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Introduction

The Rankin-Cohen brackets are well known examples of covariant bi-differential operators (see, e.g., [START_REF] Cohen | Sums involving the values at negative integers of L-functions of quadratic characters[END_REF][START_REF] El Gradechi | The Lie theory of the Rankin-Cohen brackets and allied bi-differential operators[END_REF][START_REF] Peng | Tensor products of holomorphic representations and bilinear differential operators[END_REF][START_REF] Pevzner | Rankin-Cohen brackets and representations of conformal Lie groups[END_REF][START_REF] Zagier | Modular forms and differential operators[END_REF]). They appear in the theory of modular forms as constant coefficients holomorphic bi-differential operators on the upper half-plane in C. Such operators are covariant with respect to representations of the holomorphic discrete series of the Lie group SL(2, R). They even have predecessors, known as transvectants (see, e.g., [START_REF] Olver | Classical Invariant Theory[END_REF]), much used in the classical theory of invariants. The transvectants can be interpreted as constant coefficients bi-differential operators on R covariant with respect to representations of SL(2, R) containing a finite dimensional subrepresentation. More generally, the principal series representations of SL(2, R) are indexed by pairs (λ, ε) ∈ C × {±}. Given two such representations π λ,ε and π µ,η , and given a positive integer N, there exists a family of constant coefficients bidifferential operators B (N ) λ,µ on R which are covariant with respect to (π λ,ε ⊗ π µ,η , π λ+µ+2N,εη ). Moreover, this family depends rationally on the parameters λ and µ. For special values of λ and µ (corresponding to cases where the representations are reducible), they coincide with the Rankin-Cohen brackets or the transvectants.

There are many efforts to study and construct such operators in more general geometric situations (see, e.g., [START_REF] Choie | Rankin-Cohen brackets and invariant theory[END_REF][START_REF] Kobayashi | Differential symmetry breaking operators: I. General theory and F-method[END_REF][START_REF] Kobayashi | Differential symmetry breaking operators: II. Rankin-Cohen operators for symmetric pairs[END_REF][START_REF] Ovsienko | Generalized transvectants, Rankin-Cohen brackets[END_REF][START_REF] Peng | Tensor products of holomorphic representations and bilinear differential operators[END_REF][START_REF] Zhang | Rankin-Cohen brackets, transvectants and covariant differential operators[END_REF]). In this paper, we describe a method for building such operators in the context of Jordan algebras. To be more explicit, let V be a simple real Jordan algebra and denote by Co(V ) its conformal group. It turned out to be more convenient to work with a group G which is locally isomorphic to Co(V ); more precisely, the group G is a twofold covering of the proper conformal group (see Section 6 for details). The group G is a simple Lie group which acts rationally on V. Further, the subgroup P of affine conformal maps is a maximal parabolic subgroup of G and the pair (G, P ) has the following properties :

-the unipotent radical of P is abelian, -P is conjugate to its opposite subgroup P . Conversely, a pair (G, P ) of a simple Lie group G and a parabolic subgroup P satisfying the two above properties is known to be associated to a simple real Jordan algebra. For earlier use of Jordan algebras from this point of view, see, e.g., [START_REF] Barchini | Positivity of zeta distributions and small unitary representations[END_REF][START_REF] Hilgert | Minimal representations via Bessel operators[END_REF][START_REF] Kostant | Jordan algebras and Capelli identities[END_REF][START_REF] Möllers | Minimal representations of conformal groups and generalized Laguerre functions[END_REF][START_REF] Sahi | Unitary Representations on the Shilov Boundary of a Symmetric Tube domain[END_REF][START_REF] Sahi | Jordan algebras and degenerate principal series[END_REF].

The map

V v → n v P ,
where n v is the translation x → x + v, has an open dense image in X := G/P (the big Bruhat cell ).

The characters of P are parametrized by (λ, ε) ∈ C × {±} and we form the corresponding line bundles E λ,ε over X . The natural action of G on the space Γ(E λ,ε ) of smooth sections of E λ,ε gives raise to a smooth representation π λ,ε . These representations constitute the degenerate principal series of G. This compact realization of π λ,ε has another useful realization on functions defined on V, called the non-compact realization.

Let us come to the main result of this paper. Given two representations π λ,ε and π µ,η , we construct a differential operator on X × X , F (λ,ε),(µ,η) : Γ(E λ,ε E µ,η ) -→ Γ(E λ+1,-ε E µ+1,-η ) that is covariant with respect to (π λ,ε ⊗ π µ,η , π λ+1,-ε ⊗ π µ+1,-η ). The operator F (λ,ε),(µ,η) will be called the source operator. To construct covariant bi-differential operators is then easy. Indeed, if we let res to be the restriction map from X ×X to the diagonal {(x, x), x ∈ X } X , then, for any N ∈ N * , the bi-differential operator

B N (λ,ε),(µ,η) := res • F (λ+N -1,ε),(µ+N -1,η) • • • • • F (λ,ε),(µ,η
) is covariant with respect to (π λ,ε ⊗ π µ,η , π λ+µ+2N,εη ). This approach of obtaining covariant bi-differential operators on X from covariant differential operators on X × X is reminiscent of the use of the so-called Ω-process in the classical construction of the transvectants (see [START_REF] Olver | Classical Invariant Theory[END_REF]).

The construction of the source operators F (λ,ε),(µ,η) follows a process that was introduced in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF] when V = R n,0 and G = SO 0 (1, n + 1) and further used in [START_REF] Clerc | Covariant bi-differential operators on matrix space[END_REF] when V = Mat(n, R) and G = SL(2n, R). This approach uses two main ingredients : the first one is the normalized Knapp-Stein operators I λ,ε for the degenerate principal series which intertwines π λ,ε and π 2n r -λ,ε , where n and r denote the dimension and the rank of V , respectively. The second ingredient is an operator M which in the non-compact realization becomes the multiplication operator given by M f (x, y) = det(x -y)f (x, y), x, y ∈ V × V.

Here det is the determinant polynomial of the Jordan algebra V. The operator M has a "universal" intertwining property due to the covariance of det(x -y) under the diagonal action of the group G.

The operator F (λ,ε),(µ,η) corresponds to the following commutative diagram

H (λ,ε),(µ,η)
where H (λ,ε),(µ,η) stands for the space Γ(E λ,ε E µ,η ) of smooth sections of the tensor bundle E λ,ε E µ,η over X × X . The fact that F (λ,ε),(µ,η) is covariant (for the diagonal action of G) is an obvious consequence of its definition. The main difficulty is to show that F (λ,ε),(µ,η) is a differential operator. This is done by working in the non-compact realization of the degenerate principal series π λ,ε . Indeed, there are three steps. The first step is to prove the following main identity 1 (Theorem 3.8).

Theorem A (Main identity). For all (s, ε) and (t, η) in C × {±}, there exists a differential operator D s,t on V × V such that for all (x, y) ∈ V × × V × , we have

det ∂ ∂x - ∂ ∂y • det(x) s,ε det(y) t,η = det(x) s-1,-ε det(y) t-1,-η • D s,t .
The differential operator D s,t has polynomial coefficients in x, y and also in s, t.

The second step uses the Fourier transform F on V . On one hand, the distributions det(x) s,ε , which are defined for Re s large enough, can be extended by analytic continuation in s, yielding a meromorphic family of tempered distributions on V. Their Fourier transforms can be computed using the local Zeta functional equations on V (Theorem 4.2, Theorem 4.4 and Theorem 9.1). On the other hand, let J s,ε be the convolution operator with the distribution det(x) s,ε and denote by E s,t the differential operator with polynomials coefficients on V defined via F • E s,t = D s,t • F. Thus we obtain the following Fourier transform counterpart of Theorem (Theorem 5.1).

Theorem B (Main theorem). For all (s, ε) and (t, η) in C × {±}, we have M • (J s,ε ⊗ J t,η ) = κ(s, t) (J s+1,-ε ⊗ J t+1,-η ) • E -s-n r ,-t-n r , where κ(s, t) is rational function on C × C.

The third step toward the nature of the operator F (λ,ε),(µ,η) is to prove that for generic parameters λ and µ, the local expression of F (λ,ε),(µ,η) in the non-compact setting is equal to E n r -λ, n r -µ , thus establishing that F (λ,ε),(µ,η) is a differential operator. Henceforth we denote E n r -λ, n r -µ by F λ,µ . Many of our proofs (in particular the Fourier transform computations) depend on the type of the simple real Jordan algebra V. However, for two simple real Jordan algebras V 1 and V 2 , which are real forms of the same simple complex Jordan algebra V, the differential operator F λ,µ on V 1 × V 1 and the corresponding one on V 2 × V 2 are nothing but restrictions of a common holomorphic differential operator on V × V. This remark advocates for a more algebraic construction (valid over C) of the objects we have constructed by analytical means.

As suggested by one of the referees, it would be interesting to characterize the source operator F (λ,ε),(µ,η) among all possible differential operators with the same covariance property. We pin down that F (λ,ε),(µ,η) is by no means the unique covariant differential operator from H (λ,ε),(µ,η) into H (λ+1,-ε),(µ+1,-η) . For instance, the differential operator 1 We use the notation, for any a ∈ R * , a s,+ = |a| s and a s,-= sign(a)|a| s .

F (λ,ε),(µ,η) := M • F (λ+1,-ε),(µ+1,-η) • F (λ,ε),(µ,η)
satisfies the same covariance property as F (λ,ε),(µ,η) . However, as F (λ,ε),(µ,η) vanishes on the diagonal of X × X , this try does not lead to any new covariant bi-differential operator. It is likely that F (λ,ε),(µ,η) constructed here is the lowest degree differential operator among all such covariant operators.

Let us describe the content of this paper. After a general formulation of Leibnitz's formula for applying any constant coefficients differential operator to a product of two functions (Section 1) we obtain (in Section 2) the Bernstein identity for det(x) s,ε in each of the four types of simple real Jordan algebras. We then construct (in Section 3) the family of differential operators D s,t by proving the main identity above. In Section 4 we present the delicate Fourier calculations leading to the definition of the differential operators E s,t . They rely heavily on the local Zeta functional equations for a simple real Jordan algebra. Although these functional equations are largely known, some aspects are new, namely the functional equation for det(x) s,-in the non-euclidean split case, the functional equation for det(x) s,± in the euclidean case and the role played by two "new" distributions Z e s and Z o s (see (4.14)). In Section 5 we define the family E s,t and we prove Theorem 2 above. Up to this point, we mostly use classical abelian harmonic analysis. We now shift to semi-simple harmonic analysis. Some facts and results about the conformal group of a simple real Jordan algebra, the associated degenerate principal series, and the corresponding Knapp-Stein operators are presented in Section 6. In Section 7 we establish the covariance property satisfied by the To avoid confusion in the notation, we will apply the following conventional notation for constant coefficients differential operators on a finite dimensional vector space V over F = R or C endowed with an F-bilinear non-degenerate form (• , •) : for P ∈ F[V ], let P ( ∂ ∂x ) to be the uniquely determined constant coefficients differential operator such that P ∂ ∂x e (x,y) (x) = P (y)e (x,y) .

Throughout this section we assume that V is a real finite dimensional vector space endowed with an euclidean inner product (• , •).

Let P(V ) be the space of polynomials on V with real coefficients. Define on P(V ) the Fischer inner product

(P, Q) F = P ∂ ∂x Q (0). (1.1)
It is an euclidean inner product on P(V ) and it satisfies

(P, Q P ) F = P ∂ ∂x P, Q F .
Fix a polynomial Q in P(V ) and let W(Q) be the subspace of P(V ) generated by the partial derivatives of Q. Let = dim W(Q) and choose an orthonormal basis (Q 1 , . . . , Q ) of W(Q). For any 1 ≤ j ≤ , we define Q j by

Q j = Q j ∂ ∂x Q.
Theorem 1.1 (Generalized Leibnitz's formula). For every f, g ∈ C ∞ (V ), we have

Q ∂ ∂x (f g) = j=1 Q j ∂ ∂x f Q j ∂ ∂x g . (1.2)
This formula can be rewritten as

Q ∂ ∂x (f g) = i=1 j=1 Q , Q i Q j F Q i ∂ ∂x f Q j ∂ ∂x g . (1.3) 
Proof. Without loss of generality, we may assume that f and g belong to P(V ). Since the differential operators

Q ∂ ∂x , Q j ∂ ∂x and Q j ∂ ∂x are invariant by translations, it is enough to prove (1.2) at x = 0.
From the definition of the Fischer inner product, we have

Q ∂ ∂x (f g)(0) = (Q , f g) F = f ∂ ∂x Q , g F . Now f ∂ ∂x Q belongs to W(Q), and therefore f ∂ ∂x Q = j=1 a j (f )Q j ,
where

a j (f ) = f ∂ ∂x Q , Q j F = (Q , f Q j ) F = Q j ∂ ∂x Q , f F = (Q j , f ) F = Q j ∂ ∂x f (0). Hence Q ∂ ∂x (f g)(0) = j=1 Q j ∂ ∂x f (0) Q j ∂ ∂x g (0). Now, formula (1.
3) can be obtained from (1.2) by expressing the polynomials Q j in the basis (Q 1 , . . . , Q ). Indeed, since Q j belongs to W(Q), we have

Q j = i=1 Q j , Q i F Q i , with (Q j , Q i ) F = Q j ∂ ∂x Q, Q i F = Q, Q i Q j F .
Therefore (1.3) follows immediately from (1.2).

In the sequel we will need the following formula.

Proposition 1.2. For every f, g, h ∈ C ∞ (V ), we have

Q ∂ ∂x (f gh) = i=1 j=1 k=1 a i,j,k Q i ∂ ∂x f Q j ∂ ∂x g Q k ∂ ∂x h , (1.4) 
where

a i,j,k = =1 Q, Q i Q F Q , Q j Q k F .
Proof. This is a direct consequence of Theorem 1.1 where formula (1.3) is used twice.

2. The Bernstein identity for det(x) s,ε

2.1. Background on simple real Jordan algebras. We will recall first some preliminary results on simple real Jordan algebras and fix notation. For more details we refer the reader to [START_REF] Bertram | The geometry of Jordan and Lie structures[END_REF]5,[START_REF] Faraut | Analysis on symmetric cones[END_REF][START_REF] Helwig | Halbeinfache reelle Jordan-Algebren[END_REF][START_REF] Loos | Bounded symmetric domains and Jordan pairs[END_REF]. Let V be a n-dimensional real Jordan algebra with unit element 1 and of rank r (see Appendix B). Denote by L(x) ∈ End(V ) the multiplication by x ∈ V and let P (x) be the quadratic operator defined by

P (x) := 2L(x) 2 -L(x 2 ).
(2.1)

The Jordan trace tr is a linear form on V and the Jordan determinant det is a homogeneous polynomial on V of degree r. In particular, they satisfy tr(1) = r and det(1) = 1.

