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Abstract. The purpose of this work is to efficiently design a disassembly
line, as disassembly system, handling variability of End-of-Life (EoL)
product quality as well as uncertainty of disassembly process operations
and provides an optimal revenue of such a system. The main finding
of this work is the development of a decision tool that allows decision-
makers to choose the best disassembly process and disassembly depth,
while assigning the corresponding tasks to the line workstations under
precedence and cycle time constraints. Task times are assumed to be
random variables with known normal probability distributions. Presence
of hazardous material is considered and line cycle time constraints are to
be jointly satisfied with at least a certain service (probability) level set
by the decision-maker. The revenue of a product part depends explicitly
on its EoL state or quality. Industrial applicability is shown using an
industrial case focused on remanufacturing of mechatronic parts in the
automotive industry.

Keywords: Sustainable manufacturing · Product recovery · Disassem-
bly · Line design · EoL product quality · Uncertainty · Decision aiding

1 Introduction

This work develops a decision tool to optimize line design by minimizing the
number of needed workstations and selecting optimal disassembly process and
depth regarding line revenue. A line consists of an ordered sequence of work-
stations connected by a material handling system. At each workstation, an EoL
product or one or more of its subassemblies are separated into their components
and parts. The line revenue is defined as the difference between the revenue
generated by recovered parts and the line operation cost. The latter includes
the workstations operation cost and additional cost of workstations handling
hazardous parts. In fact, certain parts or subassemblies may contain hazardous
material and require a particular treatment incurring a supplementary cost.

The originality of the proposed approach is to consider the health state of
the EoL product, its parts and sub-parts in the revenue estimation as random
variables. The recycling decision requires a quantification of the part capacity
to re-enter a cycle. For such a purpose, we use the Remaining Usage Potential
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(RUP) concept introduced in [8]. An extended literature review on disassembly
lines can be found in [1,10].

The economical optimization of the disassembly line takes into account rev-
enue gained from disassembled parts resale. The latter is highly dependent on
the re-entering usage cycle whose decision is based on the RUP. The RUPs of a
product and its parts are taken as distributions since we consider mass recycling.
The novelty of the proposed decision tool as well is task processing times uncer-
tainty management in the optimization approach. This is done by designing a
line where cycle time constraints are jointly satisfied with at least a certain ser-
vice level, 1−α, fixed by the decision-maker. In industrial terms, the probability
level (1 − α) reflects the level of the EoL product demand satisfaction; hence,
it defines the level of customers satisfaction or the capability of the designed
disassembly system to meet the demand.

This paper is structured as follows. A formal description of the studied prob-
lem is presented in Section 2. Section 3 presents the developed decision model
along with the solution approach. Numerical experiments and optimization re-
sults are presented in section 4. Section 5 concludes the paper with future re-
search directions.

2 Problem Formal Definition

In this work, we study a disassembly process where the revenue from retrieved
parts depends on the quality of the incoming return products. For an EoL prod-
uct, the problem consists on the selection of a best disassembly process alter-
native, among all possible ones, taking into account its RUP and precedence
relationships amongst all disassembly tasks and product parts obtained during
the disassembly process. At the same time, selected disssembly tasks are op-
timally assigned to an ordered sequence of workstations, while satisfying cycle
time constraints under uncertainty of the task processing times.

The goal is to design a line, as a disassembly system, providing the maxi-
mal revenue and resulting in a minimized number of stations. Cycle time (CT)
constraints for all workstations have to be jointly respected with at least a proba-
bility level (1−α) fixed by the decision maker; CT is the amount of time allocated
to each station to complete its assigned tasks. Line revenue is the difference be-
tween the profit generated by recovered parts and the line operation cost. Line
cost includes the workstations operation cost and additional cost of workstations
handling hazardous parts. Disassembly task processing times ti, i ∈ I, are as-
sumed to be random variables with known normal probability distributions; I
represents the set of all possible disassembly tasks. In the case of task times as-
sumed to be random variables following a different probability distribution, the
resulted time of each workstation is not guaranteed to be normally distributed
for any number of tasks assigned to it.

