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Consider finite state space irreducible and absorbing Markov processes. A general spectral criterion is provided for the absorbing time to be close to an exponential random variable, whatever the starting point. When exiting points are added to the state space, our criterion also insures that the exit time and position are almost independent. Since this is valid for any exiting extension of the state space, it corresponds to an instance of the metastability phenomenon. Simple examples at small temperature suggest that this new spectral criterion is quite sharp. But the main interest of the underlying quantitative approach, based on Poisson equations, is that it does not rely on a small parameter such as temperature, nor on reversibility.

Introduction

The metastability phenomenon occurs when a system relatively quickly reaches an apparent equilibrium, before this stochastic balance vanishes in a somewhat unpredictable way. This behavior can be found in various domains, such as physics, chemistry, biochemistry, neuroscience, population dynamics, economics, politics or even (personal?) history. The simplest mathematical model is based on absorbing finite Markov processes, when a quasi-stationary distribution is (almost) attained before the final absorption. The goal of this paper is to give a surprising simple spectral characterization of metastability in this Markovian context.

More precisely, consider a sub-Markovian generator L pLpx, yqq x,yPV on a finite state space V which contains at least two points (otherwise Theorem 1, Theorem 3 and Corollary 4 are trivially true with Σ : " 0). It is a matrix whose off-diagonal entries are non-negative and whose row sums are non-positive. We assume that L is irreducible, in the sense that for any x ‰ y P V , there exists a path px k q kP 0,l (where 0, l t0, 1, ..., lu) going from x to y: x 0 " x, x l " y and Lpx k , x k`1 q ą 0 for all k P 0, l ´1 . For any x P V , X x pX x ptqq tPr0,τxq will stand for an associated Markov process starting from x, up to its vanishing time τ x .

Consider Λ the multiset of the eigenvalues of ´L counted with their algebraic multiplicities. By Perron-Frobenius' theorem, Λ contains an eigenvalue λ 0 ě 0 which is strictly smaller than the real parts of all the other elements of Λ. It is sometimes called the first Dirichlet eigenvalue or the exponential survival rate of L, see for instance the book [START_REF] Collet | Quasi-stationary distributions[END_REF] of Collet, Martínez and San Martín. In particular, the algebraic multiplicity of λ 0 is 1. To avoid a trivial statement below, we assume that L is strictly sub-Markovian, in the sense that λ 0 ą 0.

Perron-Frobenius' theorem also insures the existence and uniqueness of a probability ν on V , called the quasi-stationary distribution, such that νL " ´λ0 ν

For more details about the eigenmeasure ν, which gives positive weights to all the elements of V , we refer again to the book of Collet, Martínez and San Martín [START_REF] Collet | Quasi-stationary distributions[END_REF].

To state our main result, we need to introduce another spectral quantity. Consider δV the set of interior exit points:

δV # ω P V : ÿ yPV
Lpω, yq ă 0 + When a Markov process X x , x P V , associated to L visits a point of δV , there is a positive probability that it vanishes at its next attempt to jump. Let us transform this Markov process into an ergodic one, by requiring that instead of vanishing, a new position is chosen according to ν. It amounts to replace the sub-Markov generator L by the Markov generator r L defined by @ x ‰ y P V, r Lpx, yq Lpx, yq `ˇˇˇˇÿ zPV Lpx, zq ˇˇˇˇν pyq

(the entries of r L on the diagonal are deduced from the fact that the row sums vanish). For x ‰ y P V , r Lpx, yq is different from Lpx, yq if and only if x P δV , in which case the vanishing rate | ř yPV Lpx, yq| is dispatched into the jump rates | ř yPV Lpx, yq|νpyq. For ω P δV , denote

V : ω V ztωu
which is non-empty, due to the hypothesis cardpV q ě 2. Endow V : ω with the sub-Markovian generator L : ω pL :

ω px, yqq x,yPV : ω p r Lpx, yqq x,yPV : ω .

Consider Λ : ω the multiset of the eigenvalues of ´L: ω counted with their algebraic multiplicities. Since there is no reason for L :

ω to be reversible (even when L is assumed to be reversible), a priori the elements of Λ : ω are complex numbers whose real part is positive, by strict sub-Markovianity of L : ω , namely Λ :

ω Ă tz P C : pzq ą 0u

Since the entries of the matrix L : ω are real-valued, the set Λ : ω is stable by complex conjugation, so that the following quantity is positive

Σ : ω ÿ λPΛ : ω 1 λ (3) 
Consider the probability ζ defined on δV by @ ω P δV, ζpωq ˇˇř yPV Lpω, yq ˇˇνpωq

ř wPδV | ř zPV Lpw, zq| νpwq (4) 
Finally introduce

Σ : ÿ ωPδV Σ : ω ζpωq (5) 
The interest of this quantity comes from the following surprisingly simple bound about metastability: The interpretation of this result is as follows. For any ω P δV , the quantity Σ : ω measures how difficult it is to reach the interior exit boundary point ω for the underlying process. Then Σ : stands an average over all the ω P δV : it measures the difficulty of "internal mixing". The quantity 1{λ 0 quantifies the difficulty of getting out of the state space. Thus the above result states that when it is easier to mix than to exit, a metastability phenomenon occurs for the exit time (and the exit position according to the following bounds) and this principle can be quantified in a very clear and spectral manner.

With respect to the informal definition of metastability given at the beginning of this introduction, this theorem does not deal with the fact that an apparent equilibrium has been relatively quickly reached, but only with its vanishing in an unpredictable way (due to the memoryless property of the exponential distribution). In the present setting, the apparent equilibrium corresponds to the quasi-stationary distribution. To quantify the fact it has almost been attained well before the process vanishes, we can introduce conditioned strong quasi-stationary times: starting from x P V , they are stopping times ς x ď τ x (with respect to the filtration generated by X x and independent noise) such that conditioned by ς x on tς x ă τ x u, the law of X ςx is the quasi-distribution ν. Taking into account that on tς x ă τ x u, X ςx is independent from ς x and distributed according to ν implies that τ x ´ςx is conditionally distributed according to an exponential random variable of parameter λ 0 . In particular, if λ 0 Σ : is very small, due to Theorem 1, ς x will have to be negligible with respect to τ x on tς x ă τ x u. Thus we would have a spectral characterization through the quantity λ 0 Σ : of the full metastability phenomenon if the following result was true: Conjecture 2 For any x P V , there exists a conditioned strong quasi-stationary time ς x such that

sup xPV Prς x " τ x s ď Cλ 0 Σ :
where C ą 0 is a universal constant.

When

Prς x " τ x s " 0, ς x is called a strong quasi-stationary times. Such times where constructed in [START_REF] Diaconis | On times to quasi-stationarity for birth and death processes[END_REF] for birth and death processes starting from the non-absorbing boundary of their finite segment state spaces. For more general approaches that can be used for conditioned strong quasistationary times, see Fill [START_REF] Allen | The passage time distribution for a birth-and-death chain: strong stationary duality gives a first stochastic proof[END_REF] and [START_REF] Miclo | On absorption times and Dirichlet eigenvalues[END_REF]. Conditioned strong quasi-stationary times were formally introduced in Manzo and Scoppola [START_REF] Manzo | Scoppola. Exact results on the first hitting via conditional strong quasi-stationary times and applications to metastability[END_REF] in the context of metastability. We will not investigate further the notion of conditioned strong quasi-stationary times in this paper. Instead we will study the behavior of the exit position distribution. The fact that the latter can be almost independent from the starting point, for any absorbing extension of L, as explained below, should be equivalent to the metastability of L as mentioned above Conjecture 2. Proposition 23 and Remark 29, valid in the small temperature framework of Section 5, are strong hints in this direction.

The bound of Theorem 1 extends into a similar result for the exit time and position couple. Denote V V \ BV , where BV is a non-empty set not intersecting V . Be careful about the distinction: δV consists of internal boundary points, while the elements of BV will be external boundary points (even if it would be sufficient to choose a set BV in bijection with δV , each internal boundary point leading to exactly one external boundary point). Consider a Markov generator L p Lpx, yq x,yP V on V which is an absorbing extension of L: @ x, y P V , Lpx, yq " " Lpx, yq , when x, y P V 0 , when x P BV

The weights p Lpx 1 , y 1 qq x 1 PV, y 1 PBV enable, for any x P V , to extend X x into a Markov process Xx p Xx ptqq tě0 taking values in V in the following way: the value Xx pτ x q " y is chosen with the probability measure proportional to p LpX x pτ x ´q, yqq yPBV , and afterward we take Xx ptq " X x pτ x q for all t ě τ x .

Consider the probability measure µ defined on BV by

@ y P BV, µpyq 1 Z ÿ xPV νpxq Lpx, yq (6) 
where Z is the normalizing constant:

Z ÿ xPV, yPBV νpxq Lpx, yq
which is positive, due to the sub-Markov assumption. Up to removing from BV the points y P BV such that µpyq " 0, we can assume that µ gives a positive weight to all points of BV . Recalling the definitions (3) and ( 5) we introduce another probability χ on BV :

@ ω P BV, χpωq 1 ZΣ : ř xPδV Σ :
x νpxq Lpx, ωq (one would have noted that for any x P δV , ˇˇř yPV Lpx, yq ˇˇ" ř ωPBV Lpx, ωq, so that ZΣ : is indeed the normalizing constant in the above formula). Since the quantities Σ :

x are positive on δV and that the support of µ is BV , we get that the support of χ is also BV .