A real Jordan algebra V is called semisimple if the symmetric bilinear form

(x, y) := tr(xy) (2.2) is non-degenerate on V × V . If in addition V has no non-trivial ideal, then V is called simple. If the bilinear form (• , •) is positive definite, then V is called euclidean Jordan algebra.
Throughout this paper, we assume that V is simple. An involutive automorphism α of V is called Cartan involution of V if the symmetric bilinear form

x, y := (α(x), y)

(2.3)
is positive definite. For every simple Jordan algebra such a Cartan involution always exists and two Cartan involutions are conjugate by an automorphism of V (see [START_REF] Helwig | Halbeinfache reelle Jordan-Algebren[END_REF]). With respect to the involution α, the following orthogonal decomposition holds

V = V + ⊕ V -,
where

V + := {x ∈ V ; α(x) = x} and V -:= {x ∈ V ; α(x) = -x}.
The eigenspace V + is always a euclidean Jordan subalgebra of V with the same unit element 1. Notice that when V is euclidean then V + = V and V -= {0}. Denote by n + and r + the dimension and the rank of V + , respectively. An element c ∈ V is said to be idempotent if c 2 = c. Two idempotents c 1 and c 2 are called orthogonal if c 1 c 2 = 0. A non-zero idempotent is called primitive if it cannot be written as the sum of two non-zero orthogonal idempotents.

Every set {c 1 , . . . , c k } of orthogonal primitive idempotents in V + with the additional con- [START_REF] Faraut | Analysis on symmetric cones[END_REF]Theorem III.1.2] the cardinal of a Jordan frame is always equal to the rank r + of V + and every two Jordan frames are conjugate by an automorphism of V + (see [START_REF] Faraut | Analysis on symmetric cones[END_REF]Corollary IV.2.7]).

dition c 1 + • • • + c k = 1 is called a Jordan frame in V + . By
Fix a Jordan frame {c 1 , . . . , c r + } in V + . By [START_REF] Faraut | Analysis on symmetric cones[END_REF]Proposition III.1.3] the spectrum of the multiplication operator L(c k ) by c k is {0, 1 2 , 1}. Further, the operators L(c 1 ), . . . , L(c r + ) commute and therefore are simultaneously diagonalizable. This yields the following Peirce decomposition

V = 1≤i≤j≤r + V ij , (2.4) 
where

V ii := V (c i , 1), 1 ≤ i ≤ r + , V ij := V (c i , 1 2 ) ∩ V (c j , 1 2 ), 1 ≤ i < j ≤ r + .
Here V (c, λ) denotes the eigenspace of L(c) corresponding to the eigenvalue λ. Since the operators L(c k ), for 0 ≤ k ≤ r + , are symmetric with respect to the inner product (2.3), the direct sum (2.4) is orthogonal. Denote by d the common dimension of the subspaces V ij (i < j) and by e + 1 the common dimension of the subalgebras V ii . Then, the dimension n of V satisfies

n = r + (e + 1) + d 2 r + (r + -1).
The Jordan algebra V is called split if V ii = Rc i for every 1 ≤ i ≤ r + (equivalently e = 0), otherwise V is called non-split. By [START_REF] Helwig | Halbeinfache reelle Jordan-Algebren[END_REF], if V is split then r = r + , otherwise r = 2r + . We pin down that every euclidean Jordan algebra is split. There is a classification of simple real Jordan algebra given in [START_REF] Helwig | Halbeinfache reelle Jordan-Algebren[END_REF] (see also [START_REF] Hilgert | Minimal representations via Bessel operators[END_REF][START_REF] Loos | Bounded symmetric domains and Jordan pairs[END_REF]). We refer the reader to Appendix A for the complete list. More precisely, we have four types of Jordan algebras : Type I : V is euclidean. Type II : V is split non-euclidean. Type III : V is non-split with no complex structure. Type IV : V is non-split with a complex structure. Notice that every simple real Jordan algebra is either :

(i) a real form of a simple complex Jordan algebra (type I, II, III); or (ii) a simple complex Jordan algebra viewed as a real one (type IV). When V is a simple real Jordan algebras, the integers n, r, d and e are called the structure constants of V . When dealing with a simple Jordan algebra over C we use the symbol V and we denote by n, r and d its structure constants (over C).

Below we will establish the Bernstein identity for det(x) s,ε , which takes slightly different forms depending on the type of the Jordan algebra.

We first assume that V is a euclidean Jordan algebra and we recall from [START_REF] Faraut | Analysis on symmetric cones[END_REF] the Bernstein identity on the symmetric cone Ω := {x 2 ; x ∈ V × }. We then use it to give the Bernstein identity for a simple complex Jordan algebra which is essentially obtained by a holomorphic extension. This formula is the key ingredient to get the Bernstein identity on the set of invertible elements in each of the four types of simple real Jordan algebras.

2.2. The Bernstein identity for symmetric cones. Let V be a simple euclidean Jordan algebra and let Ω be the associated symmetric cone (we refer to [START_REF] Faraut | Analysis on symmetric cones[END_REF] for more details on euclidean Jordan algebras). Throughout this paper, when V is a euclidean Jordan algebra we will denote its Jordan determinant by ∆. Notice that ∆(x) > 0 for all x ∈ Ω.

For k, l ∈ N, let b k,l be the polynomial defined by

b k,l (s) = s s + l 2 . . . s + (k -1) l 2 .
(2.5)

Proposition 2.1 (see [START_REF] Faraut | Analysis on symmetric cones[END_REF]Proposition VII.1.4]). For s ∈ C and x ∈ Ω, we have

∆ ∂ ∂x ∆(x) s = b r,d (s)∆(x) s-1 . (2.6)
2.3. The Bernstein identity for a complex Jordan algebra. Let V be a simple complex Jordan algebra. Then V has a simple euclidean real form V . The structure constants n, r and d of V (viewed as a complex Jordan algebra) coincide with the structure constants n, r and d of V (see Appendix B). As above, we will denote the Jordan determinant of V by ∆.

Then the Jordan determinant of V is the holomorphic extension of ∆, still denoted by ∆ (see Appendix B). Let V × := {z ∈ V; ∆(z) = 0} be the open set of invertible elements in V.

Proposition 2.2. For s ∈ C and for z ∈ V × , we have

∆ ∂ ∂z ∆(z) s = b r,d (s)∆(z) s-1 , (2.7) 
where the powers of ∆ are computed using a local branch of log ∆ near z.

Proof. Let z 0 ∈ V × . The subset V × being pathwise-connected, it is possible to choose a simply connected neighborhood

O 0 ⊂ V × of z 0 such that O 0 ∩ Ω = ∅.
Here Ω denotes the symmetric cone in V . By analytic continuation, there is a branch of log ∆(z) on O 0 which coincides with ln ∆(x) on O 0 ∩ Ω. For s ∈ C and z ∈ O 0 , use this branch to define ∆(z) s by ∆(z) s = e s log ∆(z) . On O 0 ∩ Ω, (2.7) reduces to (2.6). Now, both hand sides of (2.7) are holomorphic functions on O 0 . As they coincide on O 0 ∩ Ω, they have to coincide on O 0 and in particular at z 0 . Since z 0 was arbitrary chosen in V × , the conclusion follows. Needless to say, if the identity is valid for one local branch of log ∆(z), then it is true for any local branch.

2.4. The Bernstein identity for a real Jordan algebra of type IV. Let V be a simple complex Jordan algebra and denote by ∆ its Jordan determinant. Viewed as a simple real Jordan algebra, its Jordan determinant det satisfies

det(z) = ∆(z)∆(z).
Denote by n, r and d the structure constants of V viewed as a complex Jordan algebra and let n, r, d and e be the structure constants of V viewed as a real Jordan algebra. Then, n = 2n, r = 2r, d = 2d and e = 1.

Proposition 2.3. For s ∈ C and for z ∈ V × , we have

∆ ∂ ∂z ∆ ∂ ∂z det(z) s = b r,d (s) 2 det(z) s-1 . (2.8) 
Proof. As det(z) > 0 on V × , then det(z) s is well defined. For any local branch of log ∆(z), we have ∆(z) s ∆(z) s = det(z) s .

First apply the holomorphic differential operator ∆ ∂ ∂z to this equality using (2.7). Then apply the conjugate holomorphic operator ∆ ∂ ∂z to get (2.8).

2.5. The Bernstein identity for a real Jordan algebra of type I or II. Let V be a split simple real Jordan algebra (either euclidean or non-euclidean, see Appendix A). Then its complexification V is a simple complex Jordan algebra. Let ∆ be the determinant of V.

In this case, the determinant det of V (which is the restriction of ∆ to V ) takes both positive and negative values. Hence we introduce on V × the two expressions det(x) s,+ and det(x) s,- using the convention that for ξ ∈ R * and s ∈ C,

ξ s,ε = |ξ| s for ε = + sign(ξ)|ξ| s for ε = - (2.9)
The relation between the structure constants of V and V is given by r = r, n = n and d = d.

Proposition 2.4. For (s, ε) ∈ C × {±} and for x ∈ V × , we have

det ∂ ∂x det(x) s,ε = b r,d (s)det(x) s-1,-ε .
(2.10)

Proof. Let x 0 ∈ V × and assume first that det(x 0 ) = ∆(x 0 ) > 0. Let Log z be the principal branch of the logarithm function over C (-∞, 0]. Then, for z in a small neighborhood of x 0 in V × , we may choose Log ∆(z) as a branch of log ∆(z), and therefore

det(x) s,ε = ∆(x) s , det(x) s-1,-ε = ∆(x) s-1 ,
for all x ∈ V × close to x 0 . Hence, on a small neighborhood of x 0 , the identity (2.10) follows from (2.7). We now assume that det(x 0 ) < 0. For z in a neighborhood of x 0 in V, we choose Log(-∆(z)) + π √ -1 as a local branch of log ∆(z). Then, for x ∈ V × close to x 0 , we have

∆(x) s = |det(x)| s e sπ √ -1 , ∆(x) s-1 = |det(x)| s-1 e (s-1)π √ -1 .
Therefore,

det(x) s,ε = e -sπ √ -1 ∆(x) s for ε = + e (-s+1)π √ -1 ∆(x) s for ε = - and det(x) s-1,-ε = e -sπ √ -1 ∆(x) s-1 for ε = + e -(s-1)π √ -1 ∆(x) s-1 for ε = -
Hence, on a small neighborhood of x 0 , the identity (2.10) follows from (2.7). As x 0 was chosen arbitrary in V × , the conclusion holds true for every x ∈ V × .

2.6. The Bernstein identity for a real Jordan algebra of type III. Let V be a nonsplit simple real Jordan algebra without complex structure and let det be its determinant. Then its complexification V is a simple complex Jordan algebra and we denote by ∆ its determinant. In this case, det(x) = ∆(x) ≥ 0 for all x ∈ V (see Appendix B), n = n, r = r and d = 1, 2, k -2 (k ≥ 2) in accordance with d = 4, 8, 0 (see Appendix A).

Proposition 2.5. Let s ∈ C and x ∈ V × , we have

det ∂ ∂x det(x) s = b r,d (s) det(x) s-1 .
(2.11)

Proof. Let x 0 ∈ V × . Then ∆(x 0 ) = det(x 0 ) > 0, so that Re ∆(z) > 0 for all z in a small neighborhood of x 0 in V × . Hence we may use Log ∆(z) as a local branch of log det(z) near x 0 . For this choice of branch and for x near x 0 , we have

∆(x) s = det(x) s ,
and therefore (2.11) follows from (2.7).

Construction of the family of differential operators D s,t

3.1. Construction for symmetric cones. Assume that V is a simple euclidean Jordan algebra with symmetric cone Ω and structure constants n, r and d. As above, ∆ will denote the determinant polynomial of V and let P(V ) be the space of real-valued polynomials on V.

Consider the subspace W(∆) of P(V ) generated by the partial derivatives of ∆ (see Section 1). Let Str(V ) be the structure group of V defined by

Str(V ) = g ∈ GL(V ); (gx) -1 = (g -1 ) T (x -1 ) for all x ∈ V × ,
where (g -1 ) T denotes the adjoint of g -1 with respect to the trace form (2.2). The group Str(V ) acts on the space P(V ) by

π(g)p = p • g -1 , g ∈ Str(V ).
The space W(∆) is invariant under this action of Str(V ). The representation π (or more precisely its complex extension) was studied in [START_REF] Faraut | Pseudo-Hermitian symmetric spaces of tube-type[END_REF] showing that it is multiplicity free and producing its explicit irreducible decomposition. Fix a Jordan frame {c 1 , . . . , c r } of V and let ∆ 1 , . . . , ∆ r = ∆ be the associated principal minors on V (see [12, page 114] for the definition of ∆ k ). For convenience, we will introduce the notation ∆ 0 = 1. For 0 ≤ k ≤ r, we denote by W(∆ k ) the subspace of P(V ) generated by π(g)∆ k , for g ∈ Str(V ). By [START_REF] Faraut | Pseudo-Hermitian symmetric spaces of tube-type[END_REF]Proposition 6.1], the subspaces W(∆ k ) are absolutely irreducible under the above action of Str(V ).

For p ∈ W(∆), denote by p # the function defined on V × by

p # (x) = p(x -1 )∆(x),
which extends as a polynomial function on V .

Proposition 3.1 (see [START_REF] Faraut | Analysis on symmetric cones[END_REF]Proposition XI.5.1]). For all p ∈ W(∆ k ), we have

p ∂ ∂x ∆(x) s = b k,d (s) p # (x) ∆(x) s-1 , x ∈ Ω (3.1)
where b k,d (s) is given by (2.5).

Let k = dim W(∆ k ) and choose a basis {Q j,k , 1 ≤ j ≤ k } of W(∆ k )
which is orthonormal for the Fischer inner product (1.1). In the present context, the Leibnitz formula (1.4) takes the following form (with Q = ∆). Proposition 3.2. Let f, g, h ∈ C ∞ (V ). Then there exist real numbers a l,m,n i,j,k such that

∆ ∂ ∂x (f gh) = l,m,n∈N l+m+n=r l i=1 m j=1 n k=1 a l,m,n i,j,k Q i,l ∂ ∂x f Q j,m ∂ ∂x g Q k,n ∂ ∂x h .
The vector space V × V is naturally endowed with an inner product, and so is the vector space P(V × V ) of polynomial functions on V × V. To every P ∈ P(V × V ) we associate a differential operator P ∂ ∂x , ∂ ∂y . When P is given by P

(x, y) = Q(x -y), with Q ∈ P(V ), we use the notation P ∂ ∂x , ∂ ∂y = Q ∂ ∂x -∂ ∂y .
Theorem 3.3. For any s, t ∈ C, there exists a differential operator D s,t on V × V such that for any smooth function f on Ω × Ω, we have

∆ ∂ ∂x - ∂ ∂y ∆(x) s ∆(y) t f (x, y) = ∆(x) s-1 ∆(y) t-1 (D s,t f ) (x, y). (3.2)
The operator D s,t has polynomial coefficients in x, y and in s, t.

