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Smooth adversarial examples
Hanwei Zhang1,2* , Yannis Avrithis1 , Teddy Furon1 and Laurent Amsaleg1

Abstract

This paper investigates the visual quality of the adversarial examples. Recent papers propose to smooth the
perturbations to get rid of high frequency artifacts. In this work, smoothing has a different meaning as it perceptually
shapes the perturbation according to the visual content of the image to be attacked. The perturbation becomes
locally smooth on the flat areas of the input image, but it may be noisy on its textured areas and sharp across its edges.
This operation relies on Laplacian smoothing, well-known in graph signal processing, which we integrate in the attack
pipeline. We benchmark several attacks with and without smoothing under a white box scenario and evaluate their
transferability. Despite the additional constraint of smoothness, our attack has the same probability of success at
lower distortion.

Keywords: Adversarial example, Image classification, Deep neural network

1 Introduction
Adversarial examples where introduced by Szegedy et al.
[1] as imperceptible perturbations of a test image that can
change a neural network’s prediction. This has spawned
active research on adversarial attacks and defenses with
competitions among research teams [2]. Despite the the-
oretical and practical progress in understanding, the sen-
sitivity of neural networks to their input, assessing the
imperceptibility of adversarial attacks remains elusive:
user studies show that Lp norms are largely unsuitable,
whereas more sophisticated measures are limited too [3].
Machine assessment of perceptual similarity between

two images (the input image and its adversarial example)
is arguably as difficult as the original classification task,
while human assessment of whether one image is adver-
sarial is hard when the Lp norm of the perturbation is
small. Of course, when both images are available and the
perturbation is isolated, one can always see it. To make
the problem interesting, we ask the following question:
given a single image, can the effect of a perturbation be
magnified to the extent that it becomes visible and a
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human may decide whether this example is benign or
adversarial?
Figure 1 shows that the answer is positive for a range of

popular adversarial attacks. In Appendix 1, we propose a
simple adversarial magnification producing a “magnified”
version of a given image, without the knowledge of any
other reference image. Assuming that natural images are
locally smooth, this can reveal not only the existence of
an adversarial perturbation but also its pattern. One can
recognize, for instance, the pattern of Fig. 4 of [4] in our
Fig. 1f, revealing a universal adversarial perturbation.
Motivated by this example, we argue that popular adver-

sarial attacks have a fundamental limitation in terms of
imperceptibility that we attempt to overcome by intro-
ducing smooth adversarial examples. Our attack assumes
local smoothness and generates examples that are con-
sistent with the precise smoothness pattern of the input
image. More than just looking “natural” [5] or being
smooth [6, 7], our adversarial examples are photorealistic,
low-distortion, and virtually invisible even under mag-
nification. This is evident by comparing our magnified
example in Fig. 1d to the magnified original in Fig. 1b.
Given that our adversarial examples are more con-

strained, an interesting question is whether they per-
form well according to metrics like probability of success
and Lp distortion. We show that our attack not only is
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Fig. 1 Given a single input image, our adversarial magnification (cf Appendix 1) reveals the effect of a potential adversarial perturbation. We show
a the original image followed by b its own magnified version as well as c–hmagnified versions of adversarial examples generated by different
attacks. Our smooth adversarial example (d) is invisible even when magnified

competitive but outperforms Carlini & Wagner [8], from
which our own attack differs basically by a smoothness
penalty.

1.1 Contributions
As primary contributions, we

1 Investigate the behavior of existing attacks when
perturbations become “smooth like” the input image;
and

2 Devise one attack that performs well on standard
metrics while satisfying the new constraint.

As secondary contributions, we

3. Magnify perturbations to facilitate qualitative
evaluation of their imperceptibility;

4. Show that properly integrating the smoothness
constraint is not as easy as smoothing the
perturbation generated by an attack; and

5. Define a new, more complete/fair evaluation
protocol.

The remaining text is organized as follows. Section 2
formulates the problem and introduces a classification
of attacks. It describes the C&W attack and the related
work. Section 3 explains Laplacian smoothing, on which
we build our method. Section 4 presents our smooth
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adversarial attacks, and Section 5 provides experimen-
tal evaluation. Conclusions are drawn in Section 6. Our
adversarial magnification used to generate Fig. 1 is speci-
fied in Appendix 1.