The distribution of the exit couple satisfies:

Theorem 3 We have sup xPV, yPBV, tě0
ˇˇˇP rτ x ď t, X x pτ x q " ys ´p1 ´expp´λ 0 tqqµpyq χpyq ˇˇˇď 12λ 0 Σ :

In practice, V will be a subset of a larger state space and BV will be the set of nearest (outward) neighbors of V in this bigger space. Theorem 3 and the assumption that λ 0 Σ : is small will then enable to replace V by a single point in order to reduce the state space, leading to a controlled clustering procedure for Markov processes.

Despite numerous investigations of metastability, see e.g. the book of Bovier and den Hollander [START_REF] Bovier | Grundlehren der Mathematischen Wissenschaften[END_REF] or the recent paper of Di Gesù, Lelièvre, Le Peutrec and Nectoux [START_REF] Di Gesù | Sharp asymptotics of the first exit point density[END_REF], as well as the references therein (even if these two works are mainly dealing with continuous frameworks), both bounds of Theorem 1 and 3 seem to be new. They are in fact generalizations of some estimates of [START_REF] Miclo | Sur les problèmes de sortie discrets inhomogènes[END_REF], which was restricted to the reversible and small temperature setting, and without spectral interpretation of the bounds.

For x P V , let µ x be the distribution of the exit position, namely the law of X x pτ x q. It becomes closer and closer to µ, as λ 0 Σ : goes to zero, as an immediate consequence of Theorem 3, by letting t go to infinity and summing over y P V the bound |Prτ x ď t, X x pτ x q " ys ´p1 ´expp´λ 0 tqqµpyq| ď 12λ 0 Σ : χpyq Recall that the total variation norm between two probability measures γ 1 , γ on the same finite space V is given by

› › γ 1 ´γ› › tv ÿ yPV ˇˇγpyq ´γ1 pyq ˇČorollary 4 We have sup xPV }µ x ´µ} tv ď 12λ 0 Σ :
Typically, the above results are to be applied to families of absorbed Markov processes pL pnq q nPN on respective state spaces pV pnq , q nPN and metastability will occur if lim nÑ8 λ pnq 0 Σ pnq: " 0 Then for large n, the exit time is close to an exponential random variable and the exit time and position are almost independent.

This behavior is radically opposite to the cut-off phenomenon, see for instance the review by Diaconis [START_REF] Diaconis | The cutoff phenomenon in finite Markov chains[END_REF]. Or at least to its sub-Markovian version, where the absorbing times are investigated instead of the more classical mixing or strong stationary times (of course there are relations between these absorbed and ergodic versions, see for instance Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF]). A strong stationary time is a finite stopping time σ such that σ is independent from the stopped position which is furthermore distributed according to the stationary distribution. In the cut-off phenomenon for strong stationary times, they become asymptotically deterministic, while in metastability, the absorbing times become asymptotically totally impredictable exponential times.

The metastability phenomenon is illustrated in Section 5 by very simple examples on two-point or three-point state spaces at small temperature. It provides a hint of the sharpness of Corollary 4 and of the results of next section, while discussing that of Theorem 1. The situation of generalized Metropolis algorithms will be treated in a future manuscript, including an investigation of quasi-invariant probability measures at small temperature (which requires some care, see Lemma 30 at the end of the present paper). The traditional Metropolis algorithms (where an additional reversibility assumption is made) could be treated with the help of the computations of [START_REF] Miclo | Sur les problèmes de sortie discrets inhomogènes[END_REF], which served as a distant model for the present paper. Nevertheless, our motivation here is to go beyond such small temperature settings and to propose a general spectral criterion for metastability for irreducible finite sub-Markovian processes, in particular the reversibility is now completely removed, due to the introduction of the important quantity Σ : , as shown by Theorems 1 and 3.

The plan of the paper is as follows. The next section present some estimates on the solutions of Poisson equations, which are at the heart of our approach. Sections 3 and 4 respectively deal with the proofs of Theorems 1 and 3. Section 5 is devoted to the explicit treatment of the generic two-point state space case at small temperature, as well as of some three-point state space examples, which despite their apparent simplicity, already displays important features of more general cases.

Poisson equation

The main ingredient in the proofs of Theorems 1 and 3 is an estimate on the solutions of some Poisson equations. Let us present them in a general finite framework.

Let r L p r Lpx, yqq x,yPV be an irreducible Markov generator on a non-empty finite state space V . Denote by r π its unique invariant measure and let us fix a point ω P V . Let ϕ be the unique function on V solution to the Poisson equation

# r

Lrϕs " 1 tωu ´r πpωq r πrϕs " 0

Our purpose in this section is to give some bounds on }ϕ} 8 . To do so, we need to introduce the following objects, similarly to the introduction, except we will not put ω in index of V : and L : , because ω is fixed in Theorem 5 below. Consider V :

V ztωu and L : the absorbing sub-Markov generator pL : px, yqq x,yPV : p r Lpx, yqq x,yPV : . Let Λ : be the multi-set consisting of the spectrum of ´L: with its algebraic multiplicities. Note that by irreducibility of r L, 0 R Λ : , which enables us to introduce

Σ : ÿ λPΛ : 1 λ
The main result of this section is:

Theorem 5 We have }ϕ} 8 ď 2r πpωqΣ :
The proof of this result will require two steps presented in the next subsections, first a rough bound that will next be refined. 

A rough estimate

The interest of these objects is:

Proposition 6 We have }ϕ} 8 ď max xPV }ϕ x } 8 ď r Σ
in particular the last r.h.s. is real (this can also be seen from the complex conjugation stability of r Λ ˚) and positive (as soon as V is not reduced to a singleton).

Proof

For y P V , consider r X y p r X y ptqq tě0 be a Markov process starting from y and whose generator is r L. For x, y P V , define the absorption time

r τ x y inftt ě 0 : r X y ptq " xu
Applying the martingale problem to the function ϕ x up to the time r τ x y ^t, with given t ě 0, we get ϕ x p r X x pt ^r τ x y qq " ϕ x pyq `ż t^r τ x y 0 r Lrϕ x sp r X x psqq ds `Mt^r τ x y " ϕ x pxq ´νpxqpt ^r τ x y q `Mt^r τ x y where pM t q tě0 is a martingale. Taking expectations, we deduce Erϕ x p r X x pt ^r τ x y qqs " ϕ x pyq ´νpxqErt ^r τ x y s

Since V is finite and r L is irreducible, ϕ x is bounded and r τ x y is a.s. finite, so we can let t go to infinity in the above formula and obtain ϕ x pxq " ϕ x pyq ´νpxqErr τ x y s

In particular for any x, y P V , we have ϕ x pxq ď ϕ x pyq. Since νrϕ x s " 0, it follows that α x ´ϕx pxq ě 0

For x P V fixed, integrating the relations @ y P V, ϕ x pyq " ´αx `νpxqErr τ x y s

with respect to νpyq, we get

0 " νrϕ x s " ´αx `ÿ yPV Err τ x y sνpxqνpyq namely α x " ÿ yPV Err τ x y sνpxqνpyq (10) 
The eigentime identity (for a simple proof see e.g. [START_REF] Miclo | An absorbing eigentime identity. Markov Process[END_REF]) asserts that @ y P V,

ÿ xPV Err τ x y sνpxq " r Σ thus
summing with respect to x P V , we obtain

ÿ xPV α x " r Σ 7
and in particular

@ x P V, α x ď r Σ ˚(11)
Coming back to (9), we deduce

@ x P V, }ϕ x } 8 ď α x _ max yPV νpxqErr τ x y s
According to the eigentime identity, we have

max yPV νpxqErr τ x y s ď max yPV ÿ xPV νpxqErr τ x y s " r Σ ånd
it remains to take into account [START_REF] Holley | Simulated annealing via Sobolev inequalities[END_REF] to deduce the desired bound.

A refined estimate

To prove Theorem 5, we consider an extension p V V \tωu, where ω R V , endowed with the irreducible generator p L p p Lpx, yqq x,yPV defined by

@ x ‰ y P p V , p Lpx, yq $ ' ' & ' ' % r Lpx, yq , if x, y P V a , if x " ω and y " ω r πpωq , if x " ω and y " ω 0 , otherwise (12) 
The invariant measure p π associated to p L is given by Lemma 7 We have

p π " r π `aδ ω 1 `a
Proof Denote µ r π `aδ ω, we have to check that µ p L " 0. We consider three cases. 

Since ω is only in relation with ω, it is possible to make a direct link between ϕ and p ϕ.

Lemma 8 On V , we have

ϕ " ˆ1 `1 a ˙r πpωqpψ ´r πrψsq
where ψ is the restriction of p ϕ to V .