Proof. Let ϕ and ψ be two functions so that

ϕ(u, v) = ψ(u, v -u) or equivalently ϕ(x, x + y) = ψ(x, y), where (u, v) ∈ {(u, v) ∈ V × V ; u ∈ Ω, v -u ∈ Ω} or equivalently (x, y) ∈ Ω × Ω.
Then, by change of variables, we have

∆ ∂ ∂x - ∂ ∂y ψ(x, y) = ∆ ∂ ∂u ϕ(u, v) u=x, v=x+y . Assume that ψ(x, y) = ∆(x) s ∆(y) t f (x, y). Then ϕ(u, v) = ∆(u) s ∆(v -u) t f (u, v -u). Fix v ∈ V such that Ω ∩ (v -Ω) = ∅. Applying (a local version of) Proposition 3.2 on the open set Ω ∩ (v -Ω), we get ∆ ∂ ∂u ∆(u) s ∆(v -u) t f (u, v -u) = r l=0 l i=1 P i,l (u, v; s, t) Q i,l ∂ ∂u f (u, v -u),
where

P i,l (u, v; s, t) = m,n≥0 m+n=r-l m j=1 n k=1 a l,m,n i,j,k Q j,m ∂ ∂u ∆(u) s Q k,n ∂ ∂u ∆(v -u) t . Since Q k,n ∂ ∂u ∆(v -u) t = (-1) n Q k,n ∂ ∂u ∆( • ) t (v -u), it follows from (3.1) that Q j,m ∂ ∂u ∆(u) s Q k,n ∂ ∂u ∆(v -u) t = (-1) n b m,d (s)b n,d (t)∆(u) s-1 ∆(v -u) t-1 Q # j,m (u) Q # k,n (v -u). The final formula (3.
2) is now a matter of putting the pieces together.

3.2. Extension of D s,t to complex Jordan algebras. Let V be a simple complex Jordan algebra and let V be a euclidean real form of V. The differential operator D s,t constructed in Theorem 3.3 has a natural extension to V × V as a holomorphic differential operator D s,t by extending holomorphically the polynomial coefficients of D s,t to V × V and by replacing ∂ ∂x and ∂ ∂y in D s,t by ∂ ∂z and ∂ ∂w , respectively.

Theorem 3.4. For any smooth function f on V × × V × , we have

∆ ∂ ∂z - ∂ ∂w ∆(z) s ∆(w) t f (z, w) = ∆(z) s-1 ∆(w) t-1 (D s,t f ) (z, w), (3.3) 
where the powers of ∆ are computed with respect to a (any) local branch of log ∆( . ) near z and near w.

Proof. To prove this equality between two holomorphic differential operators, it is enough to prove the equality for a holomorphic function f on V × × V × . But then, arguing as in the proof of (2.7), the equality follows from Theorem 3.3 by analytic continuation.

3.3.

The construction of D s,t for a real Jordan algebra of type IV. Let V be a simple complex Jordan algebra for which we keep the same notation as in the previous subsection.

In particular, ∆ denotes its determinant. When V is viewed as a simple real Jordan algebra V, its determinant polynomial is given by det(z) = ∆(z)∆(z). Below D s,t denotes the conjugate-holomorphic differential operator of D s,t in Theorem 3.4.

Theorem 3.5. For any smooth function f defined on

V × × V × , we have det ∂ ∂z - ∂ ∂w det(z) s det(w) t f (z, w) = det(z) s-1 det(w) t-1 D s,t D s,t f (z, w). (3.4)
Proof. We argue as in the proof of (2.8). Indeed, Theorem 3.4 establishes an equality between two holomorphic differential operators. Compose each side with its conjugate differential operator and then use the fact that a holomorphic differential operator commutes with its conjugate-holomorphic differential operator to obtain (3.4).

3.4.

The construction of D s,t for a real Jordan algebra of type I or II. Let V be a euclidean or a split non-euclidean Jordan algebra (see Appendix A). Then its complexification V is a simple complex Jordan algebra. Let D = P z, ∂ ∂z be a holomorphic differential operator on V. Then, its restriction to V is the differential operator D = P (x, ∂ ∂x ). We extend this notation to differential operators on V × V . Theorem 3.6. For any smooth function f on V × × V × , we have

det ∂ ∂x - ∂ ∂y det(x) s,ε det(y) t,η f (x, y) = det(x) s-1,-ε det(y) t-1,-η (D s,t f )(x, y). (3.5)
Proof. To prove an equality between two differential operators, it is enough to prove it on the set of polynomial functions. Hence, we may assume that f is the restriction to V × × V × of a holomorphic polynomial function on V × V. We now argue as in the proof of (2.10) to deduce (3.5) from Theorem 3.4.

3.5.

The construction of D s,t for a real Jordan algebra of type III. Let V be a nonsplit simple real Jordan algebra without complex structure. Then its complexification V is a simple complex Jordan algebra. There exists a holomorphic differential operator D s,t on V × V as in Theorem 3.5. Let D s,t be its restriction to V × V.

Theorem 3.7. For any smooth function f on V × × V × , we have

det ∂ ∂x - ∂ ∂y det(x) s det(y) t f (x, y) = det(x) s-1 det(y) t-1 D s,t f (x, y). (3.6)
Proof. The proof goes along the same lines as that of the Bernstein identity (2.11).

3.6. General formulation of the main identity. In summary we have proved the following statement.

Theorem 3.8 (Main identity). Let V be a simple real Jordan algebra V . For (s, ε) and (t, η) in C × {±}, there exists a differential operator D s,t on V × V such that for any smooth function

f on V × × V × , det ∂ ∂x - ∂ ∂y det(x) s,ε det(y) t,η f (x, y) = det(x) s-1,-ε det(y) t-1,-η (D s,t f )(x, y).
The differential operator D s,t has polynomial coefficients in x, y and in s, t.

Local Zeta functional equations

Let V be a simple real Jordan algebra. Let S(V ) be the space of rapidly decreasing smooth functions on V and let S (V ) be its dual, the space of tempered distributions on V.

For (s, ε) ∈ C × {±}, we consider the following local Zeta integrals

Z s,ε (f ) = V f (x)det(x) s,ε dx, f ∈ S(V ), (4.1) 
where dx is the Lebesgue measure on V associated to the non-degenerate bilinear form (2.2), and det(x) s,ε is defined by (2.9). For s ∈ C with Re s > 0, the function |det(x) s,ε | is locally integrable on V . Therefore, (4.1) defines a tempered distribution on S(V ). When ε = +, it is known that the S (V )-valued function s -→ Z s,+ extends to a meromorphic function on C (see, e.g., [START_REF] Faraut | Analysis on symmetric cones[END_REF] for the euclidean case, [START_REF] Barchini | Positivity of zeta distributions and small unitary representations[END_REF] for the non-euclidean case except R p,q and [13] for R p,q ). Suppose now ε = -. When V is non-split, i.e. V of type III or IV, then det(x) is nonnegative on V and therefore Z s,-= Z s,+ . Thus, we may omit the index ± in the notation. When V is split, i.e. V of type I or II, the meromorphic extension of Z s,-can be deduced from the Bernstein identity (2.10) for the split case.

Below we will compute the Fourier transform of the distributions Z s,ε . It is a classical subject in the literature under the name of local Zeta functional equations (see, e.g., [START_REF] Barchini | Positivity of zeta distributions and small unitary representations[END_REF][START_REF] Bopp | Local zeta functions attached to the minimal spherical series for a class of symmetric spaces[END_REF][START_REF] Kayoya | Zeta functional equation on Jordan algebras of type II[END_REF][START_REF] Muller | Décomposition orbitale des espaces préhomognes réguliers de type parabolique commutatif et application[END_REF][START_REF] Satake | The functional equation of zeta distributions associated with formally real Jordan algebras[END_REF][START_REF] Sato | On zeta functions associated with prehomogeneous vector spaces[END_REF]).

Below we will identify the dual space V of V with V via the bilinear form (2.2). The Fourier transform of f ∈ S(V ) is defined by

F(f )(x) = f (x) = V e 2π √ -1(x,y) f (y)dy, (4.2) 
and extend it by duality to the space S (V ) of tempered distributions. For P ∈ P(V ), we recall the following classical formulas:

F P ∂ ∂x f (x) = P -2π √ -1x F(f )(x), F (P f ) (x) = P 1 2π √ -1 ∂ ∂x F(f )(x). (4.3)
4.1. Zeta functional equations for a non-euclidean Jordan algebra except R p,q . In this subsection, the Jordan algebra V is one of type II, III or IV except R p,q . The case V = R p,q will be treated in Section 9.

Recall from above that the determinant polynomial det takes only positive values whenever V of type III or IV (V is non-split), while det takes positive as well as negative values whenever V of type II (V is split). Recall also that r + denotes the split rank of V , and therefore r = r + if V is split and r = 2r

+ if V is non-split; see Subsection 2.1. For s ∈ C, let Γ V (s) := r + k=1 Γ s 2 - d 4 (k -1) . (4.4)
In [START_REF] Barchini | Positivity of zeta distributions and small unitary representations[END_REF]Theorem 4.4] the functional equation below has been proved for non-euclidean Jordan algebras except R p,q . The relationship between det and the symbol ∇ in [START_REF] Barchini | Positivity of zeta distributions and small unitary representations[END_REF] is given by |det| = ∇ whenever V is split and |det| = ∇ 2 whenever V is non-split. Theorem 4.1. For every s ∈ C, the Fourier transform of the tempered distribution Z s,+ is given by

F(Z s,+ ) =        π -rs-n 2 Γ V s + n r Γ V (-s) Z -s-n r ,+ for Type II ∼ = R p,q , π -rs-n 2 Γ V 2s + 2n r Γ V (-2s) Z -s-n r ,+ for Type III or IV. (4.5) 
Now let us consider the case ε = -. Recall that when V of type III or IV, then Z s,-= Z s,+ .

Theorem 4.2. Assume that V of Type II ∼ = R p,q . We have

F(Z s,-) = ( √ -1) r π -rs-n 2 Γ V (s + 1 + n r ) Γ V (-s + 1) Z -s-n r ,-.
Proof. Recall from the Bernstein identity (2.10) that

2 det(x) s,-= 1 b r,d (s + 1) det ∂ ∂x det(x) s+1,+ .
In view of (4.3) and the functional equation (4.5) for Z s,+ , we obtain

F(Z s,-) = 1 b r,d (s + 1) det(-2π √ -1x)F(Z s+1,+ ) = (-2π √ -1) r b r,d (s + 1) π -r(s+1)-n 2 Γ V (s + 1 + n r ) Γ V (-s -1) det(x)Z -s-1-n r ,+ = (-2 √ -1) r π -rs-n 2 b r,d (s + 1) Γ V (s + 1 + n r ) Γ V (-s -1) Z -s-n
In summary we have

F(Z s,ε ) = c(s, ε) Z -s-n r ,ε , (4.6) 
where

c(s, ε) =                π -rs-n 2 Γ V s + n r Γ V (-s) if ε = + and V of type II ∼ = R p,q , ( √ -1) r π -rs-n 2 Γ V (s + 1 + n r ) Γ V (-s + 1) if ε = -and V of type II ∼ = R p,q , π -rs-n 2 Γ V 2s + 2n r Γ V (-2s) if ε = ± and V of type III or IV. (4.7) Remark 4.3. One can prove that the S (V )-valued function s -→ Z s,ε := c(s, ε) -1 Z s,ε , where c(s, ε) =      Γ V (s + n r ) if ε = + and V of type II ∼ = R p,q , Γ V (s + 1 + n r ) if ε = -and V of type II ∼ = R p,q , Γ V (2s + 2n r ) if ε = ± and V of type III or IV,
admits an analytic continuation as entire function of s in C. The case ε = + goes back to [START_REF] Barchini | Positivity of zeta distributions and small unitary representations[END_REF].

4.2. Zeta functional equations for euclidean Jordan algebras. Let V be a simple euclidean Jordan algebra (that is V of type I) with structure constants n, r, d, and denote as usual by ∆ its determinant. Let {c 1 , . . . , c r } be a Jordan frame of V. It is known (see for instance [START_REF] Faraut | Analysis on symmetric cones[END_REF]) that every x ∈ V can be written as

x = k r j=1 λ j c j , (4.8) 
where λ 1 ≥ • • • ≥ λ r and k is an element of the identity component of the group of automorphisms of V. The λ j 's in (4.8) are uniquely determined by x. Further, x is invertible if and only if λ j = 0 for all j. We say that x is of signature (r

-i, i) if λ 1 ≥ • • • ≥ λ r-i > 0 > λ r-i+1 ≥ • • • ≥ λ r .
Denote by Ω i the set of elements in V of signature (r -i, i). Then the set of invertible elements V × decomposes into the disjoint union as

V × = r i=0 Ω i .
Notice that Ω 0 coincides with the symmetric cone Ω of V.

For s ∈ C, let Γ Ω (s) = (2π) n-r 2 r j=1 Γ s - d 2 (j -1)
be the Gindikin gamma function.