2 Problem formulation and related work
Let us denote by x ∈ X :=[ 0, 1]n×d an image of n pixels
and d color channels that has been flattened in a given
ordering of the spatial components. A classifier network f
maps that input image x to an output y = f(x) ∈ R

k which
contains the logits of k classes. It is typically followed by
softmax and cross-entropy loss at supervised training or
by argmax at test time. An input x with logits y = f(x)
is correctly classified if the prediction p(x) := argmaxi yi
equals the true label of x.
The attacker mounts awhite box attack that is specific to

f, public and known. The attackmodifies an original image
xo ∈ X with given true label t ∈ {1, . . . , k} into an adver-
sarial example xa ∈ X , whichmay be incorrectly classified
by the network, that is p(xa) �= t, although it looks similar
to the original xo. The latter is often expressed by a small
L2 distortion ‖xa − xo‖.

2.1 Families of attacks
In a white box setting, attacks typically rely on exploiting
the gradient of some loss function. We propose to classify
known attacks into three families.

2.1.1 Target distortion
This family gathers attacks targeting a distortion ε given
as an input parameter. Examples are early attacks like Fast
Gradient SignMethod (FGSM) [9] and Iterative-FGSM (I-
FGSM) [10]. Their performance is then measured by the
probability of success Psuc := P(p(xa) �= t) as a function
of ε.

2.1.2 Target success
This family gathers attacks that always succeed in mis-
classifying xa, at the price of a possible large distortion.
DeepFool [11] is a typical example. Their performance is
then measured by the expected distortion D := E(‖xa −
xo‖).
These two first families are implemented with variations

of a gradient descent method. A classification loss func-
tion is defined on an output logit vector y = f(x) with
respect to the original true label t, denoted by �(y, t).

2.1.3 Target optimality
The above attacks are not optimal because they a priori
do not solve the problem of succeeding under minimal
distortion,

min
x∈X :p(x) �=t

‖x − xo‖. (1)

Szegedy et al. [1] approximate this constrained minimiza-
tion problem by a Lagrangian formulation

min
x∈X λ ‖x − xo‖2 + �(f(x), t). (2)

Parameter λ controls the trade-off between the distortion
and the classification loss. Szegedy et al. [1] carry out this
optimization by box-constrained L-BFGS.
The attack of Carlini & Wagner [8], denoted C&W in

the sequel, pertains to this approach. A change of variable
eliminates the box constraint: x ∈ X is replaced by σ(w),
where w ∈ R

n×d is a latent vector and σ is the element-
wise sigmoid function that projects R

n×d to X . A margin
is introduced: an untargeted attack makes the logit yt less
than any other logit yi for i �= t by at least a margin
m ≥ 0. Similar to the multi-class SVM loss by Crammer
and Singer [12] (where m = 1), the loss function � is then
defined as

�(y, t) :=[ yt − max
i�=t

yi + m]+ , (3)

where [·]+ denotes the positive part. The C&Wattack uses
the Adam optimizer [13] to minimize the functional

J(w, λ) := λ ‖σ(w) − xo‖2 + �(f(σ (w)), t), (4)

initializing by wo := σ−1(xo). When the margin is
reached, loss �(y, t) (3) vanishes and the distortion term
pulls σ(w) back towards xo, causing oscillations around
the margin. Among all successful iterates, the one with the
least distortion is kept; if there is none, the attack fails. The
process is repeated for different Lagrangian multiplier λ

according to line search. This family of attacks is typically
more expensive than the two first.

2.2 Imperceptibility of adversarial perturbations
Adversarial perturbations are often invisible only because
their amplitude is extremely small. Few papers deal with
the need of improving the imperceptibility of the adver-
sarial perturbations. The main idea in this direction is to
create low or mid-frequency perturbation patterns.
Zhou et al. [14] add a regularization term for the sake

of transferability, which removes the high frequencies of
the perturbation via low-pass spatial filtering. Heng et
al. [6] propose a harmonic adversarial attack where per-
turbations are very smooth gradient-like images. Guo et
al. [7] design an attack explicitly in the Fourier domain.
However, in all cases above, the convolution and the bases
of the harmonic functions and of the Fourier transform
are independent of the visual content of the input image.
In contrast, the adversarial examples in this work are

crafted to be locally compliant with the smoothness of
the original image. Our perturbation may be sharp across
the edges of xo but smooth wherever xo is, e.g., on back-
ground regions. It is not just smooth but photorealistic,
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because its smoothness pattern is guided by the input
image.
An analogy becomes evident with digital watermarking