Proof

Let us compute r Lrψs. We consider two cases. From Lemma 8, we deduce that

}ϕ} 8 ď 2 ˆ1 `1 a ˙r πpωq p Σ ˚(15)
Theorem 5 will be a consequence of Proposition 9 Assume that all the eigenvalues of L : are of (algebraic) multiplicity 1. Then we have

lim aÑ`8 p Σ ˚" Σ :
In fact we think this convergence holds without the assumption that the eigenvalues of L : are of (algebraic) multiplicity 1. The proof of Theorem 5 would then be immediate. Nevertheless the proof of Proposition 9 without its multiplicity assumption requires more care than is really necessary for our purpose. Before proving Proposition 9, let us deduce Theorem 5 in general:

Proof of Theorem 5

Let I be the (convex) set of all irreducible generators on V and I 0 be the subset of K P I such that all the eigenvalues of K : pKpx, yqq x,yPV : are distinct. Let us check that I 0 is dense in I. Fix some K P I and ą 0. Consider B the set of matrices r K p r Kpx, yqq x,yPV such that

@ x ‰ y P V, Kpx, yq ă r Kpx, yq ă Kpx, yq ` @ x P V, r Kpx, xq " ´ÿ yPV ztxu Kpx, yq
Clearly, B Ă I and to obtain the desired density, it is sufficient to show that pB X I 0 q : ‰ H, where pB X I 0 q : is the image of B X I 0 by the mapping I Q K Þ Ñ K : . Note, on one hand, that pB X I 0 q : " B : X J , where J is the set of V : ˆV : -matrices whose eigenvalues are distinct, and on the other hand, that B : is an open subset in the set of V : ˆV : -matrices. It is then well-known that J is dense in the set of all V : ˆV : -matrices, this ends the proof of the density of I 0 in I.

Let r L P I be fixed as in Theorem 5 and consider p r L pnq q nPN be a sequence of elements of I 0 converging toward r L. We denote by pr π pnq q nPN and pϕ pnq q nPN the corresponding sequences of invariant probability measures and solutions to the Poisson equation [START_REF] Diaconis | On times to quasi-stationarity for birth and death processes[END_REF]. Resorting, for all n P N, to the explicit tree description of r π pnq in terms of r L pnq (see e.g. Lemma 3.1 of Chapter 6 of Freidlin and Wentzell [START_REF] Freidlin | of Grundlehren der Mathematischen Wissenschaften[END_REF]), we get

lim nÑ8 r π pnq " r π
Taking into account the uniqueness of the solution of ( 7), it easily follows that lim nÑ8 ϕ pnq " ϕ and in particular

lim nÑ8 › › ›ϕ pnq › › › 8 " }ϕ} 8
From ( 15) and Proposition 9, we have for any n P N,

› › ›ϕ pnq › › › 8 ď 2r π pnq pωqΣ pnq: (16) 
where Σ pnq: is the trace of the inverse of the matrix ´r L pnq: . Taking the inverse of a matrix is a continuous operation (among invertible matrices), so we deduce that lim nÑ8 Σ pnq: " Σ :

Finally passing to the limit in ( 16), we get the desired bound.

The phenomenon behind the convergence of Proposition 9 is that for a ą 0 large, |V |´1 eigenvalues from p Λ ˚converge toward the eigenvalues of Λ : and the remaining eigenvalue from p Λ ˚diverges toward `8.

First, let us give a non-linear characterization of the spectrum of p Λ ˚.

Lemma 10 A complex number z P Cztr πpωqu is an eigenvalue of ´p L if and only if there exists a function f ‰ 0 on V such that

r Lrf s " ´zf ´az r πpωq ´z f pωq1 tωu (17) 
The number r πpωq is an eigenvalue of ´p L if and only if it is also an eigenvalue of ´L: . 17) is satisfied on V . Note that if f " 0, then from (19) we would get p f pωq " 0 (recall that p λ ‰ r πpωq) and by consequence p f " 0, which is not allowed.

Proof

Conversely, consider z P Cztr πpωqu and a function f ‰ 0 on V such that ( 17) is satisfied. Defining

p f via @ x P p V , p f pxq $ & % f pxq , if x P V r πpωqf pωq r πpωq´z
, if x " ω and reversing the above computations, we get that p f is an eigenvector of p L associated to the eigenvalue ´z.

Next assume that r πpωq is an eigenvalue of ´p L, let p f be an associated eigenvalue and denote f the restriction of p f to V . From ( 18), we deduce that f pωq " 0. Furthermore, we have for x P V : , L : rf spxq " r Lrf spxq " p Lr p f spxq " ´r πpωqf pxq. It follows that f is an eigenfunction of L : associated to the eigenvalue ´r πpωq. Conversely, if r πpωq is an eigenvalue of ´L: with associated eigenvector f , it is sufficient to consider the function p f defined by

@ x P p V , p f pxq # f pxq , if x P V : 0 , if x P tω, ωu
to get that p Lr p f s " ´r πpωq p f .

There is probably an extension of Lemma 10 concerning the Jordan blocs of p L, but such a result will not be useful for us, due to the multiplicity assumption in Proposition 9. Under this hypothesis, we will see below that for a ą 0 large enough, all the eigenvalues of p L are distinct. The following result is the crucial step in this direction.

Lemma 11 Consider η ą 0 and λ ‰ 0 an eigenvalue of ´L: . Under the assumption of Proposition 9, there exists A ą 0 large enough such that for all a ą A, there exists an eigenvalue of ´p L in the complex disk of center λ and radius η.

Proof

If λ " r πpωq, according to Lemma 10, λ is also an eigenvalue of ´p L for all a ą 0. From now on, assume that λ ‰ r πpωq. There is another situation where the result is obvious. Denote µ the (non-negative) measure on V : given by p r Lpω, xqq xPV : . Let ξ be an eigenvector of ´L: associated to λ. If µrξs " 0, then λ is also an eigenvalue of ´p L for all a ą 0. Indeed, note that [START_REF] Miclo | An absorbing eigentime identity. Markov Process[END_REF] 

@ x P V, f pxq " " ξpxq , if x P V : 0 , if x " ω
we get that (21) is satisfied. Since f pωq " 0, (17) is just asking for L : rf spxq " ´zf pxq for x P V : , and this is true with z " λ.

Let us now consider the situation where µrξs ‰ 0. Up to normalizing ξ, we furthermore assume that µrξs " 1. We are looking for a solution pz, f q of (17) equally normalized by µrf s " 1.

Let us change the notations, defining 1{a, r af pωq and g pgpxqq xPV : pf pxqq xPV : . The condition µrf s " 1 translates into µrgs " 1 and (17) with µrf s " 1 is equivalent to the system

$ ' & ' % L : rgspxq ` r
Lpx, ωqr `zgpxq " 0, @ x P V : 1 `´z With this notation, the system (22) can written F p , z, gq " ˆ0 1 ẇhere the 1 corresponds to the ω coordinate (and 0 is the null vector in R V : ). Note that F p0, λ, ξq " ˆ0 1 ṫhus the implicit function theorem enables us to deduce the desired theorem as soon as we will have shown that the Jacobian matrix ∇F pB z F, p∇ gpxq F q xPV : q is non degenerate at the point p0, λ, ξq. We compute that

B z F p0, λ, ξq " ˆξ 0 @ x P V : , ∇ gpxq F p0, λ, ξq " ˆL: p¨, xq `λδ x µpxq
Ṫo check that ∇F p0, λ, ξq is invertible, consider ps, hq P R ˆRV : such that ∇F p0, λ, ξq ¨ps, hq " 0 According to the above computations, this equation can be written under the following system: " L : rhspxq `λhpxq `sξpxq " 0, @ x P V : µrhs " 0

Under the assumption of Proposition 9, the equation

L : rhs `λh " ´sξ
implies that h belongs to the vector space generated by ξ. To see it, just decompose h into a basis of R V : consisting of eigenvectors of L : and take into account that the multiplicity of ´λ is one. It follows that L : rhs `λh " 0 and thus s " 0. Let b P R be such that h " bξ. We deduce that µrhs " bµrξs " b, so the second equation of (23) implies that b " 0 and finally h " 0. Thus we have ps, hq " p0, 0q and ∇F p0, λ, ξq is non degenerate, as desired.

Remark 12 It is the nonlinearity of ( 17) that leads to the above technical arguments. Had a traditional linear eigenproblem been considered, we could have directly resorted to the results of Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF]. Note nevertheless that for " 0, ∇F has the same form as if we had been treating a usual linear eigenproblem.

We can now come to the Proof of Proposition 9 Define mint|λ| ^|λ ´λ1 | : λ ‰ λ 1 P Λ : u which is a positive quantity according to the assumption on the multiplicity of the elements of Λ : and to the fact that 0 R Λ : . Considering η {2 in Lemma 11, we deduce that there exists A ą 0 such that for any a ą A and any λ P Λ : , there exists an eigenvalue of ´p L in the disk centered at λ of radius η. By definition of η, this eigenvalue is not null and all these eigenvalues are distinct for different λ P Λ : . This gives us cardpV : q " cardpV q ´1 distinct elements from p Λ ˚. To see that the missing element is going to infinity as a goes to infinity, it sufficient to consider the trace of ´p L, which is equal to trp´p Lq " a `r πpωq `trp´r Lq " a `r πpωq ´ÿ xPV r Lpx, xq

These observations imply the convergence stated in Proposition 9, as well as the fact that for a ą 0 large enough, all the eigenvalues of p L are distinct.

Exit time

Our main goal here is to prove Theorem 1 via manipulations of Poisson equations and taking into account the estimate of Theorem 5.