For s ∈ C and f ∈ S(V ), the Zeta integrals Z i (f, s) defined by

Z i (f, s) = Ω i f (x)|∆(x)| s dx, 0 ≤ i ≤ r
converge for Re s > 0 and admit a meromorphic continuation to C. Further, they satisfy the functional equation

Z i ( f , s - n r ) = (2π) -rs e rs 2 Γ Ω (s) r j=0 u ij (s)Z j (f, -s), (4.9) 
where u ij (s) are polynomials in e (-s/2) with e(z) := e 2π √ -1z ; see [START_REF] Satake | The functional equation of zeta distributions associated with formally real Jordan algebras[END_REF][START_REF] Sato | On zeta functions associated with prehomogeneous vector spaces[END_REF]. Put x = e(-s/2) and write u ij (x) for u ij (s). It is proved in [START_REF] Satake | The functional equation of zeta distributions associated with formally real Jordan algebras[END_REF] that the matrix coefficients

u ij (x) satisfy r i=0 y i u ij (x) = ξ -(r-j) P j (ξx, y)P r-j (1, ξxy), ∀y ∈ R (4.10)
where ξ := ( √ -1) d(r+1) and

P j (x, y) = (x + y) j if d is even, (x + y) j 2 (y -x) j-j 2 if d is odd. (4.11)
Recall that if x ∈ Ω i , then x is of signature (r -i, i) and therefore ∆(x) = (-1) i |∆(x)|. Thus we may rewrite the local Zeta integrals (4.1) in terms of the Z i 's as follows

Z s,+ (f ) = V f (x)|∆(x)| s dx = r i=0 Z i (f, s), Z s,-(f ) = V f (x)sgn(∆(x))|∆(x)| s dx = r i=0 (-1) i Z i (f, s). (4.12) That is Z s,+ (f ) = r 2 k=0 Z 2k (f, s) + r-1 2 k=0 Z 2k+1 (f, s), Z s,-(f ) = r 2 k=0 Z 2k (f, s) - r-1 2 k=0 Z 2k+1 (f, s). (4.13) 
Let us introduce two more tempered distributions :

Z e s (f ) := r 2 k=0 (-1) k Z 2k (f, s) and Z o s (f ) := r-1 2 k=0 (-1) k Z 2k+1 (f, s). (4.14) 
We are now in a position to examine the functional equations for Z s,+ and Z s,-.

According to the classification of simple euclidean Jordan algebras (see [START_REF] Faraut | Analysis on symmetric cones[END_REF][START_REF] Satake | The functional equation of zeta distributions associated with formally real Jordan algebras[END_REF] or Appendix A), we will consider the following (all) possibilities : 

F Z s,+ Z s,- = 2 r γ(s + n r )A(s) Z -s-n r ,+ Z -s-n r ,- , where 
A(s) =   cos r ( π 2 (s + n r )) 0 0 ( √ -1) r sin r ( π 2 (s + n r ))   .
Case (a ): If d ≡ 2 (mod 4) and r even, then

F Z s,+ Z s,- = 2 r γ(s + n r )A(s) Z -s-n r ,+ Z -s-n r ,- , where 
A(s) =   ( √ -1) r sin r ( π 2 (s + n r )) 0 0 cos r ( π 2 (s + n r ))   .
Case (b -1): If d ≡ 1 (mod 4) and r = 2, then

F Z s,+ Z s,- = 4 √ 2γ(s + n r )A(s) Z -s-n r ,+ Z -s-n r ,- , (4.15) 
where

A(s) =    sin( π 2 (s + n + 1 2 )) cos( π 2 (s + n 2 )) -sin( π 2 (s + n + 1 2 )) sin( π 2 (s + n 2 )) cos( π 2 (s + n + 1 2 )) cos( π 2 (s + n 2 )) cos( π 2 (s + n + 1 2 )) sin( π 2 (s + n 2 ))    .
Case (b -2): If d ≡ 3 (mod 4) and r = 2, then

F Z s,+ Z s,- = 4 √ 2γ(s + n r )A(s) Z -s-n r ,+ Z -s-n r ,- , where 
A(s) =    cos( π 2 (s + n + 1 2 )) cos( π 2 (s + n 2 )) cos( π 2 (s + n + 1 2 )) sin( π 2 (s + n 2 )) sin( π 2 (s + n + 1 2 )) cos( π 2 (s + n 2 )) -sin( π 2 (s + n + 1 2 )) sin( π 2 (s + n 2 ))    .
Case (c -1): If d = 1 and r ≡ 0 (mod 4), then

F Z s,+ Z s,- = 2 r-1 2 e √ -1 π 4 γ(s + n r ) cos r 2 (π(s + n r ))A(s) Z -s-n r ,+ Z -s-n r ,- , where 
A(s) = - √ -1 1 1 - √ -1 .
Case (c -2): If d = 1 and r ≡ 1 (mod 4), then

F Z s,+ Z s,- = (-2 √ -1) r 2 γ(s + n r ) sin r 2 (π(s + n r ))B(s) Z e -s-n r Z o -s-n r , where 
B(s) =   cos( π 2 (s + n r )) cos( π 2 (s + n r )) √ -1 sin( π 2 (s + n r )) - √ -1 sin( π 2 (s + n r ))   .
Case (c -3): If d = 1 and r ≡ 2 (mod 4), then

F Z s,+ Z s,- = 2 r-1 2 e √ -1 π 4 γ(s + n r ) cos r 2 (π(s + n r ))A(s) Z -s-n r ,+ Z -s-n r ,- , where 
A(s) = 1 - √ -1 - √ -1 1 .
Case (c -4): If d = 1 and r ≡ 3 (mod 4), then

F Z s,+ Z s,- = -(-2 √ -1) r 2 γ(s + n r ) sin r 2 (π(s + n r ))B(s) Z e -s-n r Z o -s-n r , (4.16) 
where

B(s) =   √ -1 sin( π 2 (s + n r )) - √ -1 sin( π 2 (s + n r )) cos( π 2 (s + n r )) cos( π 2 (s + n r ))   .
Proof. Recall from above the notation x = e (-s/2). In view of (4.12) and (4.9) we have

Z s-n r ,+ ( f ) = (2π) -rs e rs 2 Γ Ω (s) r j=0 r i=0 u ij (x) Z j (f, -s), (4.17) 
and

Z s-n r ,-( f ) = (2π) -rs e rs 2 Γ Ω (s) r j=0 r i=0 (-1) i u ij (x) Z j (f, -s). (4.18) 
We will use (4.10) to compute r i=0 u ij (x) and r i=0 (-1) i u ij (x) for fixed j, 0 ≤ j ≤ r. Recall from above that ξ = ( √ -1) d(r+1) , which reduces to

ξ =          1 in case (a) -1 in case (a ) ( √ -1) 3d in case (b) ( √ -1) r+1 in case (c).
Case (a): Assume that d ≡ 0 (mod 4) or d ≡ 2 (mod 4) and r is odd. In this case

r i=0 u ij (x) = (x + 1) j (1 + x) r-j = (1 + x) r = 2 r e - rs 4 cos r πs 2 ,
and

r i=0 (-1) i u ij (x) = (x -1) j (1 -x) r-j = (-1) j (1 -x) r = (-1) j (2 √ -1) r e - rs 4 sin r πs 2 .
Hence (4.17) and (4.18) become, respectively,

Z s-n r ,+ ( f ) = 2 r (2π) -rs e rs 4 cos r πs 2 Γ Ω (s)Z -s,+ (f ),
and

Z s-n r ,-( f ) = (2 √ -1) r (2π) -rs e rs 4 sin r πs 2 Γ Ω (s)Z -s,-(f ).
Case (a ): Assume that d ≡ 2 (mod 4) and r is even. In this case,

r i=0 u ij (x) = (-1) -(r-j) (-x + 1) j (1 -x) r-j = (-1) j (1 -x) r = (-1) j (2 √ -1) r e - rs 4 sin r πs 2 ,
and

r i=0 (-1) i u ij (x) = (-1) -(r-j) (-x -1) j (1 + x) r-j = (1 + x) r = 2 r e - rs 4 cos r πs 2 .
Then, by (4.17 

y i u ij (x) =      1 + x 2 y 2 for j = 0 x + ξ(1 -x 2 )y + xy 2 for j = 1 x 2 + y 2 , for j = 2
for any real number y. Then, for ε = ±, (4.17) and (4.18) reduce to -s) . On the other hand, by (4.13), we have , -s). Thus, the above equality for ε = + becomes

Z s-n 2 ,ε ( f ) = γ(s) (1 + x 2 ) Z 0 (f, -s) + Z 2 (f, -s) + 2x + εξ(1 -x 2 ) Z 1 (f,
Z -s,+ (f ) = Z 0 (f, -s) + Z 1 (f, -s) + Z 2 (f, -s) and Z -s,-(f ) = Z 0 (f, -s) -Z 1 (f, -s) + Z 2 (f
Z s-n 2 ,+ ( f ) = γ(s) 2 (1 + x) 2 + ξ(1 -x 2 ) Z -s,+ (f ) + (1 -x) 2 -ξ(1 -x 2 ) Z -s,-(f ) ,
and for ε = -it becomes

Z s-n 2 ,-( f ) = γ(s) 2 (1 + x) 2 -ξ(1 -x 2 ) Z -s,+ (f ) + (1 -x) 2 + ξ(1 -x 2 ) Z -s,-(f ) .
Since d is odd, we are led to consider the cases d ≡ 1 (mod 4) and d ≡ 3 (mod 4).

(b -1): If d ≡ 1 (mod 4), then ξ = -√ -1, and we obtain

Z s-n 2 ,+ ( f ) = c 1 (s) cos( πs 2 )Z + (f, -s) -sin( πs 2 )Z -s,-(f ) , Z s-n 2 ,-( f ) = c 2 (s) cos( πs 2 )Z + (f, -s) + sin( πs 2 )Z -s,- (f ) 
,

where c 1 (s) = 2 √ 2γ(s) sin( πs 2 + π 4 ) and c 2 (s) = 2 √ 2γ(s) cos( πs 2 + π 4 ). (b -2): If d ≡ 3 (mod 4), then ξ = √ -1 and Z s-n 2 ,+ ( f ) = c 2 (s) cos( πs 2 )Z + (f, -s) + sin( πs 2 )Z -s,-(f ) , Z s-n 2 ,-( f ) = c 1 (s) cos( πs 2 )Z + (f, -s) -sin( πs 2 )Z -s,-(f ) ,
with the same c 1 (s) and c 2 (s) as in (b -1). Case (c): In this case d = 1, r is arbitrary and ξ = ( √ -1) r+1 . Then we shall consider four cases.

(c -1): If r ≡ 0 (mod 4), then r is even, say r = 2 , and

ξ = √ -1. Thus r i=0 u ij (x) = ( √ -1) -(r-j) P j ( √ -1x, 1)P r-j (1, √ -1x),
and

r i=0 (-1) i u ij (x) = ( √ -1) -(r-j) P j ( √ -1x, -1)P r-j (1, - √ -1x).
If j is even, then

r i=0 u ij (x) = (1 + x 2 ) and r i=0 (-1) i u ij (x) = (1 + x 2 ) . If j is odd, then r i=0 u ij (x) = - √ -1(1 + x 2 ) and r i=0 (-1) i u ij (x) = √ -1(1 + x 2 ) .
Therefore, by (4.17), (4.18) and (4.13), we have

Z s-n r ,+ ( f ) = c 3 (s) k=0 Z 2k (f, -s) - √ -1 k=0 Z 2k+1 (f, -s) = 1 √ 2 c 3 (s)e √ -1π 4 
- √ -1Z -s,+ (f ) + Z -s,-(f ) , and 
Z s-n r ,-( f ) = c 3 (s) k=0 Z 2k (f, -s) + √ -1 k=0 Z 2k+1 (f, -s) = 1 √ 2 c 3 (s)e √ -1π 4 
Z -s,+ (f ) - √ -1Z -s,-(f ) ,
where c 3 (s) = 2 γ(s) cos (πs).

(c -2): If r ≡ 1 (mod 4), then r is odd, say r = 2 + 1, and ξ = -1. Then r i=0 u ij (x) = (-1) -(r-j) P j (-x, 1)P r-j (1, -x), and r i=0 (-1) i u ij (x) = (-1) -(r-j) P j (-x, -1)P r-j (1, x).

If j is even, say j = 2k, we have

r i=0 u ij (x) = (-1) k (x 2 -1) (x + 1) and r i=0 (-1) i u ij (x) = (-1) k+1 (x 2 -1) (x -1).
If j is odd, say j = 2k + 1, then

r i=0 u ij (x) = (-1) k (x 2 -1) (x + 1) and r i=0 (-1) i u ij (x) = (-1) k (x 2 -1) (x -1).
Therefore, by (4.17), (4.18) and (4.14), we have

Z s-n r ,+ ( f ) = c 5 (s) k=0 (-1) k Z 2k (f, -s) + k=0 (-1) k Z 2k+1 (f, -s) = c 5 (s) Z e -s (f ) + Z o -s (f ) , and 
Z s-n r ,-( f ) = c 4 (s) - k=0 (-1) k Z 2k (f, -s) + k=0 (-1) k Z 2k+1 (f, -s) = c 4 (s) -Z e -s (f ) + Z o -s (f )
, where c 4 (s) = (-2 √ -1) +1 γ(s) sin (πs) sin( πs 2 ) and c 5 (s) = 2(-2 √ -1) γ(s) sin (πs) cos( πs 2 ). (c -3): If r ≡ 2 (mod 4), then r is even, say r = 2 , and ξ = -√ -1. Thus

r i=0 u ij (x) = (- √ -1) -(r-j) P j (- √ -1x, 1)P r-j (1, - √ -1x),
and

r i=0 (-1) i u ij (x) = (- √ -1) -(r-j) P j (- √ -1x, -1)P r-j (1, √ -1x).
If j is even,

r i=0 u ij (x) = (1 + x 2 ) and r i=0 (-1) i u ij (x) = (1 + x 2 ) . If j is odd, r i=0 u ij (x) = √ -1(1 + x 2 ) and r i=0 (-1) i u ij (x) = - √ -1(1 + x 2 ) .
Therefore, similarly to the case (c -1), we can prove that

Z s-n r ,+ ( f ) = c 3 (s) k=0 Z 2k (f, -s) + √ -1 k=0 Z 2k+1 (f, -s) = 1 √ 2 c 3 (s)e √ -1π 4 
Z -s,+ (f ) - √ -1Z -s,-(f ) , and 
Z s-n r ,-( f ) = c 3 (s) k=0 Z 2k (f, -s) - √ -1 k=0 Z 2k+1 (f, -s) = 1 √ 2 c 3 (s)e √ -1π 4 - √ -1Z -s,+ (f ) + Z -s,-(f ) ,
where c 3 (s) is the same as in (c -1).

(c -4): If r ≡ 3 (mod 4), then r is odd, say r = 2 + 1, and ξ = 1. Thus

r i=0 u ij (x) = P j (x, 1)P r-j (1, x) = (x + 1) j 2 (1 -x) j-j 2 (x + 1) r-j 2 (x -1) r-j-r-j 2 ,
and

r i=0 (-1) i u ij (x) = P j (x, -1)P r-j (1, -x) = (x -1) j 2 (-1 -x) j-j 2 (1 -x) r-j 2 (-x -1) r-j-r-j 2 .
If j is even, say j = 2k, then r i=0 u ij (x) = (-1) k (x 2 -1) (x -1) and r i=0 (-1) i u ij (x) = (-1) k+1 (x 2 -1) (x + 1).

