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Amphiphilic lipid bilayers modify the friction properties of the surfaces on top of which they
are deposited. In particular, the measured sliding friction coefficient is significantly reduced com-
pared with the native surface. We investigate in this work the friction properties of a numerical
coarse-grained model of DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) lipid bilayer subject to
longitudinal shear. The interleaflet friction coefficient is obtained from out-of-equilibrium pulling
and relaxation simulations. In particular, we gain access to the transient viscoelastic response of a
sheared bilayer. The bilayer mechanical response is found to depend significantly on the membrane
physical state, with evidence in favor of a linear response regime in the fluid but not in the gel
region.

I. INTRODUCTION

A. Rheological properties of phospholipid bilayers

Glycerophospholipids are essential compounds of bi-
ological lipid bilayers. Their molecular structure com-
prises one bulky zwitterionic, hydrophilic headgroup
(phosphatidylcholine) and two aliphatic hydrocarbon
chains esterified around a glycerol molecule. With chain
lengths comprising between 12 and 20 carbons atoms,
these molecules self-assemble as flat bilayers made of two
leaflets with tail to tail opposing lipid molecules. Com-
mon phospholipids (e.g. dipalmitoyl-phosphatidylcholine
DPPC, distearoyl-phosphatidylcholine DSPC) do not in-
terdigitate under standard conditions, and the leaflets are
relatively weakly bound together [1]. Bilayer fluidity de-
pends significantly on temperature [2]. Moreover, most
pure lipid systems encounters a sharp thermodynamic
melting transition at a given temperature Tm (41◦C for
DPPC, 55◦C for DSPC) [3]. Above melting, lipid tails
are isomerically disordered, weakly cohesive, conferring
fluidity to the bilayer with Arrhenius dependence in tem-
perature. Below melting, lipid tails adopt all-trans con-
formations, are subject to stronger cohesion, displaying
solid type dynamics at short time scales, while remaining
a viscous fluid on longer scales.

Coating a solid surface with a dense phospholipid
monolayer modifies the sliding friction properties signifi-
cantly. Experiments reports a significant decrease in the
sliding friction coefficient when both surfaces are covered
with lipids in a dense, or gel conformation [4]. This is-
sue is relevant in the field of biolubrication, such as for
instance the mechanism of articular joints. As a mat-
ter of fact, synovial fluid combines lipid and biopolymer
molecules for optimal lubrication, the role of each com-
ponent being still a topic of investigation.

It is difficult to relate the macroscopic friction between
a pair of surfaces with microscopic mechanisms involved
at the molecular scale [5]. In the case of hydrated lipid bi-

layers, a lateral shear displacement involves the solvent
viscosity, the sliding leaflet friction and possibly some
sliding of the solvent on top of the hydrophilic bilayer sur-
face. In the framework of linear response, sheared lipid
bilayers display a viscous response, characterized by an
interleaflet friction coefficient b, a Newtonian transverse
viscosity η for the solvent, and a solvent-bilayer friction
b′ which quantifies the importance of the sliding of the
fluid at the bilayer interface.

The experimental determination of b (and b′) is diffi-
cult. Evans and Yeung suggested that b dominates the
resistance of a bilayer when pulling a lipid nanotube from
a giant vesicle, with a micropipette or an optical tweezer
device [6]. Tube pulling experiments have since become a
standard protocol for probing membrane physical prop-
erties, including the case of living cells [7]. Leroy et al.
were able to estimate the dissipation induced by the fric-
tion of the interfacial water beneath a supported lipid
bilayer deposited onto a mica surface using a surface
force apparatus (SFA) [8]. More recently, simulations
by Schlaich et al. [9] investigated in details the nature
of the friction between amphiphilic surfaces separated
by a variable amount of interfacial water using atom-
istic molecular dynamics simulations. The competition
between interleaflet and water layer frictions in stacks
of sheared lipid bilayers was investigated in Boţan et
al. [10]. Seifer and Langer [11] showed how the relax-
ation dynamics of the transverse membrane undulation
modes depend on η and b, and interpreted in this way
experimental data from inelastic neutron scattering [12].
This formalism was successfully used by den Otter and
Shkulipa for estimating b for various numerical model of
lipids, using equilibrium molecular dynamics (MD) [13].
Müller and Müller-Plathe showed how the bilayer friction
and viscosity parameters could be obtained from reverse
non-equilibrium molecular dynamics (RNEMD) simula-
tions [14]. Falk et al. managed to determine b for a
coarse-grained bilayer in both the fluid and gel states us-
ing RNEMD [15] for shearing the solvent on both sides
across the bilayer. In particular, the authors reached
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the conclusion that there was only minor sliding veloc-
ity effects at the solvent-lipid interface. Using a similar
method, Zgorski et al. determined b and the membrane
transverse viscosity for DPPC Martini models [16].

The approaches of den Otter and Shkulipa, or Falk et
al. cannot easily be generalized to supported bilayers in
close interaction with a flat solid surface. It is known for
instance that a proximal solid surface influences the lipid
diffusion dynamics, as shown in Scomparin et al. [17].
There is therefore a need for simple approaches for deter-
mining the friction properties of lipid bilayers interacting
with solid surfaces.

A natural idea consist in pulling directly on various
system components (lipid or water layers) and measur-
ing the resulting velocity profile. Alternatively, informa-
tion can be obtained by observing how a system initially
prepared with mutual nonvanishing relative sliding ve-
locities relaxes to its equilibrium state. When linear re-
sponse from the system holds, it is expected on general
grounds that both approaches give consistent results. In
the present work we show how a constant pull force and
momentum relaxation methods can be used to determine
the interleaflet friction coefficient in the simple case of a
coarse-grained lipid bilayer in water.

B. The Martini model

Martini is a successful coarse-grained representation
of lipids, with a 4 heavy atoms to 1 bead center level
of coarse graining. This model displays a realistic fluid
phase, as well as an ordered “gel” phase, with nemati-
cally oriented chains but disordered headgroups. In lipid
biophysics, the gel phase corresponds to a viscous, al-
most solid, state of the lipids observed at low tempera-
tures. The transition between gel and fluid phases is a
weakly first order phase transition, called main or melt-
ing transition, accompanied by a discontinuous change
in structural parameters such as the nematic ordering of
the chains or the bilayer thickness. If the fluid phase is
fairly well reproduced by the Martini model, which was
designed for this purpose, the existence of a gel phase is a
happy outcome of the model. While missing some char-
acteristics of the experimental gel phase, the numerical
low temperature phase captures some important features:
stronger cohesion, larger thickness, lower molecular mo-
bility. However, the Martini model misses the existence
of a ripple phase Pβ′ below the melting transition, and
the presence of a chain tilt angle below the pretransition
temperature Lβ′ → Pβ′ [2, 18].

We chose to study DSPC molecules, parameterized us-
ing the version v2.0 of the Martini model [19]. DSPC
lipids possess two saturated 18 carbons chains. This
choice was driven by experimental considerations, as
DSPC supported lipid bilayers obtained by Langmuir de-
position constitute a robust and well studied model sys-
tems [17, 20] which we intend to simulate in a near future.
Our simulated systems comprise a single bilayer alongside

a single water slab, with periodic boundary conditions in
the three dimensions. Two representative snapshots are
shown in Figs 1 and 2.

FIG. 1. Snapshot of a configuration of a coarse-grained bilayer
containing 256 DSPC lipids per leaflet, with 2560 water beads
molecules on both sides, in the high temperature fluid state
at 340 K.

FIG. 2. Snapshot of a configuration in the low temperature
gel state at 280 K. Compared to the fluid case, the bilayer is
less extended in the xy direction and thicker. No appreciable
lipid chain tilt angle is visible.