[15]. In this application, the watermark signal pushes the
input image into the detection region (the set of images
deemed as watermarked by the detector), whereas here
the adversarial perturbation drives the image outside its
class region. The watermark is invisible thanks to the
masking property of the input image [16]. Its textured
areas and its contours can hide a lot of watermarking
power, but the flat areas cannot be modified without
producing noticeable artifacts. Perceptually shaping the
watermark signal allows a stronger power, which in turn
yields more robustness.
Another related problem, with similar solutions math-

ematically, is photorealistic style transfer. Luan et al. [17]
transfer style from a reference style image to an input
image, while constraining the output to being photore-
alistic with respect to the input. This work as well as
follow-up works [18, 19] is based on variants of Laplacian
smoothing or regularization much like we do.
It is important to highlight that high frequencies can

be powerful for deluding a network, as illustrated by the
extreme example of the one pixel attack [20]. However,
this is arguably one of the most visible attacks.

3 Background on graph Laplacian smoothing
Popular attacks typically produce noisy patterns that are
not found in natural images. They may not be visible at
first sight because of their low amplitude, but they are eas-
ily detected once magnified (see Fig. 1). Our objective is to
craft an adversarial perturbation that is locally as smooth
as the input image, remaining invisible through mag-
nification. This section gives background on Laplacian
smoothing [21, 22], a classical operator in graph signal pro-
cessing [23, 24], which we adapt to images here. Section 4
uses it to generate a smooth perturbation guided by the
original input image.

3.1 Graph
Laplacian smoothing builds on a weighted undirected
graph whose n vertices correspond to the n pixels of the
input image xo. The ith vertex of the graph is associated
with feature xi ∈[0, 1]d that is the ith row of xo, that is,
xo =[ x1, . . . , xn]�. Matrix p ∈ R

n×2 denotes the spa-
tial coordinates of the n pixels in the image, and similarly
p =[p1, . . . ,pn]�. An edge (i, j) of the graph is associated
with weight wij ≥ 0, giving rise to an n × n symmetric
adjacency matrixW, for instance defined as

wij :=
{
kf(xi, xj)ks(pi,pj), if i �= j
0, if i = j (5)

for i, j ∈ {1, . . . , n}, where kf is a feature kernel and ks is a
spatial kernel, both being usually Gaussian or Laplacian.

The spatial kernel is typically nonzero only on nearest
neighbors, resulting in a sparse matrix W. We further
define the n × n degree matrix D := diag(W1n) where 1n
is the all-ones n-vector.

3.2 Regularization [21]
Now, given a new signal z ∈ R

n×d on this graph, the objec-
tive of graph smoothing is to find another signal r, which
is close to z, while at the same time being smooth accord-
ing to the neighborhood system represented by the graph.
Precisely, given z, we define the output signal sα(z) :=
argminr∈Rn×d φα(r, z), with

φα(r, z) := α

2
∑
i,j

wij
∥∥r̂i − r̂j

∥∥2 + (1 − α) ‖r − z‖2F (6)

where r̂ := D−1/2r and ‖·‖F is the Frobenius norm. The
first summand is the smoothness term. It encourages r̂i to
be close to r̂j when wij is large, i.e., when pixels i and j of
input xo are neighbors and similar. This encourages r to
be smooth wherever xo is. The second summand is the
fitness term that encourages r to stay close to z. Parameter
α ∈[ 0, 1) controls the trade-off between the two.

3.3 Filtering
If we symmetrically normalize matrix W as W :=
D−1/2WD−1/2 and define the n×n regularized Laplacian
matrix Lα := (In − αW)/(1 − α), then the expression (6)
simplifies to the following quadratic form:

φα(r, z) = (1 − α)tr
(
r�Lαr − 2z�r + z�z

)
. (7)

This reveals, by letting the derivative ∂φ/∂r vanish inde-
pendently per column, that the smoothed signal is given
in closed form:

sα(z) = L−1
α z. (8)

This solution is unique because matrix Lα is positive-
definite. Parameter α controls the bandwidth of the
smoothing: function sα is the all-pass filter for α = 0 and
becomes a strict “low-pass” filter when α → 1 [25].
Variants of the model above have been used for instance

for interactive image segmentation [22, 26, 27], transduc-
tive semi-supervised classification [21, 28], and ranking
on manifolds [29, 30]. Input z expresses labels known for
some input pixels (for segmentation) or samples (for clas-
sification), or identifies queries (for ranking), and is null
for the remaining vertices. Smoothing then spreads the
labels to these vertices according the weights of the graph.