Each task time is noted as: t̃i, i ∈ I. A disassembly task i ∈ H ⊂ I is called
hazardous if its execution generates a hazardous subassembly or component; H
is the set of hazardous tasks. The maximum disassembly level is the compo-
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nents level. A task can be performed at any workstation but cannot be split
between two workstations. A fixed cost per operating a time unit of an opened
workstation and an additional fixed cost per operating a time unit for treating
a hazardous part are given. Each component or subassembly has a resale value
which represents its revenue. This revenue depends on the quality of the corre-
sponding component or subassembly. The state or quality of each subassembly is
modeled using the concept of RUP which follows a probability distribution. This
distribution models the variability of RUP of the input return products. In the
optics of industrialized disassembly, i.e. a large number of products of the same
category are returned, to obtain such a probability distribution, statistical stud-
ies on disassembled products can be conducted. The RUP concept is explained
in detail in [2,8] and is summarized here in subsections 2.2 and 2.3.

2.1 Modeling of Disassembly Process and Precedence Relations

And/or graph models explicitly all possible disassembly process alternatives of
an EoL product, as well as the precedence relationships among tasks and product
subassemblies and components [5,2] (see Figure 1).

Each subassembly is represented by a node labeled Ak, k ∈ K; K is the set
of all generated subassemblies (only subassemblies). Each node labeled Bi, i ∈ I,
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Fig. 1: And/or graph of a ballpoint pen example [3].
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represents a disassembly task. For a more detailed description of the and/or
graph modeling process, see our precedent work [4,7,8].

2.2 Idea of RUP Concept and its PDF

The RUP is evaluated on a [0, 1] scale; 1 corresponds to the product state at
the beginning of its life or exploitation (the product is at its maximal RUP); 0
means that the product/part has reached its end of life and has to be recycled
as raw material. It is modeled as a normal Probability Density Function (PDF)
truncated in 0 and 1. The RUP follows a truncated normal distribution on [0, 1]
with µ and σ parameters: RUP  N[0,1](µ, σ); µ and σ are respectively the
mean and standard deviation of the original non truncated normal distribution.
Figure 2 shows, over [0, 1] interval, 3 truncated normal distribution functions
with parameters: µ = 0, σ = 0.3; µ = 0.5, σ = 0.2; µ = 1, σ = 0.3.
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Fig. 2: RUP PDF examples as normal distributions truncated on [0,1].

2.3 Part Revenue with Respect to its RUP and Part Revenue PDF

All product items have not the same RUP, so their resale prices have to be
considered as functions of their RUPs. The resale price represents the revenue
(Re) due to recycling recovery of disassembly items. The revenue Re is defined
as a function of the RUP: Re(RUP). Three cases of Re(RUP) are studied: (a)
Re = (b−a)·RUP+a, affine function; (b) Re = (b−a)· 4

√
RUP+a, root function;

(c) Re = e
1

e−1

(
e ln(a)−ln(b)

)
e

1
e−1

(
ln(b)−ln(a)

)
eRUP

, exponential function.
Here, Re(RUP = 1) = b and Re(RUP = 0) = a, with b > a > 0; b and a are
upper and lower bounds on resale prices, respectively.

Combining RUP probability density function with part revenue function
gives part revenue probability density function. For the 3 Re functions presented



Management of End-of-Life Product Quality 5

above, the corresponding probability density functions are defined in [2]. Again,
three cases for the RUP distribution, i.e. RUP  N[0,1](µ, σ), according to the
part quality are studied: bad (µ = 0, σ = 0.2), medium (µ = 0.5, σ = 0.3) and
good (µ = 1, σ = 0.2).

3 Optimization Model and Solution Approach

The objective is profit maximization of the disassembly system to be designed.
To model the defined problem, the following notations are introduced.