The Martini model is designed in order to reproduce
faithfully the structural and thermodynamic properties
of lipids in the fluid phase [19, 21]. Coarse-grained beads
interaction potentials are not tabulated but assume a
Lennard-Jones functional form, though with larger radii
and energy parameters compared with the atomistic case.
The standard Gromacs implementation [22] of the Mar-
tini model uses standard molecular dynamics algorithms,
such as Verlet integrator and Nose-Hoover or v-rescale
weak coupling thermostats [23–25]. These design and
implementation choices imply that the kinetic proper-
ties of the Martini systems do not quantitatively agree
with atomistic simulations or experiments. The corre-
sponding kinetic properties must therefore be discussed
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at a qualitative level, focusing on relative differences be-
tween situations, or investigating various methodological
approaches.

II. METHODOLOGY

A. Relaxation and forced sheared experiments.

Our purpose is to characterize the response of a sup-
ported bilayer sheared parallel to its longitudinal xy di-
rections, as it may provide clue on the experimentally
observed drag friction reduction upon coating surfaces
with deposited lipid mono or multilayers. The determi-
nation of the interleaflet friction bilayer in water solution
is therefore a first step towards the desired answer, which
will be later extended to lipid layers deposited onto solid
surfaces.

Two strategies were used in the present work. Both
were implemented using the Gromacs molecular dynam-
ics simulation tool [22]. In the first approach, here re-
ferred as constant pull force (CPF), a non-equilibrium
stationary pull of each membrane leaflets was set up, re-
sulting in a constant drift velocity of the bilayer. The
pulling force-velocity ratio gives access into the value of
the interleaflet friction coefficient b. In the second ap-
proach, referred as force kick relaxation (FKR), the re-
laxation stage of a leaflet consecutive to an initial step
increase in its center of mass (COM) velocity was mea-
sured. The displacement response curve of the leaflet
gives another estimate of the interleaflet coefficient b. It
provides in addition a direct picture of the transient bi-
layer response following a sudden shear force kick.

A linear response regime is expected provided the
pulling forces (CPF) and initial velocities (FKR) remain
below their respective threshold values. In the linear
regime, both drift velocities and displacements compete
with random equilibrium fluctuations, a situation corre-
sponding to a small Peclet number. The extraction of the
signal (drift displacement and velocity) out of the noise
(equilibrium fluctuations) requires averaging over many
independent simulation runs. The statistical significance
of the bilayer response curves was estimated by means of
a bootstrap statistical procedure. In our case, for every
simulation condition (external constant force, or initial
force kick), a sample of ca Ns ∼ 50, 150, 1000 indepen-
dent runs was subject to random reweighting, in order to
infer a reliable value of the statistical uncertainty asso-
ciated with sample averaging. Details on our numerical
simulation procedure and the associated statistical anal-
ysis are deferred to the appendix section.

B. Standard hydrodynamic description

A natural interpretation frame for our numerical sim-
ulations is the classical hydrodynamics model. In this
framework, both lipid leaflets are described as rigid solid

slabs (thickness Lb, area A), surrounded by a water layer
considered as a Newtonian fluid (thickness Lw, viscosity
η). Inertia of lipids (leaflet mass M) and fluid (volu-
metric mass density ρ) components are accounted for.
The upper and lower leaflets move with respective ve-
locities Vu, Vd along the horizontal x direction. Water is
described by a Eulerian velocity field v(z)~ex, where the
vertical coordinate z, normal to the bilayer, varies in the
interval z > Lb/2; z < −Lb/2 with periodic boundary
conditions v(z + L) = v(z) (PBC), and x is one of the
horizontal direction, without loss of generality (Fig 3).
The fluid is subject to a Newtonian shear stress τzx(z),
abbreviated as τ(z). Sticking boundary conditions at the
lipid water interface z = ±Lb/2 are assumed (or equiva-
lently an infinite lipid-fluid friction b′ =∞).

FIG. 3. Geometric parameterization of the system used in
the present study, with L = Lb + Lw.

We assume that leaflets experience a friction propor-
tional to their mutual relative sliding velocity Vu − Vd,
leading to an interleaflet shear stress τ = τ(z = 0) obey-
ing

τ = b(Vu − Vd), (1)

with b the interlayer friction coefficient. An average fluid
velocity can be defined as:

Vw =
1

Lw

∫ Lb/2+Lw≡−Lb/2[L]

Lb/2

dz v(z). (2)

In addition, we consider the possibility to act upon each
leaflet, and the water layer, by means of a uniform force
acting on the center of mass of the corresponding sub-
system. Such forces are respectively denoted Fu, Fd, Fw,
and directed along x. For convenience, one introduces
the corresponding stresses φµ (Fµ = Aφµ) with µ = u
(upper leaflet), µ = d (lower leaflet) and µ = w (water
region). One restricts ourselves to the physical case of a
vanishing total force Fu + Fd + Fw = 0, henceforth pre-
serving the total momentum ρLwVw+MVu+MVd of the
hydrodynamic system.

The stationary solution of the hydrodynamic problem
corresponds to a parabolic flow. Two stationary velocity
profiles are of particular interest. The linear Couette
profile corresponds to φu = −φd, φw = 0, Vu = −Vd,
Vw = 0 and

2

(
b+

η

Lw

)
Vu = φu. (3)
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The Poiseuille flow profile corresponds to φu = φd =
−φw/2, Vu = Vd and

6
η

Lw
(Vu − Vw) = φu = −φw

2
. (4)

The relation above can be further simplified as the total
momentum is assumed to vanish 2Mφu + ρLwφw = 0.
Both flows are represented in Fig 4.

C. Viscoelastic relaxation model.

As the Results section demonstrates, the hydrody-
namic model is useful but does not accurately represent

the observed numerical behavior. We therefore introduce
here a more general viscoelastic model. We assume that
a transient linear response of a bilayer subject to a sud-
denly applied external force exists, that can be expressed
by means of a retarded memory function. Using the same
notations as above, but now with time dependent veloc-
ity fields Vu(t), Vd(t), Vw(t) one has:

M

A
V̇u(t) =

∫ t

−∞
ds [gbu(t− s)(Vd(s)− Vu(s)) + gwu(t− s)(Vw(s)− Vu(s))] + φu(t); (5)

M

A
V̇d(t) =

∫ t

−∞
ds [gbu(t− s)(Vu(s)− Vd(s)) + gwu(t− s)(Vw(s)− Vd(s))] + φd(t); (6)

ρLwV̇w(t) =

∫ t

−∞
ds [gwu(t− s)(Vu(s) + Vd(s)− 2Vw(s))] + φw(t). (7)

The retarded response involves two memory functions.
A first kernel gbu(t) accounts for the interleaflet interac-
tion, including interleaflet dynamic friction, lipid inertia
as well as viscoelastic lipid elastic tilt and stretch modes.
A second kernel gwu(t) accounts for all the water leaflet
interactions, which possibly includes solvent sliding fric-
tion, retardation of the fluid motion due to inertia, and
again viscoelasticity arising from lipid tilt and stretch.
The same kernel is used for both leaflets, as a conse-
quence of the up-down z symmetry of the flow. External
stresses φu(t), φd(t), φw(t) are arbitrary functions of time.

We now restrict ourselves to two main situation of
interests, namely Couette Vw = 0, Vu(t) = −Vd(t),
φu(t) = −φd(t), φw = 0 and Poiseuille Vu(t) = Vd(t) =
−Vw(t)ρLw/2M , φu(t) = φd(t) = −φw(t)/2 (see Fig 4).
The retarded motion equations are in the Couette case:

M

A
V̇u = −

∫ t

∞
ds (2gud + gwu)(t− s)Vu(s) + φu(t);

Vw = 0, (8)

and in the Poiseuille case:

M

A
V̇u = −

∫ t

∞
ds gwu(t− s)

(
1 +

2M

AρwLw

)
Vu(s)

+φu(t);

ρLwV̇w = −
∫ t

∞
ds gwu(t− s)

(
2 +

AρwLw
M

)
Vw(s)

+φw(t). (9)

Of particular importance in the present study is the
response to a couple of force kicks (Couette case)

φu = −φd =
M

A
V0δ(t), (10)

that confers instantly a momentum MV0~ex to the upper
leaflet, and −MV0~ex to the lower leaflet. Velocity profiles
can be inversed by Laplace transforms of the velocity,
stress and memory functions, e.g.