3.4 Normalization
Contrary to applications like interactive segmentation or
semi-supervised classification [21, 22], z does not repre-
sent a binary labeling but rather an arbitrary perturbation
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in this work. Also contrary to such applications, the out-
put is neither normalized nor taken as the maximum over
feature dimensions (channels). If L−1

α is seen as a spatial
filter, we therefore row-wise normalize it to one in order
to preserve the dynamic range of z. We therefore define
the normalized smoothing function as

ŝα(z) := diag(sα(1n))−1sα(z). (9)

This function of course depends on xo. We omit this from
notation but we say ŝα is smoothing guided by xo and the
output is smooth like xo.

4 Integrating smoothness into the attack
The key idea of the paper is that the smoothness of the
perturbation is now consistent with the smoothness of the
original input image xo, which is achieved by smoothing
operations guided by xo. This section integrates smooth-
ness into attacks targeting distortion (Section 4.1) and
attacks targeting optimality (Section 4.2), but in very
different ways.

4.1 Simple attacks
We consider here simple attacks targeting distortion or
success based on gradient descent of the loss function.
There are many variations which normalize or clip the
update according to the norm used for measuring the dis-
tortion, a learning rate or a fixed step etc. These variants
are loosely prototyped as the iterative process

g = ∇x�
(
f(xa(k)), t

)
, (10)

xa(k+1) = c
(
xa(k) − n(g)

)
, (11)

where c is a clipping function and n a normalization func-
tion according to the variant. Function c should at least
produce a valid image: c(x) ∈ X =[ 0, 1]n×d.

4.1.1 Quick and dirty
To keep these simple attacks simple, smoothness is loosely
integrated after the gradient computation and before the
update normalization:

xa(k+1) = c
(
xa(k) − n(ŝα(g))

)
. (12)

This approach can be seen as a projected gradient descent
on the manifold of perturbations that are smooth like xo.
When applied to PGD2, we call this attack qPGD2 where
the “q” stands for a “quick and dirty” integration of the
smoothness constraint.

4.2 Attack targeting optimality
This section integrates smoothness in the attacks tar-
geting optimality like C&W. Our starting point is the

unconstrained problem (4) [8]. However, instead of repre-
senting the perturbation signal r := x − xo implicitly as
a function σ(w) − xo of another parameter w, we express
the objective explicitly as a function of variable r, as in
the original formulation of (2) in [1]. We make this choice
because we need to directly process the perturbation r. On
the other hand, we now need the element-wise clipping
function c(x) := min([ x]+ , 1) to satisfy the constraint
x = xo + r ∈ X (2). Our problem is then

min
r

λ ‖r‖2 + �(f(c(xo + r)), t), (13)

where r is unconstrained in R
n×d .

4.2.1 Smoothness penalty
At this point, optimizing (13) results in “independent”
updates at each pixel. We would rather like to take the
smoothness structure of the input xo into account and
impose a similar structure on r. Representing the pair-
wise relations by a graph as discussed in Section 3, a
straightforward choice is to introduce a pairwise loss term

μ
∑
i,j

wij
∥∥r̂i − r̂j

∥∥2 (14)

into (13), where we recall that wij are the elements of
the adjacency matrix W of xo, r̂ := D−1/2r and D :=
diag(W1n). A problem is that the spatial kernel is typ-
ically narrow to capture smoothness only locally. Even
if parameter μ is large, it would take a lot of iterations
for the information to propagate globally, each itera-
tion needing a forward and backward pass through the
network.

4.2.2 Smoothness constraint
What we advocate instead is to apply a global smoothing
process at each iteration: we introduce a latent variable
z ∈ R

n×d and seek for a joint solution with respect to r
and z of the following

min
r,z

μφα(r, z) + λ ‖r‖2 + �(f(c(xo + r)), t), (15)

where φ is defined by (6). In words, z represents an uncon-
strained perturbation, while r should be close to z, smooth
like xo, small, and such that the perturbed input xo + r
satisfies the classification objective. Then, by letting μ →
∞, the first term becomes a hard constraint imposing a
globally smooth solution at each iteration:

min
r,z

λ ‖r‖2 + �(f(c(xo + r)), t) (16)

subject to r = ŝα(z), (17)

where ŝα is defined by (9). During optimization, every
iterate of this perturbation r is smooth like xo.
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4.2.3 Optimization
With this definition in place, we solve for z the following
unconstrained problem over Rn×d :

min
z

λ
∥∥ŝα(z)

∥∥2 + �(f(c(xo + ŝα(z))), t). (18)

