RSM models
and k − ω SST model with slightly different amplitudes.

Figure 3: Instantaneous flow pattern inside the droplet obtained with k − ω SST
model and RSM-ε (left), and k − ω SST model and RSM-ω (right), maximal
velocity for all models is ≈ 2.3cm/s. Solid lines correspond to the value of droplet’s
phase fraction α1=0.995 and α1=0.98. Vectors outside the droplet show velocity
in argon surrounding the droplet

Yet, another difference exists which has more importance for numerical stud-
ies. The contour of the droplet in Fig.2 is presented with two lines corresponding
to and which almost coincide in simulations with both RSM models but diverge
near droplet’s poles in calculation with k−ω SST model. Actually, in simulations
with the latter approach detachment of small fractions of the droplet at its poles
was observed and could not be avoided with variations of numerical parameters
like under-relaxation factors and Courant number.

Another difference between the k−ω SST model and RSM-based models can
be found in the presentation of the turbulence inside the droplet (Fig.4).

Figure 4: Instantaneous pattern for turbulent viscosity inside the droplet obtained
with k − ω SST model and RSM-ε (left), and k − ω SST model and RSM-ω
(right). Solid lines correspond to the value of droplet’s phase fraction α1=0.995
and α1=0.98. Vectors outside the droplet show velocity in argon
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It is obtained that the turbulent viscosity is ten times higher in the both RSM
based models than in the k−ω SST. Surprisingly, in k−ω SST and RSM-ε models
the maximal turbulent viscosity occurs near the axis of symmetry and minimal
values at the surface, that means that there is more dissipation of the turbulent
energy or its less production. Conversely, the RSM-ω model gives its minimal
value at the axis and maximal at the surface.

2.2. Oscillations of the droplet’s surface When axial translation motion of
the droplet caused by initiating of the positioning electric current in the inductor
becomes less intense, the second current in the coils is activated in simulations
for 0.1s. During this period of time the droplet tends to take the form of prolate
spheroid that is accompanied with oscillations of its surface (5). Introduced de-
formation of the droplet diameter is about 1mm that is about 15% with respect
to its initial value. Once the second current is stopped, the droplet returns to a
nearly spherical shape which is also accompanied with oscillations whose charac-
teristics are measured in the experiment. In simulations performed with RSM-ε
and RSM-ω models for turbulent flows results for variation of Dz in time (given
by eq.10) appear slightly different .

Figure 5: Variation of the vertical diameter of the droplet in simulations obtained
with two turbulent models, black line is for RSM-ε model and red line for RSM-ω
model. Indicated periods of time correspond to alimentation of the inductor with
positioning current only (t0 and t2) and to activation of both currents jext,p and
jext,p during the period t1

In Fig.6 Fourier spectrum for oscillations of Dz is shown for two models of
turbulence. With both models the frequency of the oscillations observed in simu-
lations is close to the theoretical value of 35.7Hz: the RSM-ε models gives 35.1Hz,
and the RSM-ω 34Hz. It is interesting to note that for both models some oscil-
lations with a frequency nearly doubled (about 70Hz) seems to be captured by
simulations that correspond to the second oscillation mode. It is probably an
indication that the initial deformation of the droplet was too large and does not
satisfy requirement of a small perturbation. It can be seen also that distribution of
energy of oscillations of various frequencies is more uniform for lower range in case
of use of RSM-ω that is probably related to a higher non-uniformity of turbulent
viscosity observed in this case.

3. Conclusions The work presents numerical modeling of electromag-
netic levitation of a metallic droplet, deformation of the latter using additional

7



Figure 6: Fourier spectrum for oscillations of the value of vertical diameter of the
droplet presented in Fig.5 and calculated with the use of RSM-ε model (black
line) and RSM-ω model (red line) for the turbulent flow. Theoretical value for the
frequency of oscillations is 35.7Hz

electromagnetic force and return of the droplet’s shape to a spherical one accom-
panied by oscillations. Solution of hydrodynamic and electromagnetic equations,
coupled with definition of the shape and position of the droplet was done within
one software, ANSYS FLUENT, that allowed us to have a better coupling between
multiphysic phenomena. It was found that use of Reynolds Stress Models for tur-
bulent flow resulted in a good representation of oscillation of the droplet surface
with the frequency close to theoretically predicted value. Estimation of a charac-
teristic time for the decay of the oscillations is difficult and may be dependent on
mesh size used in calculations that has to be studied further.