V̂u(p) =

∫ ∞

0

dt e−ptVu(t), (11)

leading to

(
M

A
p+ 2ĝud + ĝwu

)
V̂u(p) =

M

A
Vu(t = 0). (12)

In particular, the impulsional displacement ∆Xu =∫∞
0

dt Vu(t) = V̂ (p = 0) obeys the relation

∆Xu =

M

A
Vu(0)

2ĝud(0) + ĝwu(0)
. (13)

In the mean time, a stationary stress φu should result in
an asymptotically constant velocity Vu and V̇u = 0:
∫ ∞

0

ds (2gud(t) + gwu(t))Vu = (2ĝud(0) + ĝwu(0))Vu

= φu (14)
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One recovers the hydrodynamic limit φu/Vu = 2(b +
η/Lw) and therefore

(2ĝud + ĝwu)(p = 0) = 2

(
b+

η

Lw

)
(15)

In conclusion, one obtains a useful relation between
the impulsional displacement ∆Xu and the interleaflet
friction coefficient.

b+
η

Lw
=

M

A
Vu(0)

2∆Xu
(16)

This viscoelastic model assumes a linear relation be-
tween forces (the cause) and displacement or veloc-
ity (the effect). A master curve Ξ(φ)(t) can be intro-
duced to represent the normalized drift displacement
(Xu(t)−Xu(0))/φu associated to a step stress H(t) = 1
for t ≥ 0 and H(t) = 0 for t < 0 (Heaviside function).
This master curve obeys

Ξ(φ)(t) = 0 for t < 0; (17)

M

A
Ξ̈(φ)(t) = −

∫ t

∞
ds (2gud + gwu)(t− s)Ξ̇(φ)(s)

+H(t) for t ≥ 0. (18)

In the mean time, a master curve for the normalized dis-
placement Ξ(V )(t) = (Xu(t) − Xu(0))/V0 can be intro-
duced for the impulsion case, which obeys:

Ξ(V )(t) = 0 for t < 0; (19)

M

A
Ξ̈(V )(t) = −

∫ t

∞
ds (2gud + gwu)(t− s)Ξ̇(V )(s)

+
M

A
δ(t) for t ≥ 0. (20)

Both master curves can be related to the memory func-
tion 2gud + gwu in Laplace space.

D. Diffusion of the lipids and water centers of mass

Simulations deal with finite size systems, and thermal
fluctuations are always present. In our case, the center of
mass of each of the three main components of the simu-
lated system (upper and lower leaflets, water) is subject
to brownian motion, while the global center of mass is
fixed, as required by weak coupling to Nose-Hoover or
v-rescale thermostats. It results that the instantaneous
kinetic energy of the upper, lower leaflets and water is
not given by the usual equipartition of energy theorem.
However, the order of magnitude of the instantaneous
kinetic energies MµV

2
µ /2, µ = {h, u, w} remains of the

order of kBT/2.
We therefore distinguish the average, non fluctuating

hydrodynamic displacements Xµ(t), µ = {h, u, w} from

the sampled, brownian trajectories X
(α)
µ (t), with α an

FIG. 4. When opposing forces are exerted on each leaflet (case
a) the resulting stationary state sees the two leaflets sliding
at constant relative velocity, surrounded by a uniform solvent
velocity gradient profile, as emphasized in the sub-picture
(b) where the simulation box boundary has been purposely
shifted to sit exactly at the mid-plane of the bilayer. Case
(a-b) is subsequently referred as a Couette situation. When a
uniform force is exerted on both leaflets and an opposing force
on the solvent beads (case c), a symmetric parabolic velocity
profile builds up in the solvent, assuming sticking boundary
conditions at the interface with the bilayer (d). Case (c-d) is
subsequently referred as Poiseuille situation. In all cases, the
total momentum of the system is constant and vanishes.

index relative to a given center of mass trajectory real-
ization, or simply Xµ(t), µ = {h, u, w} when referring to
a generic trajectory. Similarly, one introduces the brown-

ian instance of the velocity response V
(α)
µ (t) or generically

Vµ(t).

In order to quantify the magnitude of the brownian
fluctuations acting on the positions Xµ(t), one naturally
defines the diffusion coefficient DCOM,µ of the center of
mass of the subcomponent µ (not to be confused with
the molecular diffusion coefficient), based on the mean
quadratic displacements 〈(Xµ(t) − Xµ(0))2〉. Hydrody-
namic and brownian displacements are related by canon-
ical ensemble averages Xµ(t) = 〈Xµ(t)〉. So are the ve-
locities Vµ(t) = 〈Vµ(t)〉.

Expression (16) relates the dissipation b + η
Lw

to

the normalized displacement ∆Xu/Vu(0). Noting that
∆Xu/Vu(0) =

∫∞
0

dt Vu(t)/Vu(0), one can write

A∆Xu

MVu(0)
=

A

MVu(0)2

∫ ∞

0

dt Vu(t)Vu(0)

=
2

b+ η/Lw
. (21)

By analogy with brownian motion, where the diffusion
coefficient is linked to the velocity autocorrelation func-
tion, one has 2DCOM,ut ' 2t

∫∞
0

dt 〈Vu(t)Vu(0)〉, and ob-
tain from (21) a heuristic ”Stokes-Einstein” relation:

DCOM,u ∼
2〈MV(0)2〉
A(b+ η/Lw)

∼ kBT

A(b+ η/Lw)
. (22)
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The precise relation between the relative quadratic dis-
placements matrix of the various system subcomponents
(leaflets, water. . . ) and the hydrodynamic friction coeffi-
cients (b, η. . . ) when the global center of mass is fixed is
non trivial and will be the subject of future work. Eq. 22
provides however an order of magnitude for DCOM,u.

E. Constant pulling force simulations.

A direct estimate of the asymptotic stationary drift
velocity 〈Vµ(t)〉 obtained as a result of a piecewise con-
stant step increase of the external applied stresses φu =
−φd, φw = 0 can be obtained by pulling directly on the
leaflets. Even though the out of equilibrium features of
the molecular dynamics software that we use are some-
what limited, it is possible to exert a constant force to
the upper leaflet while exerting the opposite force on the
lower leaflet (section A). This features comes as part of
tools available to perform biased, constrained umbrella
sampling simulation schemes. The displacement Xu(t)
can then be read directly from the trajectory and its av-
erage value 〈Xu〉 fitted to an affine time function x0+tVu.

The possibility of imposing a pulling force for long
times enables a quite precise determination of the rel-
ative stationary drift velocity of the leaflets.

F. Force kick relaxation simulations.

Starting from an equilibrium trajectory configuration
(reference NVT run), an initial condition Cα is prepared
by adding an identical V0~ex constant velocity to all the
beads pertaining to the upper leaflet, and the opposite
velocity to all the beads in the lower leaflet. In the Mar-
tini model, all beads possess the same mass (72 a.m.u.,
1008 Da for a DSPC molecule), and the upper leaflet
center of mass acquires a finite momentum MV0~ex as
a result, with M the mass of all beads in a leaflet.
The velocity of the water beads is unaltered. Physi-
cally, this corresponds to an instantaneous force torque
(MVu~exδ(t),−MVu~exδ(t)) applied to the bilayer, and the
total momentum of the system is preserved. In particu-
lar, the system center of mass remains fixed, as required
when using a Nose-Hoover or velocity-rescale thermostat.
Following the force kick, the kinetic energy of the bilayer
is increased by an amount

Nb∑

i=1

m

2
(~vi ± V0~ex)2 =

Nb∑

i=1

m

2
~v2i +

Nbm

2
V 2
0

+V0 · (
Nb∑

i=1

±~vi.~ex), (23)

where Nb stands for the number of beads (center of
forces) present in the moving leaflet, and m the asso-
ciated (here identical) bead masses. The third term is a

statistical O(
√
Nb) fluctuation. The kinetic energy term

is therefore increased by a relative amount

MV 2
0

3NbkbT
. (24)

This sets an upper bound Vmax for the velocity shift V0
that can be applied without requiring the thermostat to
pump too much energy out of the system, of the order
of Vmax = (NbkbT/M)1/2 ' 0.2 nm.ps−1, using Nb =
256× 14 = 3584, M = Nb × 72 amu and T = 340 K.