If j is odd, say j = 2k + 1, then

r i=0 u ij (x) = (-1) k+1 (x 2 -1) (x -1) and r i=0 (-1) i u ij (x) = (-1) k+1 (x 2 -1) (x + 1).
Therefore, by (4.17) and by (4.18), we have

Z s-n r ,+ ( f ) = c 4 (s) k=0 (-1) k Z 2k (f, -s) - k=0 (-1) k Z 2k+1 (f, -s) = c 4 (s) Z e -s (f ) -Z o -s (f ) , and 
Z s-n r ,-( f ) = -c 5 (s) k=0 (-1) k Z 2k (f, -s) + k=0 (-1) k Z 2k+1 (f, -s) = -c 5 (s) Z e -s (f ) + Z o -s (f )
, where c 4 (s) and c 5 (s) are the same as in (c -2).

Construction of the family of differential operators E s,t

Henceforth we will use the same symbol F to denote the Fourier transform on the Schwartz space S(V × V ). By duality, F extends to the space of tempered distributions S (V × V ) in the standard way.

Recall from Theorem 3.8 the definition of the differential operator D s,t with (s, t) ∈ C × C. Let E s,t be the polynomial coefficients differential operator defined on the Schwartz space S(V × V ) by

F • E s,t = D s,t • F.
(5.1)

For (s, ε) ∈ C × {±} define the map J s,ε : S(V ) -→ S (V ) given by

J s,ε f (x) := V f (y)det(x -y) s,ε dy. (5.2)
This integral, initially well defined for Re s 0, can be extended meromorphically to C. We may think of J s,ε as a convolution operator :

J s,ε f = Z s,ε * f, (5.3) 
where Z s,ε is the tempered distribution defining the local Zeta integral (4.1).

Let M be the multiplication operator defined on S(V × V ) by M f (x, y) = det(x -y)f (x, y).

(5.4)

The proof of the statement below depends on the type of the Jordan algebra V.

Theorem 5.1. For generic (s, ε) and (t, η) in C × {±}, we have

M • J s,ε ⊗ J t,η = κ(s, t) J s+1,-ε ⊗ J t+1,-η • E -s-n r ,-t-n r , (5.5) 
where κ(s, t) is a meromorphic function on C × C. The identity (5.5) should be understood in the sense of operators from S(V × V ) to S (V × V ).

5.1. Proof of Theorem 5.1 in the non-euclidean case except R p,q (type II, III or IV). Recall from (4.6) that

F(Z s,ε ) = c(s, ε) Z -s-n r ,ε
where c(s, ε) is given by (4.7). Further, as M is the multiplication operator by det(x -y) then, for f ∈ S(V × V ), we have

F(M f )(x, y) = 1 (2π √ -1) r det ∂ ∂x - ∂ ∂y Ff (x, y).
Now, in view of (5.3) and the main identity in Theorem 3.8, we have

F M • (J s,ε ⊗ J t,η )f (x, y) = 1 (2π √ -1) r det ∂ ∂x - ∂ ∂y F(Z s,ε )(x)F(Z t,η )(y)Ff (x, y) = c(s, ε)c(t, η) (2π √ -1) r det ∂ ∂x - ∂ ∂y Z -s-n r ,ε (x)Z -t-n r ,η (y)Ff (x, y) = c(s, ε)c(t, η) (2π √ -1) r Z -s-1-n r ,-ε (x)Z -t-1-n r ,-η (y)D -s-n r ,-t-n r Ff (x, y) = c(s, ε)c(t, η) (2π √ -1) r Z -s-1-n r ,-ε (x)Z -t-1-n r ,-η (y)F(E -s-n r ,-t-n r f )(x, y) = c(s, ε)c(t, η) (2π √ -1) r c(s + 1, -ε)c(t + 1, -η) F(Z s+1,-ε )(x)F(Z t+1,-η )(y)F(E -s-n r ,-t-n r f )(x, y) = c(s, ε)c(t, η) (2π √ -1) r c(s + 1, -ε)c(t + 1, -η) F (J s+1,-ε ⊗ J t+1,-η ) • E -s-n r ,-t-n r f (x, y).
By the injectivity of the Fourier transform we get

M • J s,ε ⊗ J t,η = κ(s, t) J s+1,-ε ⊗ J t+1,-η • E -s-n r ,-t-n r , where κ(s, t) = c(s, ε)c(t, η) (2π √ -1) r c(s + 1, -ε)c(t + 1, -η) =        (2π √ -1) r b r,d (s + 1)b r,d (t + 1)
for Type II ∼ = R p,q

(-8π √ -1) r b 2r,d (-2s -2n r )b 2r,d (2s + 2)b 2r,d (-2t -2n r )b 2r,d (2t + 2)
for Type III or IV.

Above b k,l (s) stands for the polynomial (2.5).

Proof of Theorem 5.1 in the euclidean case (type I).

The proof of Theorem 5.1 in the cases (a) and (a ) is similar to the one in the non-euclidean case. We will give a proof only in the cases (b -1) and (c -2). We leave the remaining cases to the reader. Case (b -1): Assume r = 2 and d ≡ 1 (mod 4). Recall from (4.15) that

F Z s,+ Z s,- = 4 √ 2γ(s + n 2 )A(s) Z -s-n 2 ,+ Z -s-n 2 ,- , where 
A(s) = a +,+ (s) a +,-(s) a -,+ (s) a -,- (s) 
and

a +,+ (s) = sin π 2 (s + n + 1 2 ) cos π 2 (s + n 2 ), a +,-(s) = -sin π 2 (s + n + 1 2 ) sin π 2 (s + n 2 ), a -,+ (s) = cos π 2 (s + n + 1 2 ) cos π 2 (s + n 2 ), a -,-(s) = cos π 2 (s + n + 1 2 ) sin π 2 (s + n 2 ).
Observe that for any ε, η = ±, we have

a ε,η (s) = -a -ε,-η (s + 1). (5.6) Let f ∈ S(V × V ).
As in the previous subsection, we have

F M • (J s,ε ⊗ J t,η )f (x, y) = 1 (2π √ -1) r ∆ ∂ ∂x - ∂ ∂y F(Z s,ε )(x)F(Z t,η )(y)Ff (x, y) = c(s, t) (2π √ -1) r ∆ ∂ ∂x - ∂ ∂y a ε,+ (s)Z -s-n 2 ,+ (x) + a ε,-(s)Z -s-n 2 ,- (x) 
a η,+ (t)Z -t-n 2 ,+ (y) + a η,-(t)Z -t-n 2 ,-(y) Ff (x, y) , where c(s, t) = 32γ(s + n 2 )γ(t + n 2 )
. In view of (5.6) and Theorem 3.6 we have

F M • (J s,ε ⊗ J t,ε )f (x, y) = c(s, t) (2π √ -1) r a -ε,+ (s + 1)Z -s-1-n 2 ,+ (x) + a -ε,-(s + 1)Z -s-1-n 2 ,- (x) 
a -η,+ (t + 1)Z -t-1-n 2 ,+ (y) + a -η,-(t + 1)Z -t-1-n 2 ,-(y) D -s-n 2 ,-t-n 2 (Ff )(x, y), = c(s, t) (2π √ -1) r c(s + 1, t + 1) F(Z s+1,-ε )(x)F(Z t+1,-η )(y)F(E -s-n 2 ,-t-n 2 f )(x, y) = c(s, t) (2π √ -1) r c(s + 1, t + 1) F (J s+1,-ε ⊗ J t+1,-η ) • (E -s-n 2 ,-t-n 2 f ) (x, y).
Now, using the inverse Fourier transform, we obtain

M J s,ε ⊗ J t,η = κ(s, t) J s+1,-ε ⊗ J t+1,-η • E -s-n r ,-t-n r , where κ(s, t) = (2π √ -1) r b r,d (s + 1)b r,d (t + 1)
.

Case (c -2): Assume d = 1 and r ≡ 1 (mod 4). Recall from (4.16) that

F Z s,+ Z s,- = (-2 √ -1) r 2 γ(s + n r ) sin r 2 (π(s + n r ))B(s) Z e -s-n 2 Z o -s-n 2 , where 
B(s) = a e + (s) a o + (s) a e -(s) a o - (s) 
, and

a e + (s) = cos( π 2 (s + n 2 
)),

a o + (s) = cos( π 2 (s + n 2 ))
,

a e -(s) = √ -1 sin( π 2 (s + n 2 
)),

a o -(s) = - √ -1 sin( π 2 (s + n 2 
)).

Observe that for any ε = ±, we have

a e ε (s) = - √ -1a e -ε (s + 1), a o ε (s) = √ -1a o -ε (s + 1). (5.7) Let f ∈ S(V × V ). We have, F M • (J s,ε ⊗ J t,η )f (x, y) = 1 (2π √ -1) r det ∂ ∂x - ∂ ∂y F(Z s,ε )(x)F(Z t,η )(y)Ff (x, y), = c(s, t) (2π √ -1) r det ∂ ∂x - ∂ ∂y a e ε (s)Z e -s-n 2 (x) + a o ε (s)Z o -s-n 2 (x) × × a e η (t)Z e -t-n 2 (y) + a o η (t)Z o -t-n 2 (y) Ff (x, y) , where c(s, t) = (-2 √ -1) r-1 γ(s + n r )γ(t + n r ) sin r 2 (π(s + n r )) sin r 2 (π(t + n r )). Using the fact that det ∂ ∂x - ∂ ∂y              (Z e -s-n r ⊗ Z e -t-n r ) = (Z e -s-1-n r ⊗ Z e -t-1-n r ) • D -s-n r ,-t-n r , (Z o -s-n r ⊗ Z o -t-n r ) = (Z o -s-1-n r ⊗ Z o -t-1-n r ) • D -s-n r ,-t-n r , (Z e -s-n r ⊗ Z o -t-n r ) = -(Z e -s-1-n r ⊗ Z o -t-1-n r ) • D -s-n r ,-t-n r , (Z o -s-n r ⊗ Z e -t-n r ) = -(Z o -s-1-n r ⊗ Z e -t-1-n r ) • D -s-n r ,-t-n r ,
and the relationships in (5.7), we obtain

F M • (J s,ε ⊗ J t,η )f (x, y) = - c(s, t) (2π √ -1) r c(s + 1, t + 1) F(Z s+1,-ε )F(Z t+1,-η )D -s-n r ,-t-n r Ff (x, y) = - c(s, t) (2π √ -1) r c(s + 1, t + 1) F (J s+1,-ε ⊗ J t+1,-ε ) • E -s-n r ,-t-n r (f ) (x, y).
By the injectivity of the Fourier transform we obtain the desired result in Case (c -2).

The degenerate principal series and the Knapp-Stein operators

We now come to semisimple harmonic analysis. We will first present in subsection 6.1 the conformal group Co(V ) of a simple real Jordan algebra V and we recall some of its known properties (see, e.g., [START_REF] Bertram | The geometry of Jordan and Lie structures[END_REF][START_REF] Koecher | The Minnesota notes on Jordan algebras and their applications[END_REF]). As our intention is to generalize the classical Rankin-Cohen brackets, we have to construct a group which is locally isomorphic to Co(V ). In the classical case, that is for V = R, the group to be used is the group SL(2, R) which differs from Co(R) = P GL(2, R) in two ways. First we consider only the orientation preserving maps, which leads to the group P SL(2, R), and then introduce its twofold covering SL(2, R). Similarly, in the general case we introduce first the proper conformal group Co(V ) + , and then we construct a twofold covering group G of Co(V ) + .

In subsection 6.2 we will introduce the degenerate principal series of G in its non-compact realization (that is to say acting on a space of functions defined on V ), and the corresponding family of Knapp-Stein intertwining operators. Up to a shift in the parameters, they correspond to the convolution operators J s,ε defined in (5.2).

6.1. The conformal group of a simple real Jordan algebra. Let V be a simple real Jordan algebra. Recall that Str(V ) denotes the structure group of V (see Subsection 3.1). If ∈ Str(V ), then for any x ∈ V, we have

det( (x)) = χ( )det(x), (6.1) 
for some χ( ) ∈ R * , and the function -→ χ( ) defines a character of Str(V ). It is known that for x ∈ V × , the quadratic operator P (x) (see (2.1)) belongs to Str(V ) and, for any x, y ∈ V, we have det P (x)y) = det(x) 2 det(y), which implies χ P (x) = det(x) 2 . (6.

2) The inversion ı is a rational transformation of V defined on V × by ı(x) = -x -1 .

Its differential at x ∈ V × is given by Dı(x) = P (x -1 ) = P (x) -1 . (6.3) For v ∈ V , denote by n v the translation x -→ x + a. Let N := {n v , v ∈ V } (6.4)
be the (abelian Lie) group of all translations. The conformal group Co(V ) of V is by definition the group of rational transforms of V generated by Str(V ), N and the inversion ı. It can be shown that Co(V ) is a simple Lie group (see [START_REF] Bertram | The geometry of Jordan and Lie structures[END_REF][START_REF] Koecher | The Minnesota notes on Jordan algebras and their applications[END_REF]). For any g ∈ Co(V ), denote by V g the (open and dense) subset of V so that g is defined. It is known that for x ∈ V g , the differential Dg(x) of g at x belongs to Str(V ). Moreover, for any g ∈ Co(V ), the map x -→ Dg(x) -1 extends polynomially from V into End(V ).

Denote by Str(V ) + the subgroup of Str(V ) defined by

Str(V ) + = { ∈ Str(V ); χ( ) > 0}.
Define the proper conformal group Co(V ) + to be the group generated by Str(V ) + , N and the inversion ı.

Let Aff(V ) := Str(V ) N (resp. Aff(V ) + := Str(V ) + N ) be the group generated by Str(V ) (resp. Str(V ) + ) and N . Then Aff(V ) is a parabolic subgroup of Co(V ) and equal to the normalizer of N in Co(V ). As Aff(V ) + = Co(V ) + ∩ Aff(V ), Aff(V ) + is the normalizer of N in Co(V ) + , and hence a parabolic subgroup of Co(V ) + .

The center of Str(V ) is the group of dilations

{δ t : v -→ tv, t ∈ R * }. Let A := {δ t ; t ∈ R >0 }. As χ(δ t ) = t r , it follows that A is contained in Str(V ) + . For g ∈ Co(V ) + , let Θ(g) = α • ı • g • ı • α, (6.5 
) where α is a Cartan involution of V (see Subsection 2.1). As α is an automorphism of V , χ(α) = 1 and α ∈ Str(V ) + . So Θ is an automorphism of Co(V ) + , which can be shown to be a Cartan involution of the group Co(V ) + . Since α commutes to ı, the involution Θ preserves Str(V ) + .