Acknowledgements The authors acknowledge financial support from the
CNES under Material Sciences Program and from the ESA-MAP THERMO-
PROP, AO-1999-022.

A. Governing electromagnetic equations It is convenient to perform
solution of the system of governing equations using complex presentation of har-
monic fields with angular frequency ω = 2πf . In this formalism, a real field X(r, t)
is given as

X(r, t) = <{X̂(r)eiωt} (11)

where i2 = −1 is complex unit, X̂(r) = X̂Re(r) + iX̂Im(r) is complex amplitude

with real X̂Re(r) and imaginary X̂Im(r) part and < is notation for taking the
real part of complex number. In particular, this allows one to get rid of partial
derivative on time:

∂X̂(r)e−iωt

∂t
= −iωtX̂(r)e−iωt (12)

Presentation of magnetic potential vector A, density of the electric current j and
electric potential V in their complex form similar to X̂Re(r) with further extraction
of the real part of solution leads to system of equations written for their real and
imaginary parts. Below it is given in a simplified form for cylindrical coordinate
system (r, θ, z) which assumes that azimuthal θ-components of various field may
exist, yet, no variation on θ is allowed, thus derivatives remain only on r and z
coordinates.
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∇ ·
(
σ∇V̂Re

)
= ∇ ·

(
−ωσÂIm

)
∇ ·
(
∇Âr,Re

)
= µ0ĵr,Re −

Âr,Re
r2

with ĵr,Re = σ

(
−∂V̂Re

∂r
+ ωÂr,Im

)

∇ ·
(
∇Âθ,Re

)
= µ0ĵθ,Re −

Âθ,Re
r2

with ĵθ,Re = σωÂθ,Im (13)

∇ ·
(
∇Âz,Re

)
= µ0ĵz,Re with ĵz,Re = σ

(
−∂V̂Re

∂z
+ ωÂz,Im

)
∇ ·
(
σ∇V̂Im

)
= ∇ ·

(
−ωσÂRe

)
∇ ·
(
∇Âr,Im

)
= µ0ĵr,Im −

Âr,Im
r2

with ĵr,Im = σ

(
−∂V̂Im

∂r
− ωÂr,Re

)
∇ ·
(
∇Âθ,Im

)
= µ0ĵθ,Im −

Âθ,Im
r2

with ĵθ,Im = −σωÂθ,Re

∇ ·
(
∇Âz,Im

)
= µ0ĵz,Im with ĵz,Im = σ

(
−∂V̂Im

∂z
+ ωÂz,Re

)

This system of equations is updated with conditions at external boundary
of the calculation domain (Fig. 2) which are supposed to be at a large distance
from the inductor that is equivalent to infinity. From numerical experiments it is
found that results are not affected whether conditions for components of vector
ÂRe = 0, ÂIm = 0 or “zero-flux” conditions ∂ÂRe/∂n = 0, ∂ÂIm/∂n = 0 are used
in combination with similar conditions for electric potential, i.e. V̂Re = 0, V̂Im = 0
or ∂V̂Re/∂n = 0, ∂V̂Im/∂n = 0, ∂/∂n assumes derivative along normal vector to
the boundary..

Relations of fields Â − V̂ with alimentation AC current is given through
modified expression for the real part of the θ component of the electric current in
eq.13:

ĵθ,Re = σωÂθ,Im + ĵext,i (14)

where i = (p, d) is related either to positioning current of to the second current

used to trigger the droplet oscillations. Once the problem for Â− V̂ is solved, the
components of magnetic induction are found as

B̂r,Re = −∂Âθ,Re
∂z

B̂r,Re = −∂Âθ,Im
∂z

B̂θ,Re =
∂Âr,Re
∂z

− ∂Âz,Re
∂r

≡ 0 B̂θ,Im =
∂Âr,Im
∂z

− ∂Âz,Im
∂r

≡ 0

B̂z,Re =
∂Âθ,Re
∂r

+
Âθ,Re
r

B̂r,Re =
∂Âθ,Im
∂r

+
Âθ,Im
r

Lorentz force averaged over period of oscillations is calculated according to
the general expression that with complex variables gives

F̄ = ĵRe × B̂Re + ĵIm × B̂Im (15)
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