Assigning to each leaflet a too small initial veloc-
ity value results in lowering the signal to noise ratio,
the signal being the forward displacement and the noise
the brownian displacement of the leaflet center of mass.
Assuming it takes a characteristic time trelax for the
leaflets to return to equilibrium, and that a given ini-
tial drift velocity V0 drives the leaflet over a distance
∆Xu, the ratio between ballistic and random displace-
ment reads ∆Xu/

√
DCOM,utrelax at the end of the relax-

ation stage. If in addition, the simple and naive scaling
∆Xu = V0trelax holds, the ballistic to random displace-
ment ratio assumes a familiar Peclet number expression

Pe1/2 with Pe = V0∆Xu/DCOM,u.

The displacement ∆Xu(t) is monitored as a function of
time t. As each run provides a noisy brownian response

∆X
(α)
u (t), the procedure must be repeated many times,

until a significant displacement 〈∆Xu(t = ∞)〉 emerges
from the thermal noise. Meaningful information can only
be obtained in the linear response regime, i.e. when the
ratio ∆Xu/Vu(0) is constant up to some uncertainty. Too
large velocity kicks Vu(0) � Vlr deviate from the linear
regime and cannot be described within the framework of
retarded linear response functions. The velocity scale Vlr
until which the linear regime is expected to hold must
be empirically determined and is expected to be smaller
than Vmax determined above. In the opposite limit, a too
low kick V0 does not give any useful result as the signal
to noise ratio becomes too large. Again, to estimate a
confidence interval for 〈∆Xu〉, one resorts to a statistical
bootstrap procedure.

G. Bootstrap procedure.

The bootstrap is an empirical statistical method that
provides a quantitative estimate for the confidence inter-
val of an average sampled quantity [26]. In the absence of
extra information regarding the nature of the statistical
process under investigation, the bootstrap approach uses
only available sample values to build this estimate.

Considering a set of Ns independent sampled values
S0 = {x(α)}, α = 1 . . . Ns as main input information,
one can generate an number M of synthetic samples

Sβ = {x(α)β }, α = 1 . . . Ns, β = 1 . . .M by drawing with
repetition, at random, Ns elements of S0. The variability
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State Lx (nm) Lz (nm) A (nm2) Lb (nm) Lw (nm)

Fluid 13.2 8.2 174. 4.6 3.6

Gel 11.1 10.6 124. 5.6 5.1

TABLE I. Geometric characteristics of the simulated systems
in the fluid and gel regimes.

of the average

〈f〉β =
1

M

Ns∑

α=1

f(x
(α)
β ) (25)

as a function of the synthetic samples Sβ , provides us
with a confidence interval 2σb for the sampled average,
using the following estimator

σ2
b ≡

1

M − 1

M∑

β=1


〈f〉β −

1

M
(
∑

β′

〈f〉β′)




2

(26)

with M large enough. In our case M varies between 10
and 500. As discussed in [26], the bootstrap approach
makes optimal use of the sole available information con-
tained in S0.

H. Preparation of the initial configurations.

The system was equilibrated first at 340 K (fluid phase)
and 280 K (gel phase) using a thermostat and a semi-
isotropic barostat (see section A). This thermalization
stage makes it possible to determine the average system
size in the absence of external stress, or equivalently van-
ishing surface tension, respectively in the fluid and the
gel phases. Out of equilibrium simulations were then run
a number of times, using a thermostat and constant box
size conditions (Lx, Lz), where Lx, Lz were the result of
the previous step. Coupling to a thermostat was how-
ever still required to preserve the mechanical energy of
the system. For each phase, configurations from a refer-
ence canonical, constant volume (NVT) runs were then
periodically recorded and stored, providing a set of up
to 1000 initial conditions, in relation with the bootstrap
and ensemble averaging procedures. The resulting equi-
librium lipid bilayer geometrical characteristics are sum-
marized in Table I.

III. RESULTS

A. Fluid phase constant pull force (CPF)
simulations

The bilayer was submitted to a sequence of increas-
ing pulling stresses φu, resulting in an average displace-
ment curve 〈Xu〉. Each external pulling force condition
was repeated about 50 times (Table II), resulting in a
sample set of raw displacement curves Fig 5(A). As seen
in this figure, a typical pulling experiment generates a
brownian displacement of the leaflet center of mass su-
perimposed with a constant velocity horizontal transla-
tion. Panel (A) superimposes a raw displacement with
an average over 50 equivalent displacements. An exam-
ple of bootstrap averaging of the trajectories is shown in
Fig 5(B). Displacements curves start with a short tran-
sient regime, dominated by inertial and viscoelastic con-
tributions. It is followed by a linear regime associated
with stationary hydrodynamic dissipation and constant
velocity translation Vu. The bootstrap analysis shows
a dispersion among synthetic displacement curves, only
slowly decreasing with the size of the set of trajectories,
and inversely proportional to the applied stress φu.

Averages of the normalized displacement curves
〈Xu(t)〉/Fu are shown in Fig 6. In the framework of lin-
ear response, the averaged normalized displacements are
expected to converge to a master curve Ξ(φ)(t). This is
indeed the case for a set of applied stresses within an in-
terval 4.8×105 ≤ φu ≤ 48×105 Pa (applied forces in the
range 50 ≤ F ≤ 500 kJ.mol−1.nm−1). A too small ap-
plied stress φu = 105 Pa (force F = 10 kJ.mol−1.nm−1)
departs from the master curve due to strong brown-
ian fluctuations[27]. Large applied stresses clearly bring
about strong deviations from linear response, associated
with shear-thinning behavior. Taking the bilayer thick-
ness Lb = 4.8 nm as a characteristic length, the upper
limit of validity of the linear response regime (50 bars)
can be turned into a surface tension φuLb of magni-
tude 25 mN.m−1, typical of the oil-water surface tension
(35 mN.m−1). It corresponds to a typical drift velocity
of 10−3 nm.ps−1=1 m.s−1. Fig 7 represents the average
drift velocity Vu,as a function of the applied force Fu, or
equivalently stress φu = Fu/A in the fluid state.

The determination of Vu using CPF and eq. (3) leads
to a value for b + η/Lw, following eq. (16) equal to
2.75± 0.08× 106 Pa.s.m−1. This value was further con-
firmed by using a larger sample of 1024 lipids with the
same hydration of 10 water beads (40 water molecules)
per lipid.

B. Fluid phase force kick relaxation (FKR)
Couette simulations

Repeated kicks were there applied, starting from 150 to
1000 different configurations. A bootstrap sample of both

leaflet displacements is shown in Fig S1, SI. The typical
averaged displacement curve 〈Xu(t)〉 increases first lin-
early, as a natural consequence of the initial force kick
that confers a uniform translation velocity to the leaflet
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FIG. 5. Constant force pulling experiments in the fluid state: (A) single leaflet COM displacement 〈X〉(t)(α), starting from the

simulation box center (ca 6.6 nm) and averaged displacement 〈X〉(t) ' 1/50
∑50
α=1 X

(α)(t) vs time. A bootstrap procedure (B)
estimates the dispersion σb(Xu(t)) caused by the finiteness of the sample {α}. Vertical bars represent the confidence interval
of 10 selected points from the second half of the trajectory (5000 < t < 10000 ps), taken as twice the estimated bootstrap
standard deviation. The vertical bars are used to provide a confidence interval for the drift velocity (slope of the averaged
displacement curve).

(Fig 8). The initial impulsion dissipates fast and vanishes
within 5 ps. Surprisingly, the displacement curve starts
to decrease, or equivalently the leaflet velocity becomes
negative. This peak is followed by a much slower relax-
ation to an apparent plateau value, also associated with
a negative velocity, which extends on a few hundred ps.
The apparent plateau value is associated to a relaxation
time trelax such that ∆Xu ' 〈Xu(trelax) − Xu(0)〉, with
trelax of the order of 500 ps. In what follows, for each run
X(α)(t), an estimate of the plateau value was obtained
by averaging the displacements over a time interval [500-
1000 ps].