As a consequence of the chain rule and using (6.3) and (6.2), for any g ∈ Co(V ) + and any x ∈ V g , one may check that the differential Dg(x) belongs to Str(V ) + . For g ∈ Co(V ) + and x ∈ V g , let c(g, x) := χ Dg(x) -1 .

In view of the chain rule, the map g -→ c(g, x) satisfies the following cocycle relation :

c(g 1 g 2 , x) = c g 1 , g 2 (x) c(g 2 , x), g 1 , g 2 ∈ Co(V ) + (6.6)
wherever both sides are defined. Moreover, (i) For any ∈ Str(V ) + and x ∈ V, c( , x) = χ( ) -1 .

(ii) For any v ∈ V and x ∈ V, c(n v , x) = 1. (iii) For any x ∈ V × , c(ı, x) = det(x) 2 . The cocycle property (6.6) implies that, for any g ∈ Co(V ) + , the function x -→ c(g, x) is a rational function on V . On the other hand, for ∈ Str(V ) + we have χ(

) 2n r = Det( ) 2 , so that for x ∈ V g , c(g, x) 2n r = χ Dg(x) -1 2n r = Det Dg(x) -1 2 .
Hence, for any g ∈ Co(V ) + , the function x -→ c(g, x)

2n r extends as a polynomial on V. But if a power3 of a rational function coincides on a Zariski open subset with a polynomial, then the rational function has to be a polynomial, and therefore x -→ c(g, x) extends as a polynomial on V. Proposition 6.1. For any g ∈ Co(V ) + , there exists a polynomial P g ∈ P(V ) such that, for x ∈ V c(g, x) = P g (x) 2 . (6.7) The polynomial P g is unique up to a sign ±.

Proof. In fact, -if g = n v is a translation, then P nv ≡ 1 satisfies (6.7), -if g = ∈ Str(V ) + , then P ≡ χ( ) -1 2 satisfies (6.7), -if g = ı, then P ı (x) = det(x) satisfies (6.7). Recall that Co(V ) + is generated by Str(V ) + , N and ı. Hence, for any g ∈ Co(V ) + , the existence of a rational function satisfying (6.7) follows from the cocycle relation (6.6). But, if the square of a rational function is a polynomial, then the rational function has to be a polynomial. For the uniqueness, let g ∈ Co(V ) + . If P g and Q g are two polynomials such that P 2 g (x) = Q 2 g (x) = c(g, x) for x ∈ V g , then by continuity, P 2 g = Q 2 g or equivalently (P g + Q g )(P g -Q g ) = 0, and therefore P g = ±Q g .

Let G = (g, P g ) ∈ Co(V ) + × P(V ) such that P g (x) 2 = c(g, x) ∀x ∈ V ,
and define the product of two elements g 1 = (g 1 , P g 1 ) and g 2 = (g 2 , P g 2 ) of G by

g 1 g 2 = g 1 g 2 , (P g 1 • g 2 )P g 2 .
To check that this product is well defined, observe that (P g 1 • g 2 ) P g 2 is a rational function on V . Its square (wherever defined) satisfies

(P g 1 • g 2 ) P g 2 2 (x) = c(g 1 , g 2 (x)) c(g 2 , x) = c(g 1 g 2 , x),
which extends as a polynomial on V. As a consequence, (P g 1 • g 2 ) P g 2 itself extends to V as a polynomial and its square equals c(g 1 g 2 , x). This proves that g 1 g 2 , (P g 1 • g 2 )P g 2 is an element of G. Now G can be endowed with a Lie group structure yielding a twofold covering of Co(V ) + . The various notions defined (and results obtained) for Co(V ) + have their counterparts for G. The subgroups A and N of Co(V ) + are identified with subgroups of G via the maps

δ t -→ δt = (δ t , t -r 2 ), n v -→ ñv = (n v , 1). (6.8) 
The inversion ı is identified with ĩ = (ı, det(x)) and the Cartan involution α is identified with (α, 1). Finally, let L and P be the subgroups of G defined by 2 ; p ∈ Aff(V ) + }, which are twofold (trivial) coverings of Str(V ) + and Aff(V ) + , respectively. Above we have extended the character χ of Str(V ) to a character of Aff(V ) + = Str(V ) + N by letting it acting trivially on N . Then P is a maximal parabolic subgroup of G with Langlands decomposition P = LN, where N is the abelian subgroup of G (via (6.8)) introduced in (6.4). We keep the notation Θ for the Cartan involution of G given by Θ

L = { , ± χ( ) -1 2 ; ∈ Str(V ) + }, P = { p, ± χ(p) - 1 
(g) = α • ı • g • ı • α.
For a given g = (g, P g ) ∈ G and x ∈ V g , we set g(x) := g(x). Further, we will use the following notation a( g, x) := P g (x), x ∈ V . (6.9) Observe that, for g ∈ G defined at x ∈ V, we have a(g, x) 2 = c(g, x) = 0, and therefore a(g, x) = 0. Moreover, a( g, . ) is a polynomial on V satisfying the cocycle relation

a( g 1 g 2 , x) = a g 1 , g 2 (x) a( g 2 , x), g 1 , g 2 ∈ G, (6.10) 
whenever it makes sense. The following equalities are immediate:

a(ñ v , x) = 1, ñv = (n v , 1) a(( , ± χ( ) -1 2 ), x) = ± χ( ) -1 2 , ∈ Str(V ) + a(ĩ, x) = det(x) ĩ = (ı, det(x)).
Henceforth we shall omit the tildes over the elements of G.

Proposition 6.2. Let g ∈ G and x, y ∈ V such that g is defined at x and y. Then

det g(x) -g(y) = a(g, x) -1 det(x -y) a(g, y) -1 . (6.11) 
Proof. For g = (n v , 1) the identity (6.11) is obvious. For g = ( , ±χ( ) -1 2 ) we have

det (x -y) = χ( )det(x -y) = ± χ( ) -1 2 ) -1 det(x -y) ± χ( ) -1 2 ) -1 .
Finally, for g = (ı, det(x)), we have

det ı(x) -ı(y) = det(-x -1 + y -1 ) = (det x) -1 det(x -y)(det y) -1 ,
which is essentially Hua's formula. The general formula follows by using the cocycle relation (6.10).

6.2. The degenerate principal series and Knapp-Stein intertwining operators. The degenerate principal series is the family of representations of G (smoothly) induced by the characters of the parabolic subgroup P := Θ(P ) opposed to P . In this section, we will consider the non-compact realization of these representations. For (λ, ε) ∈ C × {±} and for g ∈ G let

π λ,ε (g)f (x) = a(g -1 , x) -λ,ε f g -1 (x) . (6.12) 
In this formula, f is a smooth function on V . As the action of G on V is not defined everywhere, we let H λ,ε to be the subspace of functions f ∈ C ∞ (V ) such that ∀g ∈ G : V g x -→ π λ,ε (g)f (x) extends as a smooth function on V.

The space H λ,ε is equipped with a topology using the semi-norms defining the usual topology of C ∞ (V ). Then (6.12) defines a continuous representation of G on H λ,ε .

The space H λ,ε is not well fitted in order to use Fourier analysis on V . So we will mostly work with the infinitesimal version of the representation π λ,ε . For X in the Lie algebra g of

G and f ∈ C ∞ (V ), let dπ λ (X)f := d dt π λ,ε (exp(tX))f t=0 . (6.13) 
For x ∈ V , a exp(tX) -1 , x is defined for t small enough and is strictly positive. Hence, the expression (6.13) is well defined and does not depend on ε. It is well-known that dπ λ (X) is a first order differential operator on V with polynomial coefficients of degree ≤ 2 (see, e.g., [START_REF] Pevzner | Analyse conforme sur les algèbres de Jordan[END_REF]). As a consequence, dπ λ (X) acts on the Schwartz space S(V ) and this defines a representation of g on S(V ) which can be extended to S (V ) by duality. For (λ, ε) ∈ C × {±} and f ∈ S(V ), define the Knapp-Stein intertwining operator by

I λ,ε f (x) := V det(x -y) -2n r +λ,ε f (y)dy. (6.14) 
For Re λ 0, the function det(x) -2n r +λ,ε is locally integrable and has polynomial growth at infinity, so that it can be considered as a tempered distribution on V , and hence (6.14) defines an operator from S(V ) into S (V ). Next, the definition is extended meromorphically to C by analytic continuation in the parameter λ, thus defining a family of operators from S(V ) into S (V ) depending meromorphically on λ.

The Knapp-Stein operators are intertwining operators for (π λ,ε , π 2n r -λ,ε ). The infinitesimal version of the intertwining property is

I λ,ε • dπ λ (X) = dπ 2n r -λ (X) • I λ,ε , ∀X ∈ g (6.15)
which should be understood as an equality of operators from S(V ) into S (V ).

The covariance property of the source operators F λ,µ

The main result of this section is to interpret the differential operator E s,t (defined by (5.1)) as a covariant differential operator for the action of g derived from the diagonal action of G on V × V via the tensor product π λ,ε ⊗ π µ,η with λ = n r -s and µ = n r -t. The operator F λ,µ := E n r -λ, n r -µ thus obtained is further interpreted as the non-compact realization of a global differential operator F (λ,ε),(µ,η) on X ×X acting on sections of the line bundle E λ,ε ⊗E µ,η into the sections of E λ+1,-ε ⊗ E µ+1,-η . We call F λ,µ the source operator and it will be used in Section 8 to construct the covariant bi-differential operators, which is the main goal of this paper.

7.1. The infinitesimal covariance property. Recall that M denotes the multiplication operator on S(V × V ) defined by M f (x, y) = det(x -y)f (x, y). Lemma 7.1. Let f be a smooth function on V × V with compact support. Let g ∈ G close to the neutral element so that g (acting diagonally on V × V ) is defined on the support of f . Then, for any (λ, ε) and (µ, η) in C × {±}, we have

M • π λ,ε (g) ⊗ π µ,η (g) f = π λ-1,-ε (g) ⊗ π µ-1,-η (g) • M f.
Proof. This is an immediate consequence of the covariance property (6.11) of the function det(x -y).

For X ∈ g, let d(π λ ⊗π µ )(X) = dπ λ (X)⊗Id+Id⊗dπ µ (X) be the infinitesimal representation of g induced by π λ,ε ⊗ π µ,η . The infinitesimal version of the above lemma reads : Proposition 7.2. For any X ∈ g, we have

M • d(π λ ⊗ π µ )(X) = d(π λ-1 ⊗ π µ-1 )(X) • M.
Recall from (5.2) the integral operator J s,ε . The Knapp-Stein intertwining operator I λ,ε is nothing but I λ,ε = J -2n r +λ,ε . Further, for simplicity, we will write

F λ,µ = E n r -λ, n r -µ ,
where E s,t is defined by (5.1). With these notations, we may rewrite Theorem 5.1 as follows: Proposition 7.3. For all (λ, ε) and (µ, η) in C × {±}, we have

M • (I λ,ε ⊗ I µ,η ) = κ(λ, µ)(I λ+1,-ε ⊗ I µ+1,-η ) • F λ,µ , where κ(λ, µ) is a meromorphic function on C × C.
Moreover, we have the following covariance property of the operators F λ,µ .

Theorem 7.4. For all λ, µ ∈ C and for any X ∈ g, we have

F λ,µ • d(π λ ⊗ π µ )(X) = d(π λ+1 ⊗ π µ+1 )(X) • F λ,µ (7.1) 
Proof. In view of Proposition 7.2, Proposition 7.3 and the identity (6.15), we have

I λ+1,-ε ⊗ I µ+1,-η • F λ,µ • d(π λ ⊗ π µ )(X) = 1 κ(λ, µ) M • (I λ,ε ⊗ I µ,η ) • d(π λ ⊗ dπ µ )(X) = 1 κ(λ, µ) M • d(π 2n r -λ ⊗ π 2n r -µ )(X) • I λ,ε ⊗ I µ,η = 1 κ(λ, µ) d(π 2n r -λ-1 ⊗ π 2n r -µ-1 )(X) • M • I λ,ε ⊗ I µ,η = d(π 2n r -λ-1 ⊗ π 2n r -µ-1 )(X) • I λ+1,-ε ⊗ I µ+1,-η • F λ,µ = I λ+1,-ε ⊗ I µ+1,-η • d(π λ+1 ⊗ π µ+1 )(X) • F λ,µ .
We claim that, for generic parameters λ and µ, the operator I λ,ε ⊗I µ,η is injective on S(V ×V ). For these parameters, the identity (7.1) follows from the claim, and hence for arbitrary λ and µ by continuity. Regarding our claim, saying that I λ,ε ⊗ I µ,η is injective on S(V × V ) is equivalent to say that the map f → F((I λ,ε ⊗ I µ,η )f ) is injective (as F is injective). Now, since I λ,ε is the convolution operator with Z -2n r +λ,ε (see (5.3)), our claim amounts to the fact that multiplication by F(Z -2n r +λ,ε ⊗ Z -2n r +µ,η ) is injective, which is true due to the fact that the support of F(Z -2n r +λ,ε ⊗ Z -2n r +µ,η ) equals V × V for generic λ, µ, as can be seen from Section 4.

The global covariance property.

There is a global formulation for the covariance property of the operators F λ,µ , but it is nicer to work in the non-compact setting. Using the notation of Subsection 6.1, let P = Θ(P ) be the opposite parabolic subgroup of G and let X = G/P . The map V v -→ n v P is a diffeomorphism onto an open dense subset of X (for that reason X is usually called the conformal compactification of V ). Let χ 1 2 be the character of P which is trivial on N = Θ(N ) and which is defined on L by

χ 1 2 , ±χ( ) -1 2 = ±χ( ) 1 2 ,
where χ is the character of Str(V ) defined by (6.1).

For (λ, ε) ∈ C × {±}, consider the character χ λ,ε

1 2
of L and form the line bundle

E λ,ε = G ⊗ P C χ λ,ε 1 2 
.

Finally, denote by Γ(E λ,ε ) the space of smooth sections of E λ,ε . The natural actions of G on Γ(E λ,ε ) defines a smooth representation of G which is the compact realization of the representation π λ,ε considered previously in (6.12). We will use the same notation to denote this representation.