3.1 Parameters and Sets

I: set of disassembly task indices: I = {1, 2, . . . , n}, n ∈ N∗;
J : set of workstation indices: J = {1, 2, . . . ,m}, m ∈ N∗, m 6 n;
H: set of hazardous disassembly task indices;
L: set of all product part indices (subassemblies and components): L = {1, 2, . . . , l},

l ∈ N∗;
K: set of indices for the generated subassemblies: K = {0, 1, . . . , k}, k ∈ N,

K ⊆ L;
Li: set of indices of retrieved subassemblies and components by the execution of

disassembly task Bi, i ∈ I;
G`: set of indices of tasks generating subassembly or component `, ` ∈ L;
D`: set of indices of tasks disassembling subassembly `, ` ∈ L;
Pk: set of indices of Ak predecessors, k ∈ K: Pk = {i| Bi precedes Ak};
Sk: set of indices of Ak successors, k ∈ K: Sk = {i| Ak precedes Bi};
Ak: a subassembly, k ∈ K;
Bi: a disassembly task, i ∈ I;
Fc: fixed cost per operating a time unit of a workstation, Fc > 0;
Hc: additional cost per time unit for stations handling hazardous parts, Hc > 0;

CT: cycle time, CT > 0;
t̃i: processing time of task Bi, i ∈ I, where t̃i  N (µi, σi), i ∈ I;

R̃e`: revenue generated by a subassembly or component `, ` ∈ L (see subsec-

tion 2.3), where R̃e` is a function of R̃UP`: R̃e`(R̃UP`), ` ∈ L; R̃UP` repre-
sents the remaining use potential of a subassembly or component `, ` ∈ L,
as defined in subsection 2.2;

1− α: probability or line service level fixed by the decision-maker: cycle time con-
straints are jointly satisfied with at least this level value; α represents a risk
and in general α 6 10%.

3.2 Decision Variables
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xij =


1, if task Bi is assigned

to workstation j;

0, otherwise.

hj =


1, if a hazardous task is

assigned to station j;

0, otherwise.

xsj =


1, if disassembly is finished at

station j, complete or partial;

0, otherwise.

y` =


0, if

∑
i∈G`

xi = 1 and∑
i∈D`

xi = 1, ` subassembly;

1, otherwise.

Variable y`, ` ∈ L prevents to compute a subassembly revenue, in the ob-
jective function, when this latter is itself disassembled. Only revenues of its
components or subassemblies (not disassembled) are used afterwards.

3.3 Set of Constraints and Objective Function

The decision tool proposed in this paper uses the optimization model defined be-
low. This model allows to determine a disassembly process alternative with the
maximum profit and assign its tasks to minimal number of workstations, while
considering the quality or states of the subassemblies and components (gen-
erated during the disassembly process) and task processing times uncertainty.
As mentioned in subsection 2.2, the state of a product (subassembly or com-
ponent) is modeled using RUP. Thus, by taking the RUP of each subassembly
and component, the optimization model allows to choose which components and
subassemblies to retrieve in order to maximize the disassembly process profit.
As explained in subsection 2.3, revenue Re of each component or subassembly
depends on its RUP, i.e. Re(RUP). The objective function and associated con-
straints are formulated as follows.

max

∑
i∈I

∑
j∈J

∑
`∈Li

R̃e` · y` · xij − CT

(
Fc ·

∑
j∈J

j · xsj + Hc ·
∑
j∈J

hj

) (I)

s.t.∑
i∈S0

∑
j∈J

xij = 1 (1)

∑
j∈J

xij 6 1,∀i ∈ I (2)

∑
i∈Sk

∑
j∈J

xij 6
∑
i∈Pk

∑
j∈J

xij ,∀k ∈ K\{0} (3)

∑
i∈Sk

xiv 6
∑
i∈Pk

v∑
j=1

xij ,∀k ∈ K\{0},∀v ∈ J (4)

∑
j∈J

xsj = 1 (5)

∑
j∈J

j · xij 6
∑
j∈J

j · xsj ,∀i ∈ I (6)
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hj > xij ,∀j ∈ J, ∀i ∈ H (7)

If
∑
i∈D`

xi = 1 and
∑
i∈G`

xi = 1 then y` = 0,∀` ∈ L (` subassembly) (8)

y` = 1,∀` ∈ L (` component) (9)

P
(∑

i∈I
t̃i · xij 6 CT,∀j ∈ J

)
> 1− α (10)

xsj , xij , hj , y` ∈ {0, 1},∀i ∈ I, ∀j ∈ J, ∀` ∈ L (11)