Observe that this problem has the same form as (13),
where r has been replaced by ŝα(z). This implies that
we can use the same optimization method as the C&W
attack. The only difference is that the variable is z, which
we initialize by z = 0n×d, and we apply function ŝα at each
iteration.
Gradients are easy to compute because our smoothing is

a linear operator. We denote the loss on this new variable
by L(z) := �(f(c(xo + ŝα(z))), t). Its gradient is

∇zL(z) = Jŝα (z)� · ∇x�(f(c(xo + ŝα(z))), t), (19)

where Jŝα (z) is the n × n Jacobian matrix of the smooth-
ing operator at z. Since our smoothing operator is defined
by (8) and (9) is linear, Jŝα (z) = diag(sα(1n))−1L−1

α is a
matrix constant in z, and multiplication by this matrix is
equivalent to smoothing. The same holds for the distor-
tion penalty

∥∥ŝα(z)
∥∥2. This means that in the backward

pass, the gradient of the objective (18) w.r.t. z is obtained
from the gradient w.r.t. r (or x) by smoothing, much like
how r is obtained from z in the forward pass (17).
Matrix Lα is fixed during optimization, depending only

on input xo. For small images like in the MNIST dataset
[31], it can be inverted: function ŝα is really amatrix multi-
plication. For larger images, we use the conjugate gradient
(CG) method [32] to solve the set of linear systems Lαr =
z for r given z. Again, this is possible because matrix Lα is
positive-definite, and indeed, it is the most common solu-
tion in similar problems [26, 30, 33]. At each iteration, one
computes a product of the form v 
→ Lαv, which is effi-
cient because Lα is sparse. In the backward pass, one can
either use CG on the gradient, or auto-differentiate (AD)
through the forward CG iterations. We choose the latter
because it is the simplest implementation-wise. The two
options have the same complexity and should have the
same run-time in theory. In practice, Tensorflow AD takes
0.43 s on average for 50 CG iterations on ImageNet and
InceptionV3, while CG forward takes 0.33 s.

4.2.4 Discussion
The clipping function c that we use is just the identity over
the interval [ 0, 1], but outside this interval, its derivative is
zero. Carlini &Wagner [8] therefore argue that the numer-
ical solver of problem (13) suffers from getting stuck in flat
spots: when a pixel of the perturbed input xo + r falls out-
side [ 0, 1], it keeps having zero derivative after that and
with no chance of returning to [ 0, 1] even if this is bene-
ficial. This limitation does not apply to our case thanks to
the L2 distortion penalty in (13) and to the updates in its

neighborhood: such a value may return to [ 0, 1] thanks to
the smoothing operation.

5 Experiments
Our experiments focus on thewhite box setting, where the
defender first exhibits a network, and then the attacker
mounts an attack specific to this network, but we also
investigate a transferability scenario. All attacks are untar-
getted, as defined by loss function (3).

5.1 Evaluation protocol
For the perceptual evaluation of the quality of the adver-
sarial images, we follow the recommendation of [34]. This
paper compares fifteen metrics (including SSIM, PSNR,
and wPSNR) to the subjective perceptual evaluation of
a panel of users. The conclusion is that most apparent
distortion (MAD) [35] is the metric best reflecting user
assessment. A low MAD score means better fidelity.
For quantitative evaluation of the strength of an attack,

we use two global statistics and an operating character-
istic curve. Given a test image set of N ′ images, we only
consider its subset X of N images that are classified cor-
rectly without any attack. The accuracy of the classifier
is N/N ′. Let Xsuc be the subset of X with Nsuc := |Xsuc|
where the attack succeeds and let D(xo) := ‖xa − xo‖ be
the distortion for image xo ∈ Xsuc.
The global statistics are the success probability Psuc and

expected distortion D as defined in Section 2, estimated by

Psuc = Nsuc
N

, D = 1
Nsuc

∑
xo∈Xsuc

D(xo), (20)

with the exception that D here is the conditional aver-
age distortion, where conditioning is on success. Indeed,
distortion makes no sense for a failure.
If Dmax = maxxo∈Xsuc D(xo) is the maximum distortion,

the operating characteristic function P :[ 0,Dmax]→[ 0, 1]
measures the probability of success as a function of a given
upper bound D on distortion. For D ∈[ 0,Dmax],

P(D) := 1
N

|{xo ∈ Xsuc : D(xo) ≤ D}|. (21)

This function increases from P(0) = 0 to P(Dmax) = Psuc.
It is difficult to define a fair comparison of distortion tar-

geting attacks to optimality targeting attacks. For the first
family, we run a given attack several times over the test
set with different target distortion ε. The attack succeeds
on image xo ∈ X if it succeeds on any of the runs. For
xo ∈ Xsuc, the distortion D(xo) is the minimum distortion
over all runs. All statistics are then evaluated as above.