The striking main feature of the impulsion relaxation
curve is the non monotonic behavior of the displacement
Xu(t) (Fig 8) and the velocity Vu(t) (Fig 9). It is not
possible to account for such a behavior without an elas-
tic contribution to the membrane relaxation. Figs 8 and
9 therefore suggest that the mechanical response of a
sheared bilayer is viscoelastic on a time scale tvel ∼ trelax,
with tvel a bilayer internal viscoelastic relaxation time.

As in the constant pulling force experiments, it is possi-
ble to define a linear response regime, by plotting the dis-
placement normalized with the initial velocity 〈Xu(t)〉/V0
as a function of time. A master curve Ξ(V )(t) is expected
to describe this averaged, normalized displacements in
the short and intermediate time regime t ≤ trelax. The
normalized displacement velocity Ẋu/V0 = Vu/V0 is di-
mensionless, and can be interpreted as a velocity auto-
correlation linked to the momentum scattering efficiency
of the mutual interleaflet molecular interactions.

Fig 9 describes the normalized velocity relaxations
Vu(t)/V0 for a set of increasing V0, and shows a
deviation of the relaxation from the master curve
Ξ(V )(t) at V0 larger than 0.1-0.2 nm.ps−1. Correspond-
ingly, the effective normalized translation shift (plateau)
∆Xu(trelax)/V0 starts to increase, pointing again to a
shear-thinning behavior. The empirical upper bound Vl.r.
of the linear response regime is therefore found to be of
the same magnitude as the maximal velocity Vmax de-
duced from eq. (24).
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FIG. 7. Average drift velocities vs applied forces (lower hor-
izontal scale bar) or stresses (higher horizontal scale bar). A
shear thinning deviation is seen at τ ≥ 50 bars. Inset: focus
on the linear regime region.

While the convergence to a finite plateau value is a rea-
sonable expectation for the averaged displacement curve,
simulated trajectories are subject to the thermal motion
of the leaflet center of mass, which is expected to be
asymptotically dominant at large times. Given a sample
size Ns, the thermal motion of the sample averaged dis-
placement curve is set to scale as (DCOM,u/Ns)

1/2t1/2.
The determination of ∆Xu from MD sampling is there-
fore empirical to a certain extent, as any finite sample
average eventually departs from the plateau value. The
sample size must be large enough to keep the combination

(DCOM,u/Ns)
1/2t

1/2
relax smaller than ∆Xu. Equation (22)

provides a theoretical estimate of the accuracy of 〈∆Xu〉.
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FIG. 8. Normalized averaged displacements 〈Xu〉(t)/V0 for a
set of increasing velocities 0.01 and 0.08, . . . , 0.5 nm.ps−1.

0 5 10 15 20 25 30
Time (ps)

0

0.01

0.02

0.03

V
el

o
ci

ty
 (

n
m

.p
s-1

)

0.08
0.09
0.1
0.2
0.5

V
0
 (nm.ps

-1
)

FIG. 9. Normalized averaged velocities 〈Vu〉(t) =
〈dXu/d t〉(t)/V0. The velocity starts at an initial value of 1,
decreases fast to 0 (coinciding with the sharp peak in the
displacement curve) reaches a negative minimum and finally
slowly regresses to 0 from below, coinciding with the slowly
decreasing approach of the displacement plateau value.

The bootstrap estimate of the variance of ∆Xu (eq. 26)
is another independent path to estimate the sample de-
pendence of ∆Xu.

C. Fluid phase Poiseuille flow geometry

Constant pulling rate experiments can be performed
in the Poiseuille geometry, when both leaflets are pulled
in one direction and the solvent homogeneously pulled
in the reverse direction. Assuming that the solvent does
not slip at the lipid-solvent interface, the average relative
drift velocity obeys relation (4). We justify this assump-
tion from [15] which found no significant sliding velocity
at the lipid water interface on a qualitatively similar sys-
tem. Using Lw = 3.5 nm in the fluid state (T = 340 K),
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one finds a value of the coarse grained Martini water
viscosity η = 8 × 10−4 Pa.s (eq. 4). Repeating the sim-
ulation with a larger number of water beads (10240 sol-
vent beads for 512 lipids, Lw = 7.2 nm), the resulting
water viscosity changes to η = 7 × 10−4 Pa.s. Indepen-
dent simulations using reverse non-equilibrium molecular
dynamics [28] (with Lammps, using an equivalent fluid
of truncated Lennard-Jones particles at the same tem-
perature) confirms that the solvent viscosity lies close to
η = 7 × 10−4 Pa.s. The slightly larger value obtained
in the presence of a thin water layer is likely to be due
to water interfacial effects, the dissipation properties in
the interfacial water region being likely to slightly dif-
fer from the bulk. The Poiseuille flow simulation design
described above can therefore be considered as a viable
route to estimate the viscosity of a solvent, provided in-
terfacial effects are small. It is worth noting that the
Martini water viscosity lies quite close to the experimen-
tal value, a feature hardly expected from a coarse grained
unrealistic water model.

D. Gel phase CPF and FKR simulations

An ordered phase of the lipid bilayer was obtained at
low temperature T = 280 K. A number of bootstrap
realizations of the displacement Xu(t) corresponding to
an initial velocity step of V0 = 0.9 nm.ps−1 is shown
in Fig S3, SI. Normalized averaged displacements curves
〈Xu〉(t)/V0 are represented in Fig 10, for increasing initial
velocities ranging from 0.01 to 0.5 nm.ps−1. The normal-
ized displacements do not superimpose well, even in the
low velocity regime, and a master curve Ξ(V )(t) may not
exist at low temperatures. This is especially visible in
Fig 11, where the displacements ∆Xu are plotted as a
function of the initial velocity V0. Unlike the fluid phase,
the gel phase curve does not display any established lin-
ear regime.

Normalized velocities in the low temperature phase are
shown in Fig 12 and Fig S3, SI [29]. It is distinctly differ-
ent from the equivalent fluid counterpart Fig 9. Corre-
spondingly, the initial displacement peak Xu(t) − Xu(0)
(inset of Fig S3, SI) is smoother than in the fluid sit-
uation. The leaflet velocity change of sign during the
relaxation stage is seen both at high and low tempera-
tures.

In order to extract the true velocity-stress character-
istics of the bilayer, we substracted the contribution of
the sheared solvent from the applied force. Eq. 3 then
becomes

τ = φu −
2η

Lw
Vu (27)

The above relation is valid for an arbitrary stress-velocity
relationship, provided the solvent response remains linear
in Vu. The CPF results in the gel phase are summarized
in Fig 13 and Fig S4, SI. The average drift velocity was
plot as a function of the pull force φu and as a function of

the inner stress τ . Unlike the fluid phase, the gel phase
does not display any linear regime. The log-scale rep-
resentation of the velocity-stress characteristics seems to
indicate a power-low behavior over almost two decades,
with apparent exponent 〈V〉 ∼ τ1.50.
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FIG. 10. Normalized averaged displacements 〈Xu〉(t)/V0 in
the gel state for a set of increasing impulsions 0.01 and
0.03, . . . , 0.1 nm.ps−1. The plateau value is clearly increasing
with the initial applied velocity, and the normalized displace-
ments do not appear to collapse onto a master curve, pointing
to an absence of linear response.
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FIG. 11. Normalized average displacements ∆Xu/V0 for a set
of increasing impulsions and sample size 150, with confidence
intervals.