Instead of working with the vanishing X x , for x P V , it is often more convenient to resort to conservative Markov processes, obtained by adding a cemetery point to the state space. So let be given 8 R V and associate to it an ergodic Markov generator L p Lpx, yqq x,yP V on V V \ t8u via

@ x ‰ y P V , Lpx, yq $ ' & ' % Lpx, yq , if x, y P V ´´Lpx, xq `řyPV ztxu Lpx, yq ¯, if x P V and y " 8 aνpyq , if x " 8
where a ą 0 is fixed for the moment being. This "extension" of the absorbed Markov generator L into an ergodic Markov generator L is completely different to the passage from r L to p L in the previous section. In some sense, the former is global while the latter was local.

For x P V , let Xx p Xx ptqq tě0 be a Markov process starting from x and whose generator is L, and consider the absorption time τx inftt ě 0 : Xx ptq " 8u

Note that the stopped processes pX x pt ^τ x qq tě0 and p Xx pt ^τ x qq tě0 have the same law and in particular τ x and τx have the same distribution.

The 

Before going further, let us explain heuristically how (24) can be exploited. The underlying principle is that under appropriate conditions, ψ is close to ´p1 ´πp8qqa ´11 t8u . So if carelessly we replace ψ by ´p1 ´πp8qqa ´11 t8u in (24), we get for any x P V , @ t ě 0, Er1 t8u p Xx pt ^τ x qqs « 1 t8u pxq `aπp8q

1 ´πp8q Ert ^τ x s namely @ t ě 0, Prτ x ď ts « aπp8q 1 ´πp8q Ert ^τ x s (25) 
A true identity in (25) would imply that τx is a exponential random variable of parameter aπp8q{p1π p8qq (see e.g. [START_REF] Miclo | Sur les problèmes de sortie discrets inhomogènes[END_REF]). These approximative considerations also suggest an identification of aπp8q{p1 πp8qq with λ 0 . Indeed, consider X p Xptqq tě0 a Markov process whose initial law is ν and whose generator is L. One property of the quasi-stationary distribution ν is that the first hitting time τ of 8 by X is distributed as an exponential random variable of parameter λ 0 and thus @ t ě 0, Prτ ď ts " λ 0 Ert ^τ s

Comparing with (25), which is also "valid" when Xx is replaced by X, we get aπp8q{p1 ´πp8qq « λ 0 . It would follow that τx is almost an exponential random variable of parameter λ 0 for all x P V . We now come to more rigorous computations. We begin by computing π in terms of λ 0 and ν:

Lemma 13 We have π " ν `pλ 0 {aqδ 8 1 `λ0 {a ÿ xPV νpxq Lpx, 8q " λ 0

Proof

It is sufficient to show that π L " 0, where π ν `pλ 0 {aqδ 8 . We begin by showing that

ν L " ´λ0 ν `λ0 δ 8 ( 26 
)
where ν is extended as a probability on V giving the mass 0 to 8. Indeed, note that for x P V , we have The previous computation also shows the last equality of the above lemma.

ν
As suggested by the heuristic presented before Lemma 13, the function

φ ψ `1 ´πp8q a 1 t8u
should play an important role. Note that according to Lemma This observation leads us to introduce a new generator r L on V . Denote FpV q the set of real functions defined on V . Any f P FpV q is extended into a function r f on V by imposing r f p8q νrf s

We consider the generator r L given by @ f P FpV q, @ x P V, r Lrf spxq Lr r f spxq

The generator r L is the Steklov operator associated to L and to the "boundary" V of V , since r f can be seen as the "harmonic extension" of f (for more details about this point of view, see [START_REF] Hassannezhad | Higher order Cheeger inequalities for Steklov eigenvalues[END_REF]). It follows that the invariant probability measure of r L is the normalization of the restriction of π to V , namely ν. More explicitly, r L is described by [START_REF] Bump | An exercise(?) in Fourier analysis on the Heisenberg group[END_REF] 

"

λ 0 pa `λ0 q 2 so we get νrφs " λ 0 pa `λ0 q 2 and finally the announced result.

Lemma 15 shows that to estimate φ (and by consequence the crucial φ), we just need to investigate the solutions ϕ x of the Poisson equation (29), for x P V such that Lpx, 8q ą 0, namely for x P δV .

With the notation of the introduction and from Theorem 5, we have

@ ω P δV, }ϕ ω } 8 ď 2νpωqΣ : ω (31)
Putting together the above computations, we get:

Corollary 16 We have › › › φ› › › 8 ď λ 0 pa `λ0 q 2 `2λ 0 a `λ0 Σ :
Proof By definition of φ, we have

› › › φ› › › 8 " }φ} 8 _ ˇˇφp8q ˇ" }φ} 8 _ |νrφs| " }φ} 8
It follows from Lemma 15 and (31) that

}φ} 8 ď λ 0 pa `λ0 q 2 `1 a `λ0 ÿ ωPδV Lpω, 8q }ϕ ω } 8 " λ 0 pa `λ0 q 2 `2 a `λ0 ÿ ωPδV νpωq Lpω, 8qΣ : ω ď λ 0 pa `λ0 q 2 `2λ 0 a `λ0 ÿ ωPδV Σ : ω ζpωq " λ 0 pa `λ0 q 2 `2λ 0 a `λ0 Σ :
where the last identity of Lemma 13, as well as ( 4) and ( 5), were taken into account.

Coming back to (24), we deduce that for any x P V and any t ě 0, ˇˇˇE r1 8 p Xx pt ^τ x qqs ´18 pxq ´aπp8q

1 ´πp8q Ert ^τ x s ˇˇˇď 2 a 1 ´πp8q › › › φ› › › 8 namely |Prτ x ď ts ´λ0 Ert ^τ x s| ď 2a 1 ´πp8q ˆλ0 pa `λ0 q 2 `2λ 0 a `λ0 Σ : " 2pa `λ0 q ˆλ0 pa `λ0 q 2 `2λ 0 a `λ0 Σ : " 2λ 0 pa `λ0 q `4λ 0 Σ :
Remark that the l.h.s., λ 0 and Σ : do not depend on the choice of a, so we can let a go to infinity to get |Prτ x ď ts ´λ0 Ert ^τ x s| ď 4λ 0 Σ :

(32) which is the desired bound of Theorem 1.

Instead of Theorem 5, we could have used Proposition 6 in the proof of Corollary 16. Then we end up with

› › › φ› › › 8 ď λ 0 pa `λ0 q 2 `r Σ å `λ0 ÿ ωPδV Lpω, 8q (33) 
where, as in Subsection 2.1,

r Σ ˚ ÿ λP r Λ˚1 λ r Λ ˚ r Λzt0u
and r Λ is the multiset consisting of the spectrum of ´r L with its algebraic multiplicities (which contains 0 with multiplicity 1, by Markovianity and irreducibility).

From (33), we deduce as above, that for any x P V , |Prτ x ď ts ´λ0 Ert ^τ x s| ď 2λ 0 pa `λ0 q `2r Σ ˚ÿ ωPV Lpω, 8q

Letting a go to infinity, we get an alternative bound to Theorem 1:

|Prτ x ď ts ´λ0 Ert ^τx s| ď 2 r Σ ˚ÿ ωPδV ˜|Lpω, ωq| ´ÿ yPV Lpω, yq ¸(34)
Let us give an alternative description of r Σ ˚. Consider Λ the multiset consisting of the spectrum of ´L with its algebraic multiplicities. By irreducibility of L, λ 0 P Λ with multiplicity 1, but 0 does not belong to Λ, because L is a strictly sub-Markovian generator. Denote Λ ˚ Λztλ 0 u and

Σ ˚ ÿ λPΛ˚1 λ (35) 
We have

Σ ˚" r Σ
This result is an immediate consequence the following result, which is interesting in itself.

Proposition 17

We have r Λ ˚" Λ ˚.

Proof

Consider λ P Λ ˚and let f be an eigenvector associated to λ for ´L: we have Lrf s " ´λf . Extend f into f , the function on V coinciding with f on V and such that f p8q " 0. Then on V , we have Lrf s " Lr f s. It follows from (1) that νrf s " ´1 λ νrLrf ss (36)

" λ 0 λ νrf s
Since λ ‰ λ 0 , we deduce that νrf s " 0, namely r f " f and Lrf s " r Lrf s. Thus λ P r Λ and since λ ‰ 0, we get λ P r Λ ˚.

A similar reasoning is also valid if we consider a multiplicity of λ coming from a Jordan block of ´L. Indeed, it is sufficient to see that if Lrf s " ´λf `g, with νrgs " 0, then νrf s " 0. This is true, since (36) still holds.

It follows that apart from their respective eigenvalues 0 and λ 0 , r L and L have the same spectral structure, namely r Λ ˚" Λ ˚.

Thus (34) can be rewritten under the form

|Prτ x ď ts ´λ0 Ert ^τ x s| ď 2Σ ˚ÿ ωPδV ˜|Lpω, ωq| ´ÿ yPV Lpω, yq ¸(37)
This bound is more explicit in terms of L, since it only uses its spectrum (and not the spectra of the L : ω for ω P δV ) and is generically as good as Theorem 1 on two-point state spaces at small temperature, see Remark 25 of Section 5. But in Remark 29, we will check on an example that this is no longer true for larger state spaces.