5.2 Datasets, networks, and attacks
5.2.1 MNIST [36]
We consider a simple convolutional network with three
convolutional layers and one fully connected layer that we

6



denote as C4, giving accuracy 0.99. In detail, the first con-
volutional layer has 64 features, kernel of size 8 and stride
2; the second layer has 128 features, kernel of size 6 and
stride 2; the third has also 128 features, but kernel of size
5 and stride 1.

5.2.2 ImageNet
We use the dataset of the NIPS 2017 adversarial compe-
tition [37], comprising 1000 images from ImageNet [38].
We use InceptionV3 [39] and ResNetV2-50 [40] networks,
with accuracy 0.96 and 0.93 respectively.

5.2.3 Attacks
The following six attacks are benchmarked:

• L∞ distortion: FGSM [41] and I-FGSM [10].
• L2 distortion: An L2 version of I-FGSM [42], denoted

as PGD2 (projected gradient descent).
• Optimality: The L2 version of C&W [8].
• Smooth: Our smooth versions qPGD2 of PGD2

(Section 4.1) and sC&W of C&W (Section 4.2). Note
that the smoothness constraint integration differs a
lot between qPGD2 and sC&W.

5.2.4 Parameters
On MNIST, we use ε = 0.3 for FGSM; ε = 0.3,α = 0.08
for I-FGSM; ε = 5,α = 3 for PGD2; confidence mar-
gin m = 1, learning rate η = 0.1, and initial constant

Fig. 2 For a given attack (denoted by an asterisk and bold typeface), the adversarial image with the strongest distortion D over MNIST. In green, the
attack succeeds; in red, it fails
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c = 15 (the inverse of λ in (4)) for C&W. For smooth-
ing, we use Laplacian feature kernel, set α = 0.95, and
pre-compute L−1

α . On ImageNet, we use ε = 0.1255 for
FGSM; ε = 0.1255,α = 0.08 for I-FGSM; ε = 5,α = 3
for PGD2; m = 0, η = 0.1, and c = 100 for C&W. For
smoothing, we use Laplacian feature kernel, set α = 0.997,
and use 50 iterations of CG. These settings are used in
Section 5.5.

5.3 White box scenario
5.3.1 Qualitative results and perceptual evaluation
Figures 2 and 3 show MNIST and ImageNet examples,
respectively, focusing on worst cases. Both sC&W and
qPGD2 produce smooth perturbations that lookmore nat-
ural. However, smoothing of qPGD2 is more aggressive
especially onMNIST, as these images contain flat black or
white areas.
This is due to the “quick and dirty” integration of the

smoothness constraint: On some images, the perturbation

update ŝα(g) is weakly correlated with gradient g, which
does not help in lowering the classification loss. Conse-
quently, the perturbation becomes stronger in order to
succeed. For the same reason, qPGD2 completely fails on
natural images like Fig. 3a and c. It consumes way more
distortion than PGD2, and although this perturbation is
smoother, it becomes visible.
By contrast, the proper integration of the smooth-

ness constraint in sC&W produces totally invisible
perturbation. For images like Fig. 3a or c, sC&W con-
sumes more distortion than C&W, but the perturbation
remains less visible according to the MAD score. The rea-
son is the “phantom” of the original that is revealed when
the perturbation is isolated.
The superior perceptual quality of our smooth adver-

sarial examples is also confirmed quantitatively: On Ima-
geNet, 93% of the images produced by sC&W have lower
MAD score than the ones by C&W. Figure 4 shows that
when the MAD score of sC&W is greater than the one

Fig. 3 Original image xo (left), adversarial image xa = xo + r (above) and scaled perturbation r (below; distortion D = ‖r‖ and MAD scores) against
InceptionV3 on ImageNet. Scaling maps each perturbation and each color channel independently to [ 0, 1]. The perturbation r is indeed smooth like
xo for sC&W. a Despite the higher distortion compared to C&W, the perturbation of sC&W is totally invisible, even when magnified (cf Fig. 1). b One
of the failing examples of [6] that look unnatural to human vision. c One of the examples with the strongest distortion over ImageNet for sC&W: xo is
flat along stripes, reducing the dimensionality of the “smooth like xo” manifold
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Fig. 4MAD scores [35] of sC&W vs. C&W for all images of ImageNet. For 93% of the images below the diagonal, sC&W is less perceptible than C&W
according to MAD score

of C&W, it usually happens for very small score val-
ues (below 0.1), meaning that both are almost equally
imperceptible.