Terms of the objective function represent, respectively, the earned profit of re-
trieved parts, the cost of operating workstations and the additional cost for
handling hazardous parts. Constraint (1) models the fact that exactly one dis-
assembly task, among all possible ones, must be chosen to start disassembling
the EoL product, symbolized by A0. Constraint set (2) indicates that a task
is to be assigned to at most one workstation. Constraints (3) ensure that only
one or-successor is selected. Constraint set (4) defines the precedence relation-
ships among tasks and subassemblies. Constraint (5) imposes the assignment
of the dummy task s to one workstation. Constraints (6) ensure that all dis-
assembly tasks are assigned to lower or equal- indexed workstations than the
one to which s is assigned. Constraints (7) ensure the value of hj to be 1 if
at least one hazardous task is assigned to a workstation j. Constraints (8), as
previously mentioned, model an exclusion between the revenue of a subassembly
(which is disassembled) and the revenue of its subassemblies and components.
Constraints (9) are introduced in order to include in the retained disassembly
process revenues that are generated by selected components. Constraints (10)
enforce the workstation operating time to remain within the cycle time CT, for
all opened workstations, jointly with at least a predefined probability 1 − α.
Finally, set (11) represents the possible values of the decision variables.

In the next section, lower and upper bounding schemes will be defined in
order to transform conraints (8) and (10) and optimally solve problem (I) with
quadratically constrained program solvers, such as CPLEX.

3.4 Solution of the Problem

Upper Bounding Scheme for Program (I)

The optimal value of program (UMinI) below defines an upper bound of (I) [9,6].

min

CT

(
Fc ·

∑
j∈J

j · xsj + Hc ·
∑
j∈J

hj

)
−
∑
i∈I

∑
j∈J

∑
`∈Li

R̃e` · zij`

 (UMinI)

s.t.

vj 6 CT − µT · xj ,∀j ∈ J (12)

wij > σi · zij ,∀i ∈ I, ∀j ∈ J (13)

vj > ‖wj‖,∀j ∈ J (14)

zij > ak · xij + bk · yij ,∀i ∈ I, ∀j ∈ J, k = 1, . . . ,m (15)
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j∈J

yij =
∑
j∈J

oij ,∀i ∈ I (16)

oij 6 xij ,∀i ∈ I, ∀j ∈ J (17)

oij 6 qj ,∀i ∈ I, ∀j ∈ J (18)

qj + xij 6 1 + oij ,∀i ∈ I,∀j ∈ J (19)∑
j∈J

qj = 1 (20)

x ∈ X, vj , qj , yij , wij , oij , zij > 0,∀i ∈ I, ∀j ∈ J (21)

Where x is a vector of decision variables xij , xsj , hj , y`, ∀i ∈ I, ∀j ∈ J, ∀` ∈ L,
and X = {x| constraints (1)-(9), and (11) are satisfied}; zij` 6 y`, zij` 6 xij and
zij` > y` + xij − 1, ∀i ∈ I, ∀j ∈ J, ∀` ∈ L.

Lower Bounding Scheme for Program (I)

Program (LMinI) here after defines a lower bound for (I); αj , j ∈ J are param-
eters verifying

∑
j∈J αj = α [11,9].

min

CT

(
Fc ·

∑
j∈J

j · xsj + Hc ·
∑
j∈J

hj

)
−
∑
i∈I

∑
j∈J

∑
`∈Li

R̃e` · zij`

 (LMinI)

s.t.

vj 6
1

Φ−1(1− αj)
·
(

CT − µT · xj
)
,∀j ∈ J (22)

wij > σi · xij ,∀i ∈ I, ∀j ∈ J (13)

vj > ‖wj‖,∀j ∈ J (14)

x ∈ X, vj , wij > 0,∀i ∈ I, ∀j ∈ J (23)

In order to solve the defined problem, formulated as (I), using developed lower
and upper bound models, (LMinI) and (UMinI), we consider different values

of the revenue R̃e`,∀` ∈ L, where ` represents a subassembly or a component.

These values depend on: µ̂` (mean of R̃e`) and σ̂` (standard deviation of R̃e`).

Three values of R̃e`,∀` ∈ L will be studied: Re` = µ̂` and Re` = µ̂`± σ̂`, ∀` ∈ L.