Remark 18

The partial equality of spectra presented in Proposition 17 suggests that there could exist an intertwining between L and r L, namely we could find a Markov kernel K from V to V such that either

r LK " KL (38) 
or

LK " K r L ( 39 
)
Nevertheless this is wrong: for (38), multiply on the left by ν, the invariant probability of r L, to get νKL " 0, meaning that the probability νK is invariant for L. But there is no such invariant probability, since L is strictly sub-Markovian. Concerning (39), multiply on the left by the quasistationary measure ν to obtain ´λ0 νK " νK r L. Since νK is a probability distribution, it is not 0, so that it is an eigenvector of r L associated to the eigenvalue ´λ0 . It follows that λ 0 P r Σ ˚, namely λ 0 P Σ ˚, a contradiction.

Yet there exists an intertwining relation from L to r L, i.e. a Markov kernel K (also called a link) from V to V such that LK " K r L. Furthermore there is such a relation with K of rank |V | ´1. Indeed, note that the spectrum Λ of ´L is equal to Λ \ t0u as multisets: 0 P Λ by Markovianity and the eigenvectors of L are extended into eigenvectors of L by imposing they vanish at 8 (the same is true for the vectors associated to Jordan blocks). Following the arguments of [START_REF] Miclo | On the Markovian similarity[END_REF], a link K of rank |V | ´1 can be constructed by perturbing the Markov kernel from V to V whose lines are all equal to ν. As shown in general by Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF], an intertwining relation from an absorbed process to an ergodic process can be used to construct strong stationary times from absorption times. Here this is quite simple: from a Markov process X associated to L, construct a Markov process r X associated to r L by redistributing the position according to ν instead of hitting 8. It appears then that the absorption time for X (i.e. the hitting time of 8) is a strong stationary time for r X. 4

Exit position

Here we prove Theorem 3. The arguments follow those of the previous section, with similar notations, that coincide should we have BV " t8u. We preferred to separate the treatment of the exit time and of the exit position for the sack of clarity for the former.

As in Section 3, we begin by transforming L into an ergodic Markov generator L p Lpx, yqq x,yP V . Let be given a positive number a ą 0. We define L by only modifying the rows indexed by BV : We begin by showing that π L " 0, where π ν `řωPBV α ω δ ω .

@ x ‰ y P V , Lpx,
• For any ω 0 P BV , we have

π Lpω 0 q " ÿ xPV νpxq Lpx, ω 0 q `ÿ ωPBV α ω Lpω, ω 0 q " ÿ xPV
νpxq Lpx, ω 0 q `αω 0 Lpω 0 , ω 0 q " aα ω 0 ´αω 0 a " 0

• For any x 0 P V , we have

π Lpx 0 q " ÿ xPV νpxq Lpx, x 0 q `ÿ ωPBV α ω Lpω, x 0 q " ÿ xPV νpxqLpx, x 0 q `ÿ ωPBV α ω aνpx 0 q " ´λ0 νpx 0 q `νpx 0 q ÿ ωPBV α ω a " ˜ÿ ωPBV α ω a ´λ0 ¸νpx 0 q
To conclude that π Lpx 0 q " 0, it remains to see that Recalling the definition of µ in ( 6), note that @ ω P BV, α ω " Zµpωq a

ÿ ωPBV aα ω " λ 0 ( 
From (40), we deduce that Z " λ 0 , so that π " ν `λ0 a ř ωPBV µpωqδ ω and the desired result follows by normalization.

For any ω P BV , consider the solution ψω of the Poisson equation:

#

Lr ψω s " 1 tωu ´πpωq πr ψω s " 0

As in the previous section, the idea is that ψ ω is close to ´1 a p1 ω ´πpωq1 BV q, when λ 0 Σ : is small. Let us first heuristically deduce Theorem 3 from this belief.

For x P V , let Xx p Xx ptqq tě0 be a Markov process associated to the generator L and starting from x. Let τx be its hitting time of BV . From the martingale problem satisfied by Xx , there exists a martingale p Mt q tě0 such that for any t ě 0, ψω p Xx pt ^τ x qq " ψω p Xx p0qq `ż t^τx 0 Lr ψω sp Xx psqq ds `M t^τx " ψω pxq `ż t^τx 0 1 tωu p Xx psqq ´πpωq ds `M t^τx " ψω pxq ´πpωqpt ^τ x q `M t^τx

Taking expectation, we get

Er ψω p Xx pt ^τ x qqs " ψω pxq ´πpωqErt ^τ x s (41)

According to the expected behavior of ψ ω , we should have @ t ě 0, Er1 tωu p Xx pt ^τ x qq ´πpωq1 BV p Xx pt ^τ x qqs « 1 tωu pxq ´πpωq1 BV pxq `aπpωqErt ^τ x s namely @ t ě 0, Pr Xx pτ x q " ω, τx ď ts ´πpωqPrτ x ď ts « aπpωqErt ^τ x s

According to Section 3, we also have Ert ^τ x s « Prτ x ď ts λ 0 so that @ ω P BV, @ t ě 0, Pr Xx pτ x q " ω, τx ď ts ´πpωqPrτ x ď ts « aπpωq λ 0 Prτ x ď ts i.e.

@ ω P BV, @ t ě 0, Pr Xx pτ x q " ω, τx ď ts « λ 0 `a a πpωqPrτ x ď ts It would mean that Xx pτ x q and τx are almost independent and the distribution of the former is given by @ ω P BV, Pr Xx pτ x q " ωs « λ 0 `a a πpωq " µpωq

where Lemma 19 was taken into account.

Let us now come to more rigorous computations. As suggested by the above heuristic, for any fixed ω P BV , we should investigate the function 

This observation leads us to introduce a new generator r L on V . Any f P FpV q is extended into a function r f on V by imposing @ w P BV, r f pwq νrf s

We consider the generator r L given by @ f P FpV q, @ x P V, r Lrf spxq Lr r f spxq Again, the generator r L is the Steklov operator associated to L and to the "boundary" V of V . It follows that the invariant probability measure of r L is the normalization of the restriction of π to V , namely ν. As in Section 3, r L is described by [START_REF] Bump | An exercise(?) in Fourier analysis on the Heisenberg group[END_REF]. Denote φ ω the restriction of φω on V . Due to (43), r φ ω coincides with φω , so by definition of r L, we get on V :

r Lrφ ω s " 1 a ÿ xPV p Lpx, ωq ´πpωq Lpx, BV qq1 txu ´πpωq1 V
or equivalently, using that νr r Lrφ ω ss " 0,

r Lrφ ω s " 1 a ÿ xPV p Lpx, ωq ´πpωq Lpx, BV qqp1 txu ´νpxqq (44) 
Recalling that for any x P V , ϕ x is the solution of the Poisson equation ( 29), (44) implies that With the notation of the introduction and from Theorem 5, we have # @ x R δV, Lpx, ωq ´πpωq Lpx, BV q " 0 @ x P δV, }ϕ x } 8 ď 2νpxqΣ :

φ ω " νrφ ω s `1 a ÿ xPV p Lpx,
x (45) so putting together the above computations, we get:

Corollary 22 We have › › › φω › › › 8 ď ˆλ0 pa `λ0 q 2 `2a `4λ 0 apa `λ0 q Σ : λ 0 ˙µpωq
Proof By definition of φ ω , we have

› › › φω › › › 8 " }φ ω } 8 _ max !ˇˇˇφ ω pwq ˇˇ: w P BV ) " }φ ω } 8 _ |νrφ ω s| " }φ ω } 8
It follows from Lemma 21 and (45) that

}φ ω } 8 ď 1 a `λ0 πpωq `1 a ÿ xPV ˇˇL px, ωq ´πpωq Lpx, BV q ˇˇ}ϕ x } 8 ď 1 a `λ0 πpωq `2 a ÿ xPδV
νpxqp Lpx, ωq `πpωq Lpx, BV qqΣ :

x " 1 a `λ0 πpωq `2 a ZΣ : pχpωq `πpωqq " λ 0 pa `λ0 q 2 µpωq `2 a λ 0 Σ : ˆχpωq `λ0 a `λ0 µpωq ẇhere in the fourth line, we used that λ 0 " Z, as seen at the end of the proof of Lemma 19.

Coming back to (41), we deduce that for any ω P BV , x P V and t ě 0,

ˇˇEr1 ω p Xx pt ^τ x qq ´πpωq1 BV p Xx pt ^τ x qqs ´aπpωqErt ^τ x s ˇˇď 2a › › › φω › › › 8 namely
ˇˇPr Xx pτ x q " ω, τx ď ts ´πpωqPrτ x ď ts ´aπpωqErt ^τ x s ˇď

2 ˆaλ 0 pa `λ0 q 2 µpωq `2λ 0 Σ : ˆχpωq `λ0 a `λ0 µpωq ˙˙(46)
In this bound, the term πpωq depends on a ą 0, as we have

πpωq " λ 0 µpωq a `λ0
Thus, letting a go to infinity in (46), we get ˇˇPr Xx pτ x q " ω, τx ď ts ´λ0 µpωqErt ^τ x s ˇˇď 4Σ : λ 0 χpωq

Taking (32) into account, we obtain ˇˇPr Xx pτ x q " ω, τx ď ts ´µpωqPrτ x ď ts ˇˇď 8Σ : λ 0 χpωq (48) which shows that the exit time and position are almost independent when Σ : λ 0 is small. To end up with the desired bound of Theorem 3, it remains to use Theorem 1.