5.3.2 Quantitative results on success and distortion
The global statistics Psuc,D are shown in Table 1. Operat-
ing characteristics over MNIST and ImageNet are shown
in Figs. 5 and 6 respectively.
We observe that our sC&W, with the proper integra-

tion via a latent variable (18), improves a lot the original
C&W in terms of distortion, while keeping the probabil-
ity of success roughly the same. This result, consistent in
all experiments, is surprising. We would expect a price to
be paid for a better invisibility as the smoothing is adding
an extra constraint on the perturbation. This price can be
rather high in the literature: In order to preserve the suc-
cess rate, Table 1 of [7] reports an increase of distortion by
a factor of 3 when integrating smoothness in the attack.
An explanation may be that the smoothing operation of
[7] is independent of the input image; while in our case,
smoothing is guided by the input.
On the contrary, the “quick and dirty” integration (12)

dramatically spoils qPGD2 with big distortion especially

Table 1 Success probability Psuc and average L2 distortion D

MNIST ImageNet

C4 InceptionV3 ResNetV2

Psuc D Psuc D Psuc D

FGSM 0.89 5.02 0.97 5.92 0.92 8.20

I-FGSM 1.00 2.69 1.00 5.54 0.99 7.58

PGD2 1.00 1.71 1.00 1.80 1.00 3.63

C&W 1.00 2.49 0.99 4.91 0.99 9.84

qPGD2 0.97 3.36 0.96 2.10 0.93 4.80

sC&W 1.00 1.97 0.99 3.00 0.98 5.99

on MNIST. This reveals the utmost importance of prop-
erly integrating the smoothness constraint. It cannot be
just a post-processing filtering of the perturbation.
The price to pay for smoothing is the run-time: using

Tensorflow and 50 CG iterations on ImageNet and Incep-
tionV3, sC&W takes 205 s per image on average, while
C&W takes 47 s. This is with our own implementation of
CG without particular optimization effort. Runtime was
not within our objectives.
We further observe that PGD2 outperforms by a vast

margin the C&W attack, which is supposed to be close
to optimality. This may be due in part to how the Adam
optimizer treats L2 norm penalties as studied in [43]. This
interesting finding is a result of our new evaluation pro-
tocol: C&W internally optimizes its parameter c = 1/λ
independently per image, while for PGD2, we externally
try a small set of target distortionsD on the entire dataset.
This is visible in Fig. 5, where the operating characteristic
is piecewise constant. Our comparison is fair, given that
C&W is more expensive.
As already observed in the literature, ResnetV2 is more

robust to attacks than InceptionV3: The operating char-
acteristic curves are shifted to the right and increase at a
slower rate.

5.4 Adversarial training
The defender now uses adversarial training [41] to gain
robustness against attacks. Yet, the white box scenario still
holds: this network is public. The training set comprises
images attacked with “step l.l” model [10]1. The accuracy
of C4 on MNIST (resp. InceptionV3 on ImageNet) is now
0.99 (resp. 0.94).
Table 2 shows interesting results. As expected, FGSM

is defeated in all cases, while average distortion of all

1Model taken from https://github.com/tensorflow/models/tree/master/
research/adv_imagenet_models
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Fig. 5 Operating characteristics of the attacks over MNIST. Attacks PGD2 and qPGD2 are tested with target distortion D ∈[ 1, 6]

attacks is increased in general. What is unexpected is
that on MNIST, sC&W remains successful while the
probability of C&W drops. On ImageNet however, it
is the probability of the smooth versions qPGD2 and
sC&W that drops. I-FGSM is also defeated in this
case, in the sense that average distortion increases too
much.

5.5 Transferability
This section investigates the transferability of the attacks
under the following scenario: the attacker has now a
partial knowledge about the network. For instance, he/she
knows that the defender chose a variant of InceptionV3,
but this variant is not public so he/she attacks Incep-
tionV3 instead. Also, this time, he/she is not allowed to
test different distortion targets. The results are shown in
Table 3.
The first variant uses a bilateral filter (with standard

deviations 0.5 and 0.2 in the domain and range ker-
nel respectively; cf Appendix 1) before feeding the net-