4 Numerical Illustration

Models (LMinI) and (UMinI) as well as the nonlinear optimizations and nu-
merical integrations are implemented in Linux using C++ on a PC with 8×CPU
2.80 GHz and 32 Go RAM. Nonlinear optimizations are done with ALGLIB, nu-
merical integatons with Gauss-Legendre quadrature while models (LMinI) and
(UMinI) are solved using CPLEX 12.6. All are applied to a remanufacturing
industrial case product: a Knorr-Bremse EBS 1 Channel Module. It represents a
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Table 1: Lower bound of problem (I): obtained disassembly alternative, opened
workstations and corresponding line profit for each revenue function type

Re` = µ̂`
(s

ta
t,

hs
ta

t)

ti
m

e(
s)

Re` = µ̂` − σ̂`

(s
ta

t,
hs

ta
t)

ti
m

e(
s)

Re` = µ̂` + σ̂`

(s
ta

t,
hs

ta
t)

ti
m

e(
s)

Affine 63478.0 (2, 1) 2.6 54074.5 (2, 1) 3 72881.5 (2, 1) 2.5

E
B

S
1Root 72638.5 (2, 1) 2.4 69630.2 (2, 1) 2.4 76040.2 (1, 1) 2.4

Expo 26617.2 (2, 1) 2.7 6710.6 (2, 1) 3 46756.5 (2, 1) 2.8

Mixture 71298.5 (2, 1) 2.5 68495.2 (2, 1) 3 75823.6 (1, 1) 2.4

Table 2: Upper bound of problem (I): obtained disassembly alternative, opened
workstations and corresponding line profit for each revenue function type

Re` = µ̂`

(s
ta

t,
hs

ta
t)

ti
m

e(
s)

Re` = µ̂` − σ̂`
(s

ta
t,

hs
ta

t)

ti
m

e(
s)

Re` = µ̂` + σ̂`

(s
ta

t,
hs

ta
t)

ti
m

e(
s)

Affine 63478.0 (2, 1) 45.9 54074.5 (2, 1) 101.5 72881.5 (2, 1) 104.9

E
B

S
1Root 72638.5 (2, 1) 79.0 69630.2 (2, 1) 84.4 76040.2 (1, 1) 2.5

Expo 26617.2 (2, 1) 3.15 6710.6 (2, 1) 3.0 46756.5 (2, 1) 2.8

Mixture 71298.5 (2, 1) 48 68495.2 (2, 1) 3.3 75823.6 (1, 1) 2.5

real case study in the automotive part remanufacturing sector. Such a product
is composed of at least 45 components [8].

Tables 1 and 2 and Figure 3 summarize the obtained optimization results for
different values of R̃e`, ` ∈ L. Columns ‘(stat,hstat)’ and ‘time(s)’ in Tables 1 and
2 indicate, respectively, the number of opened workstations of the disassembly
system, the number of hazardous workstations, if there is any, and the resolution
time in seconds. Table 1 presents the obtained optimization results for the lower
bound of problem (I) and Table 2 presents those of the upper bound. Results
of Tables 1 and 2 with Figure 3 are analysed according to three main points:
optimality of solved instances, obtained disassembly process alternatives and
task assignment to defined workstations. They can be summarized as follows:
the profit of the disassembly process, so task assignement to line workstations,
depends not only on the sequence and level of disassembly but also on the state
or quality of the product, subassemblies and components.

From optimality aspect of solved instances, as it can be seen in Tables 1 and
2, all instances of the EBS module are solved to optimality. In fact, for each
instance the objective function value (that is line revenue) for both lower and
upper bounds are equal.

From obtained disassembly process alternatives aspect, Figure 3 illustrates
in detail the sequence and the level of disassembly returned for each revenue
function type of components and subassemblies. In order to identify easily disas-
sembly alternatives in Figure 3 one different color is assigned to each alternative.
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We can see that the disassembly sequence corresponding to the maximum profit
depends on the revenue functions. It can be observed that the level of disas-
sembly for the same alternative depends on the type of revenue functions. For
example, tasks B1 B6 B20 B34 B43 and B1 B6 B8 B20 B34 B43 represent two dif-
ferent disassembly levels of the same disassembly alternative, see Figure 3. The
results show also that for the same alternative and the same level of disassembly,
values of the corresponding profits depend on the type of the revenue functions
considered. As example, for upper bound values and Re` = µ̂` − σ̂`,∀` ∈ L,
functions Affine, Root and Mixture define the same alternative B1 B4 B15 B34

B43, but values of the objective functions are all different, see Table 2.