E. Lipid tilt modes

The non monotonic velocity relaxation curve consecu-
tive to an external force kick at t = 0 cannot be accounted
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ation curve is quite different from the fluid case state.
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(circles). The cross-over from linear to shear-thinning regime
is visible in the fluid state, while the gel regime seems con-
sistent with a power-low relation of exponent Vu ∼ τ1.50 or
φ1.44
u .

for by a simple hydrodynamic model. Instead, it suggests
that some elastic response is involved in the leaflet trans-
lational relaxation. All the numerical evidence suggest
that the bilayer remain flat, with negligible out-of-plane
bending strain. On the other hand, the simulations are
held at constant volume, ruling out standard membrane
stretching (or compressibility) contribution. We there-
fore checked whether lipid tilt modes were activated as a
result of the interleaflet friction.

We estimated the average lipid tilt angle, defined as a
polarization vector linking the first to the least bead in
the hydrocarbon chain (cf Fig 14). Fig S5,SI shows, on

FIG. 14. Martini CG representation of a DSPC molecule.
Bead 1: choline, bead 2: phosphate, beads 3-4: glycerol,
beads: 5-9 and 10-14 hydrophobic chains. A vector linking
the first and last carbons of each chain is used for defining
the average lipid tilt angle θ.
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FIG. 15. Apparent friction coefficient b + η/Lw from FKR
simulations as a function of the initial induced velocity V0

in the fluid (red squares) and gel (blue circles) states. Each
point corresponds to 1000 repeated independent simulations.
For each point, a vertical error bar 2σb is inferred from the
bootstrap variance σ2

b of 10 synthetic averaged displacement
curves. The resulting confidence interval decreases with ve-
locity in all cases. Confidence intervals are about 10% relative
value for V0 = 0.08, 0.09 and 1 nm.ps−1, and about 20% rel-
ative value for V0 = 0.05, 0.06 and 0.07 nm.ps−1 in the fluid
state.

an enlarged scale, that the average bilayer tilt angle is less
than 0.2◦ at equilibrium. When the bilayer is submitted
to a CPF, the angle deviates from its vanishing average,
proportionally to the applied force (in the limit of linear
response and small angles) as shown in Fig 16. The tilt
angle in the fluid phase reaches a well defined asymptotic
stationary value, while in the gel phase, the angle seems
to be still evolving on the figure time scale (5 ns). In
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addition, the tilt angle in the gel phase has a larger mag-
nitude than in the fluid phase. The ratio between the
average tilt angle and the applied stress is of the order of
θ/φu ' 2.75/24 ' 0.125◦.bar−1 or 1.7× 10−3 bar−1 with
θ expressed in radians in the fluid phase.

Impulsional FKR tilt angle results are shown in Fig 17,
associated to an initial velocity V0 = 0.08 nm.ps−1. For
comparison, we also represent equilibrium curves, in the
absence of bilayer sollicitation. The tilt angle in the gel
state relaxes slower than in the fluid state.
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FIG. 16. Evolution of the average tilt angle 〈θ〉 dur-
ing a constant pull force experiment with a force F =
250 kJ.mol−1.nm−1 (stress τ = 24 bars).
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IV. DISCUSSION

The interleaflet sliding kinetics in the fluid phase dis-
play an extended linear regime, both in the CPF and the
FKR regimes. Deviations from linear behavior emerge
as the pulling stress exceeds τc = 50 bars (Fig 7) or the
initial velocity exceeds 0.2 nm.ps−1 (Fig 9). This critical
stress τc is of the same magnitude as the cohesion stresses
within the bilayer, of the order of 200 bars [30]. Inversely,
small Peclet number considerations make it impractical
to use both approaches for too small initial velocities or
pull stresses. This lower limit is not intrinsically related
to the physical system considered, but a matter of finite
simulation box size: increasing the sample size amounts
to decreasing the collective center of mass diffusion coef-
ficient and enhances the sensitivity of the method. Un-
fortunately, unconfined large bilayers systems are subject
to strong unfavorable undulation fluctuations, and do not
constitute a viable option.

The CPF linear regime yields a consistent estimate
for b + η/Lw, provided one neglects the sliding veloc-
ity of the solvent. Substracting off the viscous contri-
bution, our estimate for b is 2.54± 0.10× 106 Pa.s.m−1,
with η/Lw = 2.0± 0.12 × 105 Pa.s.m−1 obtained from
our stationary Poiseuille flow pulling simulations. Dif-
ferent other approaches for the Martini water viscos-
ity (7 × 10−4 Pa.s.m−1 in [13], or using reverse non-
equilibrium molecular dynamics with Lammps [31]) pro-
vides fully consistent estimates. This value compares well
with the A55 model of den Otter and Shkulipa obtained
using a completely different scheme (RNEMD shear of
the surrounding solvent), for which the quoted value for
b is between 2.7×106 and 2.8×106 Pa.s.m−1. The A55 is
a similar lipid with 5 beads in each chain (as our DSPC)
parameterized using the values of the Martini model, and
which was simulated at 323 K. The agreement between
both models is very good, given the difference between
the approaches and also the 13 K temperature gap.

Falk et al. [15] simulated a different coarse-grained
model (SDK [32], see also [33]) obtained a b value of
1.4× 106 Pa.s.m−1. The difference may be attributed to
a difference of parameterization between the SDK and
Martini model. This difference is significant enough to
change qualitatively the nature of the gel phase. In the
SDK model, the low temperature state is a Lβ′ tilted
chain phase. It results that the SDK solid phase displays
anisotropic friction properties, with the direction parallel
to the tilt direction displaying a b coefficient close to the
fluid case (1.3×106 Pa.s.m−1) and a yield force in the di-
rection perpendicular to the tilt. In our case also, the ap-
parent b value is similar in the gel and fluid case (Fig 15).
However, due to the absence of linear regime, we cannot
provide anything but a qualitative behavior of the coef-
ficient b.

Zgorski et al. [16] performed RNEMD simulations to
shear the solvent and the bilayer and obtain b, a sim-
ilar approach as Falk et. al. They compared the
old and new version of DPPC Martini lipids (4 beads
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chains) and obtain a value in the range of 4.3 × 106 to
5.5 × 106 Pa.s.m−1. These value are significantly larger
than ours (even though not strictly comparable) and also
than den Otter and Shkulipa (2.4 × 106 Pa.s.m−1 for
the 4 beads chain model A44). Interestingly, Zgorski et
al. have determined b for the atomistic CHARMM 36
model, reaching values of the order of 1.1×107 Pa.s.m−1,
still an order of magnitude smaller than the experimen-
tal estimates of Evans and Yeung or Pfeiffer et al. [6, 12].
More work is therefore needed, both on the experimental
and simulation sides, to determine how accurately cur-
rent atomistic simulations reproduce the local interlayer
friction phenomenon.

The FKR predictions for b+ η/Lw are summarized in
Fig 15 and the only numerical values in the linear regime
with reasonable error bars are those with V0 = 0.05 to
0.1 nm.ps−1. The resulting confidence interval decreases
with velocity in all cases. In the fluid phase, the three
first velocities (V0 = 0.05, 0.06, 0.07 nm.ps−1) are con-
sistent with the CPF value obtained in the linear regime
(dash line), though with significant error bars. The three
following points 0.08, 0.09 and 0.1 nm.ps−1 are located
slightly below the CPF value. The last point 0.2 nm.ps−1

is clearly below the CPF value, again pointing towards
shear-thinning behavior.

The estimation of ∆Xµ used in eq. (16) was obtained
by computing the average stationary value of the re-
laxation curves featured in Fig 8. The position of the
plateau may have been underestimated as the displace-
ments Xµ(t) relaxes slowly to their asymptotic limit. Ex-
tending the analysis to longer time scales does not im-
prove much the determination of the displacement be-
cause the brownian random diffusion increases, and the
signal to noise decreases with the elapsed time. It is
therefore necessary to both simulate for longer times and
to increase in parallel the number of independent tra-
jectories. We therefore conclude that there is a rough
agreement between the CPF and FKR methods. Such
an agreement is expected based on linear response con-
siderations, which is only seen in the fluid phase. The
numerically observed upper limit of validity of the linear
response regime Vlr ∼ 0.1 nm.ps−1 is remarkably sim-
ilar to the velocity Vmax ∼ 0.2 nm.ps−1 deduced from
the system kinetic energy argument. This does not di-
rectly prove that the excess of kinetic energy is respon-
sible for the linear response breakdown, but it indicates
that not other limiting process occurs until the Vmax limit
is reached.