Similarly, consider the normalized Knapp-Stein intertwining operators I λ,ε : Γ(E λ,ε ) -→ Γ(E 2n r -λ,ε ) (see [START_REF] Knapp | Representation theory of semisimple groups. An overview based on examples[END_REF]). They form a holomorphic family of intertwining operators. It is known that for generic λ, the representation π λ,ε is irreducible, so that

I 2n r -λ,ε • I λ,ε = d ε (λ) id, (7.2) 
for some holomorphic function d ε . By (6.11), the kernel det(x -y) correspond to a G-invariant section of E -1,-⊗ E -1,-and hence, for any (λ, ε) and (µ, η), the corresponding multiplication operator

M : Γ(E λ,ε ⊗ E µ,η ) -→ Γ(E λ-1,-ε ⊗ E µ-1,-η ) intertwines π λ,ε ⊗ π µ,η and π λ-1,-ε ⊗ π µ-1,-η .
For (λ, ε), (µ, η) ∈ C × {±} we consider the operator

F (λ,ε),(µ,η) : Γ(E λ,ε ⊗ E µ,η ) -→ Γ(E λ+1,-ε ⊗ E µ+1,-η ) defined by F (λ,ε),(µ,η) = I 2n r -λ-1,-ε ⊗ I 2n r -µ-1,-η • M • I λ,ε ⊗ I µ,η .
Notice that the family F (λ,ε),(µ,η) depends holomorphically on λ and µ.

Theorem 7.5. The operator F (λ,ε),(µ,η) is a differential operator which intertwines the representations π λ,ε ⊗ π µ,η and π λ+1,-ε ⊗ π µ+1,-η .

Proof. The intertwining property of F (λ,ε),(µ,η) follow immediately from its construction. Now, by composing F (λ,ε),(µ,η) with I λ+1,-ε ⊗ I µ+1,-η from the left and using (7.2), we get

I λ+1,-ε ⊗ I µ+1,-η • F (λ,ε),(µ,η) = d -ε (λ + 1)d -η (µ + 1)M • I λ,ε ⊗ I µ,η .
When translating this relation in the non-compact setting, the local expression of I λ,ε is (up to a function of λ) equal to I λ,ε and M corresponds to the multiplication by det(x -y).

Comparing with the result obtained in Section 7, this implies that the local expression of F (λ,ε),(µ,η) in the non-compact setting is equal to F λ,µ , up to a meromorphic function of λ and µ. Hence F (λ,ε),(µ,η) is a differential operator. This works for generic λ and µ and hence for every λ and µ by continuity.

Conformally covariant bi-differential operators

By means of the source operators, we are now ready to construct covariant bi-differential operators on V × V, which reduce to the Rankin-Cohen brackets for the case V = R.

Let res : C ∞ (V × V) → C ∞ (V) be the restriction map defined by res(ϕ(x)) = ϕ(x, x), x ∈ V.

It satisfies res

• (π λ,ε (g) ⊗ π µ,η (g)) = π λ+µ,εη (g) • res, ∀g ∈ G.
For λ, µ ∈ C and N ∈ N * we define the bi-differential operator

B (N ) λ,µ : C ∞ (V × V ) -→ C ∞ (V ) by B (N ) λ,µ = res • F λ+N -1,µ+N -1 • • • • • F λ,µ .
The covariance of the operators F λ,µ and of the restriction map implies the following statement.

Theorem 8.1. For all (λ, ε) and (µ, η) in C × {±} and for all N in N * , the operator B (N ) λ,µ is covariant with respect to (π λ,ε ⊗ π µ,η , π λ+µ+2N,εη ), i.e.

B (N ) λ,µ • (π λ,ε (g) ⊗ π µ,η (g)) = π λ+µ+2N,εη (g) • B (N ) λ,µ , ∀g ∈ G.
It is possible to give a slightly different presentation of the bi-differential operators B 

H (λ,ε),(µ,η) F (N ) (λ,ε),(µ,η) -------→ H (λ+N,ε N ),(µ+N,η N ) I λ,ε ⊗ Iµ,η     I 2n r -λ-N,ε N ⊗ I 2n r -µ-N,η N H ( 2n r -λ,ε),( 2n r -µ,η) M N ----→ H ( 2n r -λ-N,ε N ),( 2n r -µ-N,η N )
with the convention ε N = (-1) N ε. It is a generalization of the diagram given in the introduction which corresponds to the case N = 1. By construction, the operator F (N ) (λ,ε),(µ,η) is covariant with respect to π λ,ε ⊗ π µ,η and π λ+N,ε N ⊗ π µ+N,η N . Further, F (N ) (λ,ε),(µ,η) is a differential operator on X × X . Indeed, F (N ) (λ,ε),(µ,η) coincides (up to a meromorphic function in λ and µ) with the operator

F (λ+N,ε N ),(µ+N,η N ) • • • • • F (λ,ε),(µ,η) .
The corresponding bi-differential operator is res • F (N ) (λ,ε),(µ,η) , and its expression in the non-compact realization coincides (up to a meromorphic function in λ and µ) with B (N ) λ,µ . 9. The case of R p,q with p ≥ 2 and q ≥ 1 Let E be a real vector space of dimension n -1, endowed with a non-degenerate symmetric bilinear form β : E × E → R of signature (p -1, q) where p + q = n. Then V := R × E is a simple real Jordan algebra with multiplication given by (λ, v) • (µ, w) = (λµ -β(v, w), λw + µv).

The dimension of V equals n = p+q and its rank is 2. The neutral element of V is 1 = (1, 0 E ), its Jordan determinant is given by

det(λ, v) = λ 2 + β(v, v),
which is a quadratic form of signature (p, q), and its the Jordan trace is tr(λ, v) = 2λ. Therefore, (λ, v) ∈ V is invertible if and only if λ 2 + β(v, v) = 0 and its inverse is given by

(λ, v) -1 = 1 λ 2 + β(v, v) (λ, -v).
Fix a basis (e 2 , . . . , e n ) of E with coordinates (x 2 , . . . , x n ) chosen so that, for v = (x 2 , . . . , x n ),

β(v, v) = x 2 2 + • • • + x 2 p -x 2 p+1 -• • • -x 2
n . Below we will denote V by R p,q and its Jordan determinant by

P (x) = x 2 1 + x 2 2 + • • • + x 2 p -x 2 p+1 -• • • -x 2 n
, where x = (x 1 , x 2 , . . . , x n ) ∈ V. In this notation, the neutral element is 1 = e 1 . 9.1. The Zeta functional equation. Let V be the dual space of V . The symmetric bilinear form on V associated to P induces an isomorphism of V with V , and so we can transfer the quadratic form on V to a quadratic form on V , which we denote also by P . More explicitly, let (e 1 , . . . , e n ) be the basis of V which is the dual to the canonical basis of V , and denote by (ξ 1 , . . . , ξ n ) the coordinates of an arbitrary element ξ ∈ V . Let

P (ξ) = ξ 2 1 + • • • + ξ 2 p -ξ 2 p+1 -• • • -ξ 2 n .
The corresponding symmetric bilinear form on V × V is given by

P (ξ, ζ) = ξ 1 ζ 1 + • • • + ξ p ζ p -ξ p+1 ζ p+1 -• • • -ξ n ζ n .
In a departure from our convention (4.2), we define in this section the Fourier transform F : S(V ) -→ S(V ) by

Ff (ξ) = V e i(ξ,x) f (x)dx,
and extend it by duality to S (V ).

Below, for (s, ε) ∈ C × {±}, P s,ε (x) stands for det(x) s,ε .

Theorem 9.1. For every s ∈ C, we have

F P s,+ P s,-= γ(s)A(s) P -s-n 2 ,+ P -s-n 2 ,- (9.1) 
where

A(s) =    -cos π(p -q) 4 sin( πs 2 ) cos( π 2 (s + n 2 )) -sin π(p -q) 4 sin( πs 2 ) sin( π 2 (s + n 2 )) sin π(p -q) 4 cos( πs 2 ) cos( π 2 (s + n 2 )) -cos π(p -q) 4 cos( πs 2 ) sin( π 2 (s + n 2 ))    . and γ(s) = 2 2s+n+1t π n 2 -1 Γ(s + 1)Γ(s + n 2 ). (9.2) Proof. Let P + (x) =    P (x) on {P (x) > 0} 0 on {P (x) < 0} P -(x) =    0 on {P (x) > 0} -P (x) on {P (x) < 0}
.

For s ∈ C with Re s > -1, the functions P s + and P s -are locally integrable with moderate growth at infinity. Further, they can be extended, as tempered distributions, meromorphically for s ∈ C. Their Fourier transforms are given by

F(P s + ) = γ(s) -sin π q 2 + s P -s-n 2 + + sin πp 2 P -s-n 2 - , and 
F(P s -) = γ(s) sin πq 2 P -s-n 2 + -sin π s + p 2 P -s-n 2 -
, where γ(s) = 2 2s+n π n 2 -1 Γ(s + 1)Γ(s + n 2 ); see [13, Page 365] (or [START_REF] Strichartz | Fourier transforms and non-compact rotation groups[END_REF]). On the other hand, P s,+ = P s + + P s -and P s,-= P s + -P s -. Thus, the functional equation (9.1) follows by routine computation.

We will use the following notation for the coefficients of the matrix A(s) :

A(s) = a +,+ (s) a +,-(s) a -,+ (s) a -,- (s) 
.

Observe that the matrix-valued function A(s) is periodic of period 2 and the coefficients a ε,η satisfy a ε,η (s + 1) = -a -ε,-η (s), (9.3) for every ε, η = ±. 9.2. Explicit form of the operator D s,t . Recall from Theorem 3.8 that there exists a differential operator D s,t on V × V such that

P ∂ ∂ξ - ∂ ∂ζ P (ξ) s,ε P (ζ) t,η f (ξ, ζ) = P (ξ) s-1,-ε P (ζ) t-1,-η D s,t f (ξ, ζ), (9.4) 
for every f in S(V × V ).

Theorem 9.2. In the V = R p,q case, the differential operator D s,t is given explicitly by Elementary calculation shows that for a smooth function f on {P (ξ) > 0} we have

D s,t = P (ξ)P (ζ) P ∂ ∂ξ - ∂ ∂ζ +4s P (ζ) n i=1 ξ j ∂ ∂ξ j - ∂ ∂ζ j + 4t P (ξ) n j=1 ζ j ∂ ∂ζ j - ∂ ∂ξ j +2t(2t -2 + n)P (ξ) -8stP (ξ, ζ) + 2s(2s -2 + n)P (ζ).
P ∂ ∂ξ P (ξ) s f (ξ) = 2s(2s -2 + n)P (ξ) s-1 f (ξ) + 4s n i=1 ξ i P (ξ) s-1 ∂f ∂ξ i (ξ) + P (ξ) s P ∂ ∂ξ f (ξ).
Thus, for a smooth function f on {P (ξ) > 0, P (ζ) > 0}, we have

P ∂ ∂ξ , ∂ ∂ζ P (ξ) s P (ζ) t f (ξ, ζ) = 4st P (ξ, ζ)P (ξ) s-1 P (ζ) t-1 f (ξ, ζ) +2s P (ξ) s-1 P (ζ) t n i=1 ξ i ∂f ∂ζ i + 2tP (ξ) s P (ζ) t-1 n i=1 ζ i ∂f ∂ξ i +P (ξ) s P (ζ) t P ∂ ∂ξ , ∂ ∂ζ f (ξ, ζ).
Now the identity (9.5) is a matter of putting pieces together. 

∂ ∂x i (x i -y i ) = nP ∂ ∂y -2P ∂ ∂x , ∂ ∂y + n j=1 (x j -y j ) ∂ ∂x j P ∂ ∂y .
Putting all pieces together yields Proposition 9.3. 9.4. The main theorem for R p,q . For (s, ε) ∈ C × {±}, recall from (5.2) the intertwining operator

J s,ε f (x) = V P (x -y) s,ε f (y)dy.
The integral is well defined for f ∈ S(V ) when Re s > -1. It defines a convolution operator from S(V ) into S (V ) and the function s -→ J s,ε can be extended meromorphically on C.

Let M be the multiplication operator given for f ∈ S(V × V ) (or S (V × V )) by M f (x, y) = P (x -y)f (x, y).

In view of the functional equation (9.1) of P s,ε and the relation (9.3), the proof of the statement below goes along the same lines as that of Theorem 5.1.

Theorem 9.4. For (s, ε) and (t, η) in C × {±}, we have

M • (J s,ε ⊗ J t,η ) = κ(s, t) (J s+1,-ε ⊗ J t+1,-η ) • E -s-n 2 ,-t-n 2 , where κ(s, t) = 1 16(s + 1)(s + n 2 )(t + 1)(t + n 2 )
. 9.5. The conformal group of V = R p,q . For t ∈ R * , let δ t be the dilation given by V v -→ tv. The structure group of V is given by

Str(V ) = {h • δ t , h ∈ O(p, q), t ∈ R >0 } = O(p, q) × R * /∼,
where ∼ is the equivalence relation (h, δ t ) ∼ (-h, δ -t ). As

P (h • δ t )(x) = t 2 P (x),
the character χ of Str(V ) is given by χ(h • δ t ) = t 2 and therefore Str(V ) + = Str(V ). Let W = R × V × R. Set e 0 = (1, 0, 0) and e n+1 = (0, 0, 1). We will use the following convention : for w

= (α, v, β) ∈ W, α(w) = α, (w) V = v, β(w) = β. On W define the quadratic form Q(α, v, β) = P (v) -αβ.
Notice that Q is of signature (p + 1, q + 1). Let us consider the proper isotropic cone Ξ = w ∈ W ; w = 0, Q(w) = 0 , and let X = Ξ/R * , a real projective quadric. For w ∈ W {0}, let w be its image in the projective space P(W ).

Lemma 9.5. The map κ : V -→ X defined by

V v -→ κ(v) = (1, v, P (v)) (9.6)
is a diffeomorphism of V onto an open dense subset of X.

Proof. Since for v ∈ V , (1, v, P (v)) belongs to Ξ and is = 0, the map is well defined. It is smooth and injective. Let (α, v, β) be in Ξ. If α = 0, then (α, v, β) = (1, v , P (v ) where v = α -1 v. Hence the image of the map given by (9.6) is equal to X ∩ {α(w) = 0} and the lemma follows.

In the sequel we let ∞ = e n+1 and o = e 0 , both points of X.