As in Corollary 16, instead of Theorem 5, we could have used Proposition 6 in the proof of Corollary 22. It leads to ˇˇPr Xx pτ x q " ω, τx ď ts ´λ0 µpωqErt ^τ x s ˇˇď 2Σ ˚ÿ yPδV Lpy, ωq and taking (34) into account, ˇˇPr Xx pτ x q " ω, τx ď ts ´µpωqPrτ x ď ts ˇˇď 2Σ ˚p LpδV, ωq `µpωq LpδV, BV qq where for any disjoint A, B Ă V , LpA, Bq ř yPA,zPB Lpy, zq. For the reason presented in Section 3, these bounds seem less interesting than (47) and (48) respectively.

5 Simple examples at small temperature Here we illustrate the metastability phenomenon in the simplest situation, namely a two-point state space at small temperature. This benchmark will enable us to see that Corollary 4 is quite sharp, contrary to Theorem 1. Resorting to a 3-point state space, we also underline the difference between the estimates of Theorem 5 and Proposition 6.

On the state space V t0, 1u, let be given a family pL β q βě0 ppL β px, yqq x,yPV q βě0 of irreducible strictly sub-Markovian generators. The parameter β ě 0 is to be seen as an inverse temperature and we are interested in the asymptotic regime when β goes to infinity (namely the temperature goes to 0 `). As in the introduction, denote V t0, 1, 8u and to avoid reference to Lβ , for β ě 0, we adopt the simplified notation L β px, 8q ´Lβ px, xq ´Lβ px, 1 ´xq, for any x P t0, 1u. Thus we have • Case (1) where r c ă r a ă r b and r c ă r d. Taking into account the probabilistic description of a Markov process X 0 pX 0 ptqq tě0 associated to the generator Lβ and starting from 0, X 0 stays in X 0 p0q " 0 for a exponential time τ 1 of parameter a `b " a, because r b ą r a. The position X 0 pτ 1 q is equal to ´1 with probability a{pa `bq and to 1 with probability b{pa `bq. Thus, up to an exponentially small error (in β), starting from 0, the exit time is an exponential variable of parameter a and the exit position is ´1. Similarly since r c ă r d, starting from 1 and up to an exponentially small error, the process X 1 waits an exponential time of parameter c before jumping in 0. From 0, the process behaves like X 0 . Since r a ą r c, the time to jump from 1 to 0 is negligible with respect to the time to jump from 0 to ´1. It follows that up to an exponentially small error, again the exit time is an exponential variable of parameter a and the exit position is ´1. Thus the exit behavior is independent of the initial state: the metastability phenomenon occurs.

@ β ě 0, L β ˆ´L β p0, 1q ´Lβ p0, 8q L β p0, 1q L β p1, 0q ´Lβ 
• Case (2) where r a ă r b and r c ą r d. Starting from 0 the situation is similar to Case (1). Starting from 1, the process X 1 waits an exponential variable of parameter d before jumping to 2, up to an exponentially small error. The metastability phenomenon does not occur, since the distribution of the exit position strongly depends on the initial point.

• Case (3) where r a ą r b and r c ą r d. As in case (2), starting from 1, the process X 1 waits an exponential variable of parameter d before jumping to 2, up to an exponentially small error. Starting from 0, the process X 0 waits an exponential variable of parameter b before jumping to 1, before jumping to 2 after an exponential variable of parameter d, all that up to an exponentially small error. The metastability phenomenon does not occur, because the exit time from 0 is much longer than the exit time from 1.

• Case (4) where r a ą r b, r c ă r d. As above, all the following statements are up to an exponentially small error. Starting from 1, the process X 1 first reaches 0. Thus the exit position distribution will not depend on the initial state. Furthermore the time to reach 0 from 1 is much smaller than the time to get out of 0 (and first to reach 1). This is sufficient to insure metastability (consider the quasi-stationary distribution as initial distribution, the exit time will be the same as the exit time starting from 0, according to the above arguments). The exit position distribution will be concentrated on 2 (respectively ´1), if r a ą r b ´r c `r d (resp. r a ă r b ´r c `r d).

Let us denote by M the set of pr a, r b, r c, r dq P R 4 `satisfying (50) and for which metastability holds, namely corresponding to Cases (1) and ( 4) above. It is not difficult to check that M is the set of pr a, r b, r c, r dq P R 4 `satisfying (50) and r c ă r a ^r b. For any β ě 0, consider λ 0 pβq and Σ : pβq the quantities associated to L β as in the introduction. The following result shows that the metastability of Cases ( 1) and ( 4) is recovered from Theorem 3 and Corollary 4. (in particular the l.h.s. limit exists).

Note that for pr a, r b, r c, r dq P R 4 `satisfying (50) and corresponding to Cases ( 2) and ( 3), (51) cannot hold, otherwise we could conclude to metastability. Thus Theorem 3 and Corollary 4 are quite sharp, since they enable to recover the domain of coefficients pr a, r b, r c, r dq P R 4 `leading to metastability, at least under (50).

Let us start the proof of Proposition 23 by obtaining the behavior of λ 0 pβq at small temperature:

Lemma 24 As soon as the limits in (49) exist, we have 

Proof

For fixed β ě 0, the two eigenvalues of L β are the roots of the characteristic polynomial pX ´a ´bqpX ´c ´dq ´bc " X 2 ´pa `b `c `dqX `ac `ad `bd Since λ 0 pβq is the smallest of them, we get

λ 0 pβq " 1 2 pa `b `c `d ´a q " 1 2 pa `b `c `dq 2 ´ a `b `c `d `? " 2 ac `ad `bd a `b `c `d `? (52) 
where the discriminant is given by pa `b `c `dq 2 ´4pac `ad `bdq " pa `b ´c ´dq 2 `4bc

It is clear that It both subcases, we get δ ă 0, as desired.

It is time to discuss about Assumption (50). Consider for example the case where r a " r d, and more demandingly, let us assume that a " d. Then whatever the initial distribution on t0, 1u, the exit time is an exponential distribution of parameter a, in particular λ 0 pβq " a. It follows that the l.h.s. in the bound of Theorem 1 is zero, while the r.h.s. is positive. This r.h.s. may even be non-vanishing for large β ě 0. Indeed, note that as soon as r b ^r c ą r a " r c, then the exit position will strongly depend on the initial state: up to an exponential small error, starting from 0 (respectively 1), the process will exit by ´1 (resp. 2). Thus from Corollary 4, we have lim inf βÑ8 λ 0 pβqΣ : pβq ą 0 These observations show that Theorem 1 is not optimal, in the logarithmic scale at small temperature, while we believe that Theorem 3 and Corollary 4 are. As it was mentioned in the introduction, the latter two results do stand for metastability, but not Theorem 1, which is only concerned with the exit time.

Let us now illustrate the difference between the estimates of Theorem 5 and Proposition 6 in the 3-point state space V t0, 1, 2u. Assume that for all β ě 0, we are given a birth-and-death Markovian generator

r L β ¨´r L β p0, 1q r L β p0, 1q 0 r L β p1, 0q ´r L β p1, 0q ´r L β p1, 2q r L β p1, 2q 0 r L β p2, 1q ´r L β p2, 1q ‹ ' (58) 
As in the above subMarkovian situation, we assume the existence of the following limits @ px, yq P V ˆV, x ‰ y, Ă W px, yq ´lim βÑ`8

1 β lnp r L β px, yqq P r0, `8s (59) 
and simplify the notations by defining

a r L β p0, 1q, b r L β p1, 0q, c r L β p1, 2q, d r L β p2, 1q r a Ă W p0, 1q, r b Ă W p1, 0q, r c Ă W p1, 2q, r d Ă W p2, 1q 
For β ě 0, denote r π β the associated reversible probability measure. It is well-known (see for instance Chapter 6 of Freidlin and Wentzell [START_REF] Freidlin | of Grundlehren der Mathematischen Wissenschaften[END_REF]) that the following limits exist:

@ x P V, U pxq ´lim βÑ`8 β ´1 lnpr π β pxqq (60) 
and the function U : V Ñ R `is called the quasi-potential, it only depends on Ă W (through finite minimization problems over covering trees).