The FKR approach gives insight on the transient me-
chanical response of the bilayer, and predicts a sign inver-
sion of the leaflet COM velocity following the positive im-
pulsional initial velocity. We interpret this phenomenon
as the consequence of a slowly relaxing lipid chain tilt an-
gle, causing a reactive (non dissipative) stress contribu-
tion. Following the initial velocity kick, an elastic stress
builds up, and is further dissipated.

We note that a different transient regime would occur
if the initial force kick was applied non uniformly to the

bilayer leaflets, for instance on the lipid headgroups only.
Linear response arguments suggests that the macroscopic
hydrodynamic coefficient b + η/Lw must not depend on
the location of the applied pulling force or force kick.
However, the transient response is expected to depend
on the way forces are exerted. Further work is needed to
compare the current procedure to other possibilities, that
would more closely mimic a real shear force pulling ex-
periment. The uniform pulling force used in the current
approach corresponds to a uniform body force applied on
each leaflet, due to the fact that all Martini beads have
an identical mass.

A transient shear stress response can be inferred from
the retarded memory function formalism exposed in the
methodology section. This response can be probed by
any spectroscopic shear force experiment, using elec-
tromagnetic [34] or piezoelectric vibrations (dissipative
quartz-crystal microbalance QCM-D [35, 36]). So far,
none of these techniques reaches the frequency domain
of the observed viscoelastic regime. The characteris-
tic ”Maxwell” relaxation time predicted by the Martini
model is about 100-1000 ps (Figs 8,10). The connec-
tion between Martini coarse-grained and atomistic ki-
netic properties is quite loose. At room temperature,
the Martini lipid diffusion coefficients (ca 70 µm2.s−1 in
the DSPC fluid phase at 340 K) are predicted to ex-
ceed by a factor 10 the actual values (ca 15 µm2.s−1 at
60◦C [3, 37]). On the other hand, the predicted Martini
water viscosity (0.7 mPa.s) is in reasonable agreement
with the real value (1 mPa.s). These examples show that
the difference between the coarse-grained and atomistic
time scales may stretch from 1 to 10, depending on the
phenomenon considered. Assuming that the actual re-
laxation dynamics associated with the leaflet viscoelastic
response falls between 1 and 10 times the corresponding
numerical prediction, one may estimate the real Maxwell
relaxation time to be of order 1–10 ns, and a frequency
response possibly in the 100 Mhz–1 GHz range.

In addition to the intrinsic membrane elastic response,
the water gap probed by the sliding leaflets (Fig 4) is also
expected to respond according to a viscoelastic mem-
ory pattern. Stokes hydrodynamics predicts that rigid
slabs cannot drag the interstitial fluid instantaneously.
The stress-velocity response function can be computed
analytically for sticking boundary conditions, using for
instance Duhamel’s principle [38]. However, if there
were no elastic contribution, the viscous memory function
alone would not lead to a reversal of the COM velocity.

The transient response is characterized by a sharp ini-
tial increase. We attribute it to the fast loading of the
bond springs connecting the beads in the interleaflet area.
A characteristic time scale can be obtained as the pe-
riod tfast ∼ 5 × 2π

√
(m/kbond) of a chain of 5 harmonic

spring of stiffness kbond = 1250. kcal.mol−1.nm−2 and
bead mass m = 72 a.m.u (g.mol−1 or atomic mass unit),
typical from the Martini force field used in this approach.
One finds tfast ∼ 7 ps, in reasonable agreement with the
observed initial peak dynamics in Fig 8.
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Let us now estimate the hydrodynamic damping time
thyd resulting from balancing inertia with interleaflet
friction. One has thyd = MNl/(2Ab). With M '
1000 g.mol−1, Nl = 256, b = 2.5 × 106 Pa.s.m−1,
A = (13.2 nm)2, we obtain thyd = 0.5 ps. This
time scale est extremely short. We note that it is of
the order of magnitude of the normalized plateau value
Ξ(V )(∞) = ∆Xu/V0 ' 0.5 ps in Fig 8. If the displace-
ment curve following the initial force kick was a single ex-
ponential dominated by a balance between friction and
inertia, one would see a very fast asymptotic approach
to the plateau value, on the same time scale as the first
peak. Such a fast relaxation would indeed describe the
hydrodynamic response of an incompressible rigid slab
subject to solvent and interlayer friction. On the other
hand, with ct ' 1000 km.s−1 as the celerity of transverse
sound waves in the bilayer (a typical magnitude for a fluid
sound wave celerity) it would take at least 5 ps for the
sudden shear stress wave following the force kick to es-
tablish itself across a 5 nm thick membrane. This proves
that the ideal incompressible solid relaxation result can-
not describe the observed situation. It also provides an
alternative estimate of the characteristic time scale of the
initial displacement peak position.

A Poiseuille characteristic time scale tPoiseuille can be
defined as the slowest relaxation time of the Stokes hy-
drodynamic flow in a flat slab ρL2

w/(ηπ
2) involving the

channel gap Lw = 3.5 nm and the water kinematic viscos-

ity η/ρ ' 7×10−7 m2.s
−1

. Its value is tPoiseuille = 1.6 ps,
and also much shorter than the observed relaxation time.
We therefore conclude that the sliding leaflets relaxation
time trelax has a viscoelastic origin, and we denote it tvel.

We therefore conclude that the relaxation seen on Fig 8
results from slow membrane internal relaxation dynamics
and is not limited to the interfacial sliding region. Slow
lipid tilt modes relaxation, such as depicted in Fig 16,
certainly contribute to the observed slow viscoelastic re-
sponse of the bilayer FKR.

It turns out that the condition ∆Xu ∼ V0trelax is not
met. Instead ∆Xu/V0 is of the order of thyd ∼ 0.5 ps
and the long relaxation time trelax ∼ tvel � ∆Xu/V0
enhances the effect of brownian fluctuations. Follow-
ing eq. (22) one expects a COM diffusion coefficient of
the order of 10 µm2.s−1. A numerical estimate based
on the COM mean squared displacement yields a value
DCOM,u ' 3.4 µm2.s−1 (Figs 18 and 19).

As a consequence, the ballistic to brownian displace-
ment ratio rbal/br equals

rbal/br =
∆Xu√

DCOM,utvel

=

(
V 2
0 thyd

DCOM,u

)1/2(
thyd
tvel

)1/2

(28)

For an initial velocity jump V0 = 0.08 nm.ps−1, the ratio
rbal/br ' 1. According to the above expression, brow-
nian displacement and ballistic drift are for each sin-
gle run X(α)(t) of the same order of magnitude. With
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FIG. 18. Projected Brownian xy trajectory of the upper
leaflet center of mass, observed during 50 ns in the fluid phase.
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FIG. 19. Mean square displacement curve of the upper leaflet
center of mass at 340 K and a linear adjustment with 2D =
6.8× 10−5 nm2.ps−1.

tvel ' 500 ps, one finds from Fig 19 a mean square dis-
placement of the center of mass of the order of 0.004 nm2.
Assuming a gaussian distribution of the latter and a sam-
ple size of Ns = 1000 independent runs, the resulting 2σb
confidence interval is expected to be ∼ 10%, the right
order of magnitude for what is seen in Fig 15.

We finally note that that the friction coefficient b =
2.54 × 106 Pa.s.m−1 can be interpreted as a Newtonian
fluid sheared between two infinitely thin parallel planes
separated by a 5 nm thick gap, with an equivalent dy-
namic viscosity ηequiv = 13 mPa.s, about 15 times the
value of liquid water.

Let us now consider the friction properties of the bi-
layer in the gel state. The most prominent characteristics
is the absence of visible linear response regime. This is
particularly clear from Figs 11, 13 and 15. The effective
b+ η/Lw coefficients decreases with the external pulling



15

stress (CPF) and the initial force kick (FKR), a typical
shear-thinning behavior. As the solvent viscosity does
not change at the transition, the interleaflet friction is
responsible for the observed behavior. If it is not possi-
ble to affirm for sure that no linear regime exists at lower
pulling stresses, such a linear regime clearly lies beyond
our current simulation capacities.