work. This does not really prevent the attacks. PGD2
remains a very powerful attack if the distortion is large
enough. Smoothingmakes the attack less effective, but the
perturbations are less visible. The second variant uses
the adversarially trained InceptionV3, which is, on the
contrary, a very efficient counter-measure under this sce-
nario.
Figure 7 shows the operating characteristics of C&W

and sC&W corresponding to the bilateral filter results
of Table 3. We see that within a distortion budget of
5, sC&W succeeds with 67% probability, whereas C&W
with 50%. Yet, at larger distortion budgets, C&W keeps
on forging more adversarial images whereas sC&W stops
making progress. This is understandable: C&W creates
strong artifacts clearly visible when the distortion is larger
or equal to 5, as shown in Fig. 3. The upfront defense fil-
ters out some of these strong perturbations, but the rest
remain successful. These images are adversarial by defini-
tion, yet not useful in practice because they are too much
distorted.

Fig. 6 Operating characteristics over ImageNet attacking InceptionV3 (solid lines) and ResNetV2-50 (dotted lines)
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Table 2 Success probability and average L2 distortion D when
attacking networks adversarially trained against FGSM

MNIST - C4 ImageNet - InceptionV3

Psuc D Psuc D

FGSM 0.15 4.53 0.06 6.40

I-FGSM 1.00 3.48 0.97 29.94

PGD2 1.00 2.52 1.00 3.89

C&W 0.93 3.03 0.95 6.43

qPGD2 0.99 2.94 0.69 7.86

sC&W 0.99 2.39 0.75 6.22

6 Conclusion
Smoothing helps masking the adversarial perturbation
by shaping it “like” the input image. However, this rule
holds only when smoothness is properly integrated in the
attack. Filtering the perturbation by post-processing is not
a sound idea, even if it is done in accordance with the orig-
inal image, even if it is done at each attack iteration. A
sounder integration is to inject smoothness as a constraint
inside the loss function.
It is impressive how sC&W improves upon C&W in

terms of distortion and imperceptibility at the same time
while maintaining the same success rate. To our knowl-
edge and as far as a white box scenario is considered,
this is the first time smoothness comes for free from
this viewpoint. Yet, a price to be paid is the larger
complexity.
Smoothing allows the attacker to delude more robust

networks thanks to larger distortions while still being
invisible. However, its impact on transferability is mit-
igated. The question raised in the introduction is still
open: Fig. 1 shows that a human does not make the
difference between the input image and its adversar-
ial example even with magnification. This does not
prove that an algorithm will not detect some statistical
evidence.

Table 3 Success probability and average L2 distortion D of
attacks on variants of InceptionV3 under transferability

Bilateral filter Adv. training

Psuc D Psuc D

FGSM 0.77 5.13 0.04 10.20

I-FGSM 0.82 5.12 0.02 10.10

PGD2 1.00 5.14 0.12 10.26

C&W 0.82 4.75 0.02 10.21

qPGD2 0.95 5.13 0.01 10.17

sC&W 0.68 2.91 0.01 4.63

Fig. 7 Operating characteristics of C&W and sC&W on ImageNet with
InceptionV3 under bilateral filter transferability, corresponding to
Table 3

Appendix 1
Adversarial magnification
Given a single-channel image x : 
 → R as input, its
adversarial magnification mag(x) : 
 → R is defined as
the following local normalization operation

mag(x) := x − μx(x)
βσx(x) + (1 − β)σ
(x)

, (22)

where μx(x) and σx(x) are the local mean and standard
deviation of x respectively, and σ
(x) ∈ R

+ is the global
standard deviation of x over 
. Parameter β ∈[ 0, 1]
determines how much local variation is magnified in x.
In our implementation, μx(x) = b(x), the bilateral fil-

tering of x [44]. It applies a local kernel at each point p ∈ 


that is the product of a domain and a range Gaussian ker-
nel. The domain kernelmeasures the geometric proximity
of every point q ∈ 
 to p as a function of

∥∥p − q
∥∥, and

the range kernel measures the photometric similarity of
every point q ∈ 
 to p as a function |x(p) − x(q)|. On the
other hand, σx(x) = bx((x − μx(x))2)−1/2. Here, bx is a
guided version of the bilateral filter, where it is the refer-
ence image x rather than (x − μx(x))2 that is used in the
range kernel.
When x : 
 → R

d is a d-channel image, we apply
all the filters independently per channel, but photomet-
ric similarity is just one scalar per point as a function of
the Euclidean distance

∥∥x(p) − x(q)
∥∥ measured over all d

channels.
In Fig. 1, β = 0.8. The standard deviation of both the

domain and range Gaussian kernels is 5.
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