Let G = O(Q) O(p + 1, q + 1) be the orthogonal group of the form Q. Then G preserves Ξ and commutes to the dilations, so acts on the space 4 X. This allows to define a (rational) action of G on V by setting

g(x) = α gκ(x) -1 gκ(x) V .
Let L be the subgroup of G given by

L =      t -1 0 0 0 h 0 0 0 t   ; h ∈ O(p, q), t ∈ R *    .
The elements ±   t -1 0 0 0 h 0 0 0 t   both act on V by v -→ t hv, which realizes L as a twofold covering of the structure group Str(V ) (= Str(V ) + ). For a ∈ V, let n a be the linear transform of W defined by

n a (α, v, β) = (α, αa + v, αP (a) + 2P (a, v) + β).
It is easily verified that n a belongs to G. The action of n a on V is given by n

a (v) = v + a. Further, for a, b ∈ V , we have n a • n b = n a+b so that N = {n a , a ∈ V } is an abelian subgroup of G. Lemma 9.6. Let P = LN . The stabilizer G ∞ of ∞ in G is equal to P.
Proof. First, clearly P stabilizes ∞. Next let g ∈ G ∞ . Then g preserves the subspace (Re n+1 ⊥ = V ⊕ Re n+1 . Let ge 0 = (α, v, β). As Q(e 0 , e n+1 ) = 1, ge 0 / ∈ (Re n+1 ⊥ and α is different from 0. Moreover, 0 = Q(e 0 ) = Q(ge 0 ) = P (v) -αβ, 4 Observe that this is a twofold covering of O(Q)/{± Id}, which already acts on X.

so that (δ 1 α

• t v )(1, 0, 0) = (α, v, β).

Let

g 1 = δ 1 α • t v -1
• g, so that g 1 e 0 = e 0 . Then g 1 stabilizes both ∞ and o. Hence g 1 stabilizes (Re 0 ⊕ Re n+1 ) ⊥ = V and the restriction of g 1 to V preserves the quadratic form Q |V = P . So the matrix of g 1 is of the form

  s 0 0 0 h 0 0 0 t   ,
where h ∈ O(p, q) and st = 1. In other words, g 1 belongs to L, and hence g ∈ P . The conclusion follows.

Let ı be the element of G defined by

  0 0 1 0 I 1,n-1 0 -1 0 1  
where I 1,n-1 = diag(-1, 1, . . . , 1). Then for x = (x 1 , x 2 , . . . , x n ) ∈ V × , ı(x) = -x P (x) = -x -1 , where x = (x 1 , -x 2 , . . . , -x n ). The group G is generated by P and ı.

The character χ of Str(V ) is given on L by It is then easily verified that the cocycle a(g, x), defined in the general situation by (6.9), is given by a(g, x) = α gκ(x) .

For (λ, ε) ∈ C × {±}, the principal series representations π λ,ε is given by π λ,ε (g)f (x) = a(g -1 , x) -λ,ε f (g -1 (x)).

The Knapp-Stein intertwining operator is given by

I λ,ε f (x) = V f ( 
y)P (x -y) -n+λ,ε dy and satisfies I λ,ε • π λ,ε (g) = π n-λ,ε (g) • I λ,ε . 9.6. The source operator F λ,µ . As in the general case, Theorem 9.4 can be reinterpreted to give a covariance property for the differential operator F λ,µ (or its global version as a differential operator on X × X), just by the change of parameters s = n 2 -λ and t = n 2 -µ. For V = R p,q , the differential operator F λ,µ is given by Theorem 9.7. For (λ, ε) and (µ, η) in C × {±}, the source operator F λ,µ is covariant with respect to (π λ,ε ⊗ π µ,η ) and (π λ+1,-ε ⊗ π µ+1,-η ).

F λ,
The construction of covariant bi-differential operators B (N ) λ,µ for O(p + 1, q + 1) is then obtained as in the general case. Let us state the formula for B We point out that these covariant bi-differential operators were already introduced in [START_REF] Ovsienko | Generalized transvectants, Rankin-Cohen brackets[END_REF]. V R 1,k-1 R p,q R k,0 C k co(V ) so(2, k) so(p + 1, q + 1) so(k + 1, 1) so(k + 2, C) str(V ) so(1, k -1) ⊕ R so(p, q) ⊕ R so(k) ⊕ R so(n, C) Because of lack of a convenient reference, the purpose of this appendix is to clarify the relations between a real simple Jordan algebra and its complexification. B.1. Rank, generic minimal polynomial and determinant. Let V be a unital Jordan algebra over F = R or C and denote by 1 its unit element. Recall that the rank of an element Proof. This is a consequence of the local expression of these coefficients near a regular element, namely a j (x) = (-1) j-1 Det(1, x, . . . , x j-1 , x r , x j+1 , . . . , x r-1 , e r+1 , . . . , e n ) Det(1, x, x 2 , . . . , x r-1 , e r+1 , . . . , e n ) ,

⊕ C n k p + q = k k 2k r 2 2 2 4 d k -2 p + q -2 0 2(k -2) e 0 0 k -1 1 V + R 1,k-1 R 1,q R 1,0 R 1,k-1 r + 2 2 1 2 d + k -2 q -1 0 k -2 V Herm(
where e r+1 , . . . , e n are elements completing 1, x, x 2 , . . . , x r-1 to a basis of V (see [12, proof of Proposition II.2.1]).

Corollary B.4. Let V be a real Jordan algebra, and let V be its complexification. Then the restriction to V of the determinant of V coincides with the determinant of V .

B.2. Primitive idempotents. Let x ∈ V. A complex number λ is called an eigenvalue of x if λ is a root of the minimal polynomial p x . An element is said to be semi-simple if its minimal polynomial has only simple roots.

Proposition B.5. Let (d 1 , d 2 , . . . , d l ) be a complete system of orthogonal idempotents, and let (µ 1 , . . . , µ l ) be l distinct complex numbers. Let x = l j=1 µ j d j . Then x is semisimple, d j ∈ C[x] for every 1 ≤ j ≤ l and the eigenvalues of x are µ 1 , . . . , µ l . For 1 ≤ j ≤ l, let p j be the unique polynomial of degree l -1 such that p j (µ i ) = δ ij . Then p j (x) = d j , so that d j ∈ C[x]. Therefore p(x) = 0 ⇐⇒ p(µ j ) = 0. This shows that p belongs to the ideal I(x) if and only if p is a multiple of Π(T ) = l j=1 (Tµ j ). In other words Π is the minimal polynomial of x and the conclusion follows.

Proposition B.6. Let x ∈ V be a semi-simple element, with distinct eigenvalues λ 1 , . . . , λ k . There exists a unique (up to permutation of the indices) system of orthogonal idempotents (c 1 , c 2 , . . . , c k ) in C[x] such that

c 1 + c 2 + • • • + c k = 1, x = λ 1 c 1 + • • • + λ k c k .
This is (part of) [START_REF] Faraut | Analysis on symmetric cones[END_REF]Proposition VIII.3.2]. The uniqueness statement comes from the fact that necessarily c j = p j (x) where p j is the polynomial of degree k -1 which satisfies p j (λ i ) = δ ij . Proposition B.7. Let V be a complex simple Jordan algebra.The set of semi-simple regular elements of V is open and dense in V.

Proof. V has a real form V which is euclidean and simple. Let r be the rank of V and let (c 1 , c 2 , . . . , c r ) be a Jordan frame of V . Choose r distinct complex numbers λ 1 , λ 2 , . . . , λ r , and let x = λ 1 c 1 + • • • + λ r c r . Then x is semi-simple, and x is regular as the minimal polynomial of x is of degree r. The set of regular elements is an open Zariski subset of V (see [START_REF] Faraut | Analysis and geometry on complex homogeneous domains[END_REF]Proposition IV.1.1]). For x regular, the minimal polynomial is equal to the generic minimal polynomial. The set where the generic minimal polynomial m x has only simple roots is a Zariski open subset, as this is the set where the discriminant of m x (which is polynomial

  Case (a) : d ≡ 0 (mod 4) or d ≡ 2 (mod 4) and r odd, Case (a ) : d ≡ 2 (mod 4) and r even, Case (b) : r = 2 and d odd, Case (c) : r arbitrary and d = 1.

Theorem 4 . 4 .

 44 For s ∈ C, let γ(s) := (2π) -rs e( rs 4 )Γ Ω (s). Then the following functional equations hold.Case (a): If d ≡ 0 (mod 4) or d ≡ 2 (mod 4) and r odd, then

2 √ - 1 )sin r πs 2 Γ

 212 ) and(4.18), one hasZ s-n r ,+ ( f ) = (r (2π) -rs e rs 4 Ω (s)Z -s,-(f ), and Z s-n r ,-( f ) = 2 r (2π) -rs e rs 4 Γ Ω (s) cos r πs 2 Z -s,+ (f ). Case (b): In this case r = 2 and ξ = ( √ -1) 3d with d odd. By [32, page 481] we have 2 i=0

  . Below we will use the notation of Subsection 7.2. For N ≥ 1, define the operator F (N ) (λ,ε),(µ,η) by the following diagram

(9. 5 )

 5 Proof. It is enough to prove the identity on the open subset {(ξ, ζ); P (ξ), P (ζ) > 0}.

( 1 )

 1 λ,µ , which is covariant with respect to (π λ,ε ⊗ π µ,η , π λ+µ+2,εη ) :

  Proof. Let p ∈ C[T ]. Then p(x) = l j=1 p(µ j )d j .

r ,-= ( √ -1) r π -rs-n 2 Γ V (s + 1 + n r ) Γ V (-s + 1)Z -s-n r ,-.2 In this case r = r and d = d.

Recall that 2n r is an integer.

x ∈ V is defined by rk F (x) = min{k > 0, (e, x, x 2 , . . . , x k ) are F-linearly dependant}

The rank of V is defined as rk F (V ) = max{rk F (x), x ∈ V }.

Proposition B.1. Let V be a unital real Jordan algebra and V its complexification. Then rk R (V ) = rk C (V).

Proof. Let rk R (V ) = r. By assumption, there exists an element x ∈ V such that

whereas for all elements y ∈ V ,

is holomorphic and vanishes on V by (B.2), hence everywhere. This shows that ≤ r. We can conclude that r = .

An element x ∈ V is said to be regular if rk F (x) = rk F (V ). In the case where V is a real Jordan algebra, an element of V is regular if and only if it is regular as an element of V.

Let x ∈ V . Then the subalgebra F[x] generated by 1 and x is commutative and power associative. Let I(x) be the ideal of F[x] defined by

Since F[T ] is a principal ring, I(x) is generated by a monic polynomial, called the minimal polynomial of x and denoted by p x . Proposition B.2. There exists polynomials a 1 , a 2 , . . . , a r ∈ F[T ] such that the minimal polynomial p x of every regular element of V is given by

is called the generic minimal polynomial of V at x. The linear form a 1 is the trace of V and the polynomial a r is the determinant of V ,

Proposition B.3. Let V be a real Jordan algebra and V its complexification. The generic minimal polynomial of V restricts to the generic minimal polynomial of V . in x) vanishes. Hence the set of semi-simple regular elements is a Zariski open subset, which is non empty by the first part and hence dense.

A real Jordan algebra V is said to be complex, if there exists a linear isomorphism J of V such that

Proposition B.8. Let V be a simple real Jordan algebra. Let V be its complexification. Then V is simple, unless V has a complex structure in which case V is isomorphic to V ⊕ V opp .

Proof. Assume that V is not simple. There exists a non trivial ideal J ⊂ V. Let σ be the conjugation with respect to V . Then σ(J) is also an ideal of

But the second assumption leads to H = V and hence J = V, a contradiction. Hence J ∩ σ(J) = {0}. Along the same lines, one can prove that J + σ(J) = V. As a result, the Jordan algebra V splits as V = J ⊕ σ(J). Now consider the (real linear) map J x -→ x + σ(x) ∈ V, it is both injective and surjective, and hence an isomorphism. But as J and σ(J) are ideals of V, (x + σ(x))(y + σ(y)) = (xy + σ(xy)) and hence V is isomorphic to J. Moreover, as σ is C-conjugate linear, the complex structure of σ(J) is the opposite complex of that of J. Proposition B.9. Let V be a real simple Jordan algebra. Let c be a primitive idempotent element of V . Then c, viewed as an element of V, is either a primitive idempotent or it can be decomposed as c = d + σ(d), where σ is the conjugation w.r.t. V , and d and σ(d) are orthogonal idempotents of V.

a real semisimple Jordan algebra. As V has c as its unique idempotent, V 1 is simple. By [14, Section 6], V 1 is a Jordan field, and there exists a positive-definite bilinear β form on V 1 such that xy = β(x, c)y + β(c, y)x -β(x, y)c.

Then β(c, c) = 1. Let W = (Rc) ⊥ = {0}. Rewrite elements of V 1 as sc + v where s ∈ R and v ∈ W , so that the Jordan product of V 1 can be written as B.3. Complex simple Jordan algebra viewed as a real Jordan algebra. Let V be a simple complex Jordan algebra, and let ∆ be its determinant. When viewed as a real Jordan algebra, it is still simple. Let det be its determinant.

Proof. Let x ∈ V and let p be its minimal polynomial over C. Then pp(x) = 0, and pp is a polynomial with real coefficients. As deg(p) ≤ r, where r is the rank of V, the degree of the minimal polynomial over R of an element is ≤ 2r. Conversely, consider a complete system of primitive idempotents (c 1 , c 2 , . . . , c r ) of V. Let x = i λ j c j with λ i ∈ C. Suppose that p is a polynomial with real coefficients such that p(x) = 0. Then, necessarily p(λ j ) = 0 for 1 ≤ j ≤ r. But as p is real valued, p(λ j ) = 0 for 1 ≤ j ≤ r. Assume that λ j , λ j are all distinct. Then p is a multiple of r j=1 (T -λ j )(T -λ j ). Hence r j=1 (T -λ j )(T -λ j ) is its minimal polynomial over R. Moreover det(x) = r j=1 λ j λ j = ∆(x)∆(x). Hence the identity (B.3) is valid for the elements of the form considered. But clearly these elements form a dense set in V, hence the identity holds in general. B.4. Non complex non-split simple real Jordan algebra. The algebra V is said to be split if a (hence any) primitive idempotent is primitive in the complexification V. Otherwise it is said to be non-split.

Let V be a non-split simple real Jordan algebra. Let (c 1 , c 2 , . . . , c ) be a maximal set of orthogonal primitive idempotents. Then there exists d j , f j ∈ V(c j ) , such that

By Theorem B.9, c j decomposes as a sum c j = d j + f j , and so (d j , f j ) 1≤j≤ is a maximal family of orthogonal idempotents of V. Hence r = 2 .

Proposition B.11. Let V be a real simple Jordan algebra which has no complex structure and which is non-split. Then det(x) ≥ 0 for every x ∈ V .

Proof. Let x ∈ V be a regular semi-simple element. There exists a maximal set (c 1 , c 2 , . . . , c ) of orthogonal primitive idempotents such that x = j=1 t j c j . For each j, 1 ≤ j ≤ , let d j , f j ∈ V(c j ) , such that f j = σ(d j ), c j = d j + f j , 1 ≤ j ≤ , so that x = j=1 t j d j + j=1 t j f j and hence det V (x) = det V (x) = j=1 t 2 j ≥ 0. The conclusion follows as regular semi-simple elements are dense in V .