Shear thinning behavior is the hallmark of complex
fluids dynamics. In the CPF regime, the effective fric-
tion b appears to follow an approximate power-law regime
Vu ∼ τ1.5, or equivalently b = τ/Vu ∼ V −0.33u , where τ is
the shear-stress. Beyond linear response, one does not ex-
pect equivalence between CPF and FKR measurements
in the gel phase.

The tilt relaxation dynamics (Figs 16 and 17) sug-
gests that the lipid tilt relaxation occurs slowly in the gel
phase. A possible explanation would be that irreversible
or slowly reversible plastic deformations are involved in
the gel sheared bilayer. However, we have not yet found
a quantitative explanation for the apparent power-law
exponent of the velocity-force characteristics.

V. CONCLUSION

We investigated two different approaches for study-
ing lipid bilayer friction, which can both be generalized
to supported membrane systems. A constant pull force
method was used to determine the solvent shear viscosity
and the bilayer interleaflet friction, with good accuracy.
A DSPC fluid membrane was found to behave linearly
until the shear stress reaches the order of 50-100 bars,
and the sliding velocity the order of 1 to 2 m.s−1. Mean-
while in the gel state no linear response was observed,
but instead a non-linear power law stress velocity char-
acteristics. The magnitude of the friction is similar in
both phases.

A second original approach consisted in monitoring the
relaxation of the membrane drift motion following an ini-
tial force kick. This method was found to be less accu-
rate, but consistent with the previous one. It reveals that
both fluid and gel membranes relax slowly to equilibrium,
on a characteristic time scale tvel much larger than the
hydrodynamic hydrodynamic damping thyd. The overall
response bears the hallmark of linear viscoelasticity.

The next step will consists in applying the pull and kick
force methods to atomistic models of fluid bilayers, and to
supported bilayer membranes where strong confinement
and interaction between solid surface and bilayer may
change significantly the results.

The authors warmly thanks Tiago E. de Oliveira,
Adrien Gola and Olivier Benzerara for help and discus-
sions, and gratefully acknowledge support from the high
performance cluster (HPC) EquipMeso from the Univer-
sity of Strasbourg, through grant n◦G2018A53.

Appendix A: Simulation details

We used the Martini lipid version v2.0 and Gro-
macs 5.1. The representation of a DSPC lipid is de-
scribed in Fig 14. It consists in 14 beads located
at various levels on an hydrophilicity scale, interact-
ing with Lennard-Jones interactions of radius r0 =
0.47 nm, connected with harmonic springs of stiffness
k0 = 1250 kJ.mol−1 [19, 21].

In all the simulations, the standard Gromacs md leap-
frog molecular dynamics integrator was used, with a time
step of 20 fs. The velocity rescale [25] was used to keep
the energy constant in the simulation. This thermo-
stat is an alternative to Nose-Hoover and uses a single
supplementary stochastic coordinate Q ensuring canoni-
cal ensemble ergodicity for the simulated system. Lipid
and solvent groups of molecules were separately coupled
to two v-rescale thermostats, with a coupling time con-
stant of 1 ps. For constant pressure simulations, we
used a semi-isotropic Parinello-Rahman barostat with a
time coupling constant of 12 ps and a compressibility
3× 10−4 bar−1 in the xy and z directions.

Center of mass (COM) fixation (nstcomm) deserves a
special attention. It is required to fix the system COM
to a constant position as soon as the system in transla-
tion invariant conjugated with the use of a Nose-Hoover
or v-rescale thermostat. In the Couette flow situation,
the bilayer and water groups have a separately vanishing
linear momentum. In the Poiseuille flow, only the system
COM is stationary. One must therefore apply the con-
straint on the system center of mass (which would oth-
erwise not be perfectly steady due to the approximate
treatment of intermolecular forces), and not separately
to the subsystems.
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FIG. 20. Evolution of the horizontal and vertical box sizes
during the NPT simulation, used for determining the average
box size, in the fluid phase.

A NPT run of 40 ns was used to determine the average
box size for a system subject to constant pressure condi-
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FIG. 21. Evolution of the horizontal and vertical box sizes
during the NPT simulation, used for determining the average
box size, in the gel phase.

tions (Fig 20, 21). A NVT run of 1 µs was then used to
generate 1000 thermalized initial conditions, both in the
fluid and the gel phases.

Constant force pulling was implemented using um-
brella sampling control parameters, such as in the fol-
lowing example for pulling in the Couette geometry with
a constant force of 250 kJ.mol−1.nm−1:

Pull =yes
pull_ngroups = 2
pull_ncoords = 1
pull_group1_name = up
pull_group2_name = down
pull_coord1_type = constant-force
pull-coord1-vec = 1 0 0
pull_coord1_geometry = direction-periodic
pull_coord1_groups = 1 2
pull_coord1_dim = Y N N
pull_coord1_k = 250
pull_coord1_start = yes

In the CPF analysis, 50 trajectories of 10 ns were used
and combined for each pulling stress condition.

Force-kick relaxation simulations were realised by
changing with a python script the x components of the

velocities in the initial configuration file (gro file when
using Gromacs 5.1) as suggested in eq. 23 and using the
new velocities as a starting configuration. The FKR re-
laxation dynamics is unusual in terms of short character-
istic relaxation times, of the order of 1 ps. To perform
our statistical analysis, trajectory frames were dumped
every 10 time-steps (0.2 ps) and 150 trajectories of 25000
steps (500 ps) were used and combined for each initial
velocity condition. Home-made analysis software was
used to open and extract trajectory frames, calculate the
displacements, velocities and other related properties of
each subsystems. Tables II and III summarize the char-
acteristics of the trajectories used in the present study.

The bootstrap analysis [26] was implemented as fol-
lows. In each case, a number Ns of realisations X

(α)
µ (t) of

given procedure (CPF, FKR . . . with different input pa-
rameters) is taken as working sample. Prior to analysing,

a collection of weight vectors w
(α)
β ; β = 1 . . .M ; α =

1 . . . Ns was drawn at random, where for each given β, Ns
independent draws of integers I ∈ [1, Ns] were performed

and w
(I)
β was set equal to the number of times I was

drawn (with repetition) during the process, and divided

by Ns. In this way w
(α)
β is normalized (

∑
α w

(α)
β = 1).

The flat sample average corresponds to the special vector
w0(α) = 1/Ns. Each bootstrap realisation corresponds

to a contraction Xβ,µ(t) =
∑
α w

(α)
β X

(α)
µ (t) of the work-

ing sample. Functions Xβ,µ(t) represent a randomly re-
sampled average of the original working sample, close

to the flat average 〈Xµ〉 = 1/Ns
∑
α X

(α)
µ (t). The rela-

tive variation of the quantities of interest deduced from
〈Xµ〉(t), such as plateau values or average velocities, pro-
vides a confidence interval for the quantity of interest.
Bootstrap amounts to randomly selecting subsets of the
working sample in order to infer its intrinsic variability.
The whole procedure is a kind of Monte-Carlo estimate
of an average value, using the working sample as configu-
ration space. For large and independent enough samples,
the bootstrap approach should indicate the true variabil-
ity of the desired average value. Throughout this work,
we used twice the square-root deviation 2σb of the boot-
strap samples as our confidence interval.
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FIG. S1. Ten different bootstrap realizations of the displacement 〈Xu〉(t) for an initial kick impulsion V0 = 0.09 nm.ps−1.
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FIG. S2. Displacement 〈∆Xu〉 as a function of initial velocity increment V0 in the Couette force kick relaxation of a fluid
bilayer.
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FIG. S3. Ten different bootstrap realizations of the displacement 〈Xu〉(t) for an initial kick impulsion V0 = 0.09 nm.ps−1 in
the gel phase (upper leaflet). Inset: close-up look at the first peak.
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