Let us assume the following inequalities: Let us come back to the setting of Section 7, where all notions now depend on β ě 0. We consider the case where ω " 2, namely we are interested in ϕ β , the solution to the Poisson equation:

# r L β rϕ β s " 1 t2u ´r π β p2q r π β rϕ β s " 0 (62) 
Let Σ : pβq and r Σ : ˚pβq be the quantities appearing respectively in Theorem 5 and Proposition 6. Since these quantities come from 2 ˆ2 and 3 ˆ3 matrices, it is clear that for large β ě 0, Σ : pβq has the same logarithmic behavior as the inverse of the first Dirichlet eigenvalue of p r L β px, yqq x,yPt0,1u and r Σ : ˚pβq has the same logarithmic behavior as the inverse of the spectral gap of r L β . Direct computations then lead to Remark 27 Such results can also be obtained without computations by extending the path method of Holley and Stroock [START_REF] Holley | Simulated annealing via Sobolev inequalities[END_REF] to the situation "without potential", as in [START_REF] Miclo | Recuit simulé sans potentiel sur un ensemble fini[END_REF], and to the absorbing situation, as in [START_REF] Bump | An exercise(?) in Fourier analysis on the Heisenberg group[END_REF]. Taking into account that U p2q " r a `r c ´pr b `r dq, we deduce the following behaviors for the bounds of Theorem 5 and Proposition 6:

Proposition 28 Under the above assumptions, in particular (61), we have

lim βÑ`8 β ´1 ln `r π β p2qΣ : pβq ˘" r d lim βÑ`8 β ´1 ln `Σ: ˚pβq ˘" r b
Since r d ă r b, for large β ě 0, the bound of Theorem 5 is much better than that of Proposition 6.

Remark 29 Despite Remark 25, the fact that (37) is based on Proposition 6 rather than on Theorem 5 is a first suggestion that the bound of Theorem 1 should be better than (37). Let us give here an instance at small temperature, by modifying the above three-point example.

For β ě 0, consider the subMarkov generator L β defined on V t0, 1, 2u as in (58), except that the underlying process is killed at 2 with rate L β p2, 8q:

L β ¨´L β p0, 1q
L β p0, 1q 0 L β p1, 0q ´Lβ p1, 0q ´Lβ p1, 2q L β p1, 2q 0 L β p2, 1q ´Lβ p2, 1q ´Lβ p2, 8q

' (63)
We assume the existence of the following limits (recall that V " t0, 1, 2, 8u), @ px, yq P V ˆV , x ‰ y, W px, yq ´lim (it is due to the fact that t0, 1, 2u can be seen as a well of height r a ´r b `r c `r e ą 0 in a larger state space (for instance V by adding an exponential transition from 8 to 2) for a reversible Markov generator at small temperature). Furthermore, L β admits another exponentially small eigenvalue at small temperature, say λ 1 pβq, which satisfies lim βÑ`8 1 β lnpλ 1 pβqq " ´r b

An easy way to get the upper bound, which is the only thing needed in the following arguments, is to apply the variational principle to the vector space generated by 1 t0u and 1 t0u in L 2 pπ β q, where π β is the reversible probability measure associated to the Markovian generator obtained by removing L β p2, 8q from (63). Now let us come back to (37 " ´r e Thus metastability is not recovered as soon as r e ă r b, at least under (64). To be able to apply Theorem 1, we must first understand the behavior at small temperature of the quasi-stationary measure ν β . In the present particular example (be careful, this is not always true, see the counter-example closing this section), it can be checked the logarithmic behavior of ν β is the same as for the invariant measure π β , and thus we get Comparing this convergence with (65), we get that Theorem 1 enables to recover the metastability phenomenon under (64), without the restriction r e ă r b. To finish, let us briefly consider the extension of the above small temperature considerations to arbitrary finite state space V . We assume that we are given a family pL β q βě0 of irreducible strictly subMarkovian generators on V and that (49) holds in r0, `8s (with V V \ t8u and L β px, 8q ´řyPV L β px, yq, for all x P V ).

There is no difficulty with the behavior of λ 0 pβq, as we know the validity of lim βÑ`8

β ´1 ln pλ 0 pβqq " ´l where l is the highest depth of a well included in V , for the appropriate definitions of the energy landscape in this context.

More problematic and surprising at first view, is the behavior of the quasi-stationary measure ν β for large β ě 0, since the existence of the limits @ x P V, W pxq lim βÑ`8

β ´1 lnpν β pxqq (66)

is not always true, and when they exist, they may not depend only on pW px, yqq px,yqPV ˆV . Thus the situation is quite different from the existence of the quasi-potential as in (60), which always exists for irreducible Markovian generators at small temperature (and only depend on the exponential rates of the transitions). Nevertheless, we think that the limits in (66), that could be called "quasi-quasipotentials", generically exist and only depend on the rates pW px, yqq px,yqPV ˆV , i.e. up to removing exceptional identities between these rates, as in (50). Maybe the non-validity of (66) is a watereddown instance in the finite setting of the non-uniqueness of quasi-stationary measures in general (see e.g. Example 6.3.1 from Collet, Martínez and San Martín [START_REF] Collet | Quasi-stationary distributions[END_REF]), due to the non-linearity of the equation they solve. We hope to be able to investigate more thoroughly this situation in a future work.

For the moment being, let us conclude by giving a counter-example to (66), in the two-point state space t0, 1u. We begin by a simple computation: Note that the product of these solutions is ´c{pd ´aq ă 0, so ν β p0q is the positive solution: ν β p0q " x `. We deduce 

Theorem 1

 1 We have sup xPV sup tě0 |Prτ x ą ts ´expp´λ 0 tq| ď 4λ 0 Σ :

λ

  Consider rΛ the multiset consisting of the spectrum of ´r L with its algebraic multiplicities. By Markovianity and irreducibility of r L, 0 P r Λ with multiplicity 1. Denote r More generally than[START_REF] Diaconis | On times to quasi-stationarity for birth and death processes[END_REF], we consider for any x P V , the solution ϕ x of the Poisson equation # r Lrϕ x s " 1 txu ´r πpxq r πrϕ x s " 0

'

  p1, 0q ´Lβ p1, 8q Ḟurthermore, to get a more convenient landscape in the setting of Theorem 3 and Corollary 4, let us split 8 into the two points ´1 and 2, and consider on the state space V t´1, 0, 1, 2u, the following absorbing extension Lβ of L β , for any given β ě 0:Lβ ¨0 0 0 0 L β p0, 8q ´Lβ p0, 1q ´Lβ p0, 8q L β p0, 1q 0 0 L β p1, 0q ´Lβ p1, 0q ´Lβ p1, 8q L β p1, 8q0We assume the existence of the following limits @ px, yq P V ˆV , x ‰ y, W px, yq ´lim βÑ`81 β lnpL β px, yqq P r0, `8q(49)Let us simplify the notations and definea L β p0, 8q, b L β p0, 1q, c L β p1, 0q, d L β p1, 8q r a W p0, 8q, r b W p0, 1q, r c W p1, 0q, r d W p1, 8qExcept when explicitly said otherwise, in this section we suppose:The numbers r a, r b, r c and r d are all distinct and r a `r c ‰ r b `r d (50)Furthermore, up to exchanging 0 and 1, we assume that r b ą r c. Before applying Theorem 1 and Corollary 4, let us check directly if metastability holds or not, by considering the different possible situations.

Proposition 23 ` 8 β

 238 When pr a, r b, r c, r dq P M, we have lim βÑ´1 ln `λ0 pβqΣ : pβq ˘ă 0 (51)

´lim βÑ` 8 β` 8 β

 88 ´1 lnpλ 0 pβqq " minpr a `r c, r a `r d, r b `r dq ´minpr a, r c, r dqIn particular, when pr a, r b, r c, r dq P M, we deduce that ´lim βÑ´1 lnpλ 0 pβqq " r a ^pr b ´r c `r dq and in Case (1), the l.h.s. is r a.

´lim βÑ` 8 ββ 8 β•" r c ´r b ă 0 •

 880 ´1 lnpac `ad `bdq " minpr a `r c, r a `r d, r b `r dq (where the r.h.s. are seen as 1 ˆ1-matrices), so that, for large β ě 0, ´1 ln `Σ: pβq ˘" pr a `r cq ^p2 r bq ´r a ^r b Taking into account (53), we get lim βÑ`´1 ln `λ0 pβqΣ : pβq ˘" δ with δ pr a `r cq ^p2 r bq ´r a ^r b ´r a ^pr b ´r c `r dq In Case (1), we have already seen that the last term in the r.h.s. is r a, furthermore we have r a`r c ď 2 r b and r a ď r b so that δ " r a `r c ´r a ´r a " r c ´r a ă 0 In Case (4), the only clear inequality is r b ď r a, so that δ pr a `r cq ^p2 r bq ´r b ´r a ^pr b ´r c `r dq " pr a `r c ´r bq ^r b ´r a ^pr b ´r c `r dq Let us consider two subcases: When r a ă r b ´r c `r d, then r a `r c ´r b ă r b, so δ " r a `r c ´r b ´r a When r a ą r b ´r c `r d, then r a `r c ´r b ą r b, so δ " r b ´pr b ´r c `r dq " r c ´r d ă 0

r a ą r b, r c ą r b, r b ą r d ( 61 )