From task assignment to defined workstations aspect, we can deduce two
main behaviours. The first one is the fact that for a same disassembly alternative
and same number of workstations, task assignement is different. This is the case
of alternative B1 B4 B15 B34 B43 (a: B1 B4 assigned to wrkstation 1 then
B15 B34 B43 to 2, b: same but B15 assigned to workstation 1). The second
one concerns solution with the same workstations number and same revenue but
different disassembly alternatives are retained as optimal. Alternatives B1 B6 B8

B20 B34 B43 and B3 B8 B10 B20 B34 B43 with objective value of 71298.5 present
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Fig. 3: Alternatives and disassembly levels returned according to the type of
revenue functions: a Knorr-Bremse EBS 1 Channel Module
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such an example. Furthermore, hazardous tasks are assigned to workstations in
a manner to be, as possible, grouped in the same workstation and as possible
such a workstation is located at the begening of the designed line to minimize
risk of hazardous material accidents and avoid accident risk propagation.

5 Discussion and Conclusion

The disassembly process plays a key role in the recovery of End-of-Life prod-
ucts. It allows, effectively, obtaining components and/or materials that can be
reused or recycled with much more interesting recovery rates. To define effective
disassembly and derive the economic benefits of the disassembly process, prod-
uct quality and task processing times uncertainties must be taken into account.
In order to provide an answer to this expectation, we presented in this work a
decision tool on the disassembly process planning and line design handling the
quality of the products to be disassembled and uncertainty of task times. The
quality of a product is modeled using the Remaining Usage Potential (RUP)
concept. RUP models the amount of use remaining before disassembling a prod-
uct. At the beginning of the operation phase of a product, RUP has a value
of 1; a value 0 of RUP means that the product must undergo a recycling of its
material. The RUP is taken as a random variable with known normal probability
distribution truncated on 0 and 1. Task processing times are also modeled as
random variables with known normal distributions.

To model this problem, a stochastic program along with lower and upper
bounding schemes are developed. The objective is to maximize the profit of
the disassembly line to be designed. This is done by designing a line where
cycle time constraints are jointly satisfied with at least a certain service level,
1 − α, fixed by the decision-maker. Line revenue is calculated as the difference
between the revenue generated by recovered parts (subassemblies, components)
and the line operation cost. The latter includes the workstations operation cost
and additional cost of workstations handling hazardous parts. Subassemblies
and components revenues are defined as functions of the RUP. All the possible
disassembly alternatives of a product and the precedence relationships among
tasks and subassemblies/components are modeled using an and/or graph.

The developed apprach is evaluated and applied to an industrial instance:
Knorr-Bremse EBS 1 Channel Module which represents a real case study, in the
automotive part remanufacturing sector. The results show the applicability of the
developed decision aiding tool in real disassembly context. In fact, the sensibility
of results to the RUP, i.e. product quality, highlights 2 main points. First, the
assessment of the product quality is mandatory for industrial issues, periodically
not just ones, in order to re-optimize the disassembly level if it changes and,
then, re-organize the disassembly line if required. Second, such assessment must
be reliable and accurate. This requirement ensures the confidence in the results
and thus in the industrial decision to be made.

Sensitivity of the results to the revenue leads, for industrial decision maker,
to follow the resale price of the parts and raw materials. Disassembly level op-
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timization should be redone when resale price evolves. The evolution of resale
price is mainly market driven. Indeed, some market intelligence would allow
anticipating resale price.

Finally, the computational time is short enough to give to the decision maker
the opportunity to generate different disassembly alternatives and line configura-
tions depending on the profit expected from the retrieved parts. The profit itself
depends on the quality of the products. This model helps to make a decision
on the disassembly alternative to be retained as disassembly process. Therefore,
the choice between complete or partial disassembly can be made on the basis of
economic arguments.

The modeling process and decision aiding tool presented can be easily adapted
for more real life cases like End of Life Vehicles or Waste Electrical and Elec-
tronic Equipment. Undertaking such case studies is one of our future research
objectives.

References
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