 61 It follows thatU p0q " 0, U p1q " r a ´r b, U p2q " r a `r c ´pr b `r dq

lim βÑ` 8 β 8 β

 88 ´1 ln `Σ: pβq ˘" r a `r c ´r b lim βÑ`´1 ln `Σ: ˚pβq ˘" r b

βÑ`8 1 β

 1 lnpL β px, yqq P r0, `8s simplify the notations by definingr a Ă W p0, 1q, r b Ă W p1, 0q, r c Ă W p1, 2q, r d Ă W p2, 1q, r e Ă W p2, 8qand assumer a ą r b ą 0, r c ą r b, r d " 0, r e ą 0(64)Taking into account the results of[START_REF] Miclo | Sur les problèmes de sortie discrets inhomogènes[END_REF], metastability at small temperature holds and we have lim βÑ`8 1 β lnpλ 0 pβqq " ´pr a ´r b `r c `r eq (65)

lim βÑ` 8 β 8 β 8 β 8 β 8 β

 88888 ´1 lnpν β p0qq " 0, lim βÑ`´1 lnpν β p1qq " ´pr a ´r bq, lim βÑ`´1 lnpν β p2qq " ´pr a `r c ´r bq We deduce, with the notations of the introduction, lim βÑ`´1 lnpΣ : pβqq " lim βÑ`´1 lnpΣ : 2 pβqq " r a `r c ´r b

Lemma 30 8 β` 8 β

 3088 Assume that (49) holds, with d ą a for all β ě 0, and lim βÑ`´1 lnpd ´aq " ´r r with r r ă r b ^r c. Then we get lim βÑ´1 lnpν β p1qq " r r ´r b Proof Let us come back to (56), taking into account that ν β p1q " 1 ´νβ p0q, we get that x ν β p0q is solution of the second order equation pd ´aqx 2 `pa `b `c ´dqx ´c " 0 Its solutions are x ˘" 1 2pd ´aq pd ´pa `b `cq ˘a q with pa `b `c ´dq 2 `4cpd ´aq

  b `cq 2 ´pa `b `c ´dq 2 ´4cpd ´aq d ´a `b `c `? " 1 2pd ´aq 4pd ´aqpb `cq ´4cpd ´aq d ´a `b `c `? " 2b d ´a `b `c `?

  applied at ω amounts to

	µrf s `r Lpω, ωqf pωq " ´ˆz	`az r πpωq ´z ˙f pωq	(21)

(recall that r Lpω, ωq " ´řxPV : r Lpω, xq). Thus considering f defined by

  interest of L over L is that we can consider ψ the function on V solution of the Poisson equation#Lr ψs " 1 t8u ´πp8q πr ψs " 0 where π is the invariant probability of L and 1 t8u is the indicator function of 8.Let us apply to ψ the martingale problem associated with L. We have for any x P V and t ě 0, Xx psqq ´πp8q ds `M t where p Mt q tě0 is a martingale. Replace t by t ^τ x , to get ψp Xx pt ^τ x qq " ψpxq `ż t^τx

	ψp Xx ptqq " ψp Xx p0qq	`ż t	Lr ψsp Xx psqq ds `M t
				0
	" ψpxq	`ż t	1 t8u p
		0	

0 1 t8u p Xx psqq ´πp8q ds `M t^τx " ψpxq ´πp8qpt ^τ x q `M t^τx

Taking expectations, we obtain

Er ψp Xx pt ^τ x qqs " ψpxq ´πp8qErt ^τ x s

  It follows that there exists a number α P R such that ν L " ´λ0 ν `αδ 8 . To compute α, note that Lr1 V s " 0, so that νr Lr1 V ss " 0 and α " λ 0 , proving (26).

	Lpxq "	ÿ	νpyq Lpy, xq
	yPV	
		ÿ	
	"		νpyqLpy, xq
	yPV	
	" νLpxq
	" ´λ0 νpxq
	" 0		
	• for 8,		
	ÿ xP V πpxq Lpx, 8q " pλ 0 {aq Lp8, 8q	`ÿ xPV	νpxq Lpx, 8q
	" ´λ0 `pν Lqp8q
	" ´λ0 `λ0
	" 0		

As a consequence, we get that • for y ‰ 8, ÿ xP V πpxq Lpx, yq " pλ 0 {aq Lp8, yq `ÿ xPV νpxq Lpx, yq " λ 0 νpyq `pν Lqpyq " λ 0 νpyq ´λ0 νpyq

  The next result shows that φ can be completely expressed in terms of pϕ x q xPV .

	As in (8), for any x P V , consider the solution ϕ x of the Poisson equation
	"	r Lrϕ x s " 1 txu ´νpxq νrϕ x s " 0	(29)
	so that (28) implies that					
	φ " νrφs	`1 a `λ0	xPV ÿ	Lpx, 8qϕ x	(30)
	Indeed, we get					
	«					ff
	r L	φ	´1 a `λ0	xPV ÿ	Lpx, 8qϕ x	" 0
	thus by irreducibility of r L, φ and 1 a`λ 0	ř	xPV Lpx, 8qϕ x coincide up to an additive constant, which is
	necessarily νrφs.					
	Lemma 15 We have					
	φ "	λ 0 pa `λ0 q 2 `1 a `λ0	xPV ÿ	Lpx, 8qϕ x
	Proof					
	It follows from Lemma 13 and (27) that		
			πr φs "	aνrφs `λ0 φp8q a `λ0
					" νrφs
	By definition of φ, we also have					
	πr φs " πr ψs	`1 ´πp8q a	πp8q
				"	1 ´πp8q a	πp8q
				"	λ 0 {a p1 `λ0 {aq 2	1 a
							.
	Denote φ the restriction of φ on V . Due to (27), r φ coincides with φ, so by definition of r L, we get
	on V :					
	r Lrφs "		p1 ´πp8qq a	xPV ÿ	Lpx, 8q1 txu ´πp8q1 V
	or equivalently					
	r Lrφs "	1 a `λ0	xPV ÿ	Lpx, 8qp1 txu ´νpxqq	(28)

  Lpx, ωq ´πpωq Lpx, BV qq1 txu ´ap1 tωu ´πpωq1 BV q (42) Furthermore, we clearly have for any x P V , Lr1 tωu ´πpωq1 BV spxq " Lpx, ωq ´πpωq Lpx, BV q and (42) follows.Taking into account that by definition Lr ψω s " 1 tωu ´πpωq1 BV ´πpωq1 V

			φω	ψω	`1 a	p1 tωu ´πpωq1 BV q
	Lemma 20 We have		
		Lr φω s "	1 a	xPV ÿ	p Lpx, ωq ´πpωq Lpx, BV qq1 txu ´πpωq1 V
	where Lpx, BV q "	ř wPBV Lpx, wq.		
	Proof			
	Note that			
	Lr1 tωu ´πpωq1 BV s "		ÿ
					" ´1tωu pwq	ÿ	Lpω, yq
					yPV
					ÿ
					" ´a1 tωu pwq	νpyq
					yPV
					" ´a1 tωu pwq
	and similarly, for any w P BV ,		
				Lr1 BV spwq "	ÿ	Lpw, w 1 q
					w 1 PBV
					" Lpw, wq
					"	´a
	we deduce that			
		Lr φω s " Lr ψω s	`1 a	Lr1 tωu ´πpωq1 BV s
		"		1 a	xPV ÿ	p Lpx, ωq ´Lpx, BV qq1 txu ´πpωq1

xPV p Indeed, we compute that for any w P BV , Lr1 tωu spwq " Lpw, ωq " 1 tωu pwq Lpω, ωq V It follows that Lr φω spwq " 0 for any w P BV , namely @ w P BV, φω pwq " νr φω s

  ωq ´πpωq Lpx, BV qqϕ x Lpx, ωq ´πpωq Lpx, BV qqϕ x coincide up to an additive constant, which is necessarily νrφ ω s.The next result shows that φ ω can be completely expressed in terms of pϕ x q xPV .

	so we get					
					νrφ ω s "	1 a `λ0	πpωq
	and finally the announced result.			
	Indeed, we get					
		«					ff
	r L	φ ω	´1 a	xPV ÿ	p Lpx, ωq ´πpωq Lpx, BV qqϕ x	" 0
	thus by irreducibility of r L, φ ω and 1 a xPV p Lemma 21 We have ř
	φ ω "	a `λ0 1	πpωq	`1 a	ÿ
	Proof					
	It follows from Lemma 19 and (43) that
		πr φω s "	aνrφ ω s `λ0	ř wPBV µpwqφ ω pwq a `λ0
				" νrφ ω s
	By definition of φω , we also have		
		πr φω s " πr ψω s	`1 a	pπpωq ´πpωqπpBV qq
				"	πpV q a	πpωq
				"	πpωq a `λ0

xPV p Lpx, ωq ´πpωq Lpx, BV qqϕ x

  ). With the corresponding notations, we have

				lim βÑ`8	1 β	lnpΣ ˚pβqq " ´lim βÑ`8	1 β	lnpλ 1 pβqq
									" r b
	and								
	lim βÑ`8	1 β	ln	˜ÿ ωPδV	˜|L β pω, ωq|	´ÿ yPV	L β pω, yq ¸¸" lim βÑ`8	1 β	lnpL β p2, 8qq
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Remark 25 For β ě 0, let Σ ˚pβq be defined as in (35): we have Σ ˚pβq " 1{λ 1 pβq, where λ 1 pβq " Thus it appears that on the two-point state space, (37) is as good as Theorem 1 (as long as the exponential rate is concerned at small temperature). But this is no longer true on state spaces containing at least three points, see Remark 29 below.

For β ě 0, let ν β be the quasi-stationary distribution associated to L β .

Lemma 26 When pr a, r b, r c, r dq P M, we have for large β ě 0,

and in particular,

Proof

For β ě 0, let r L β be associated to L β and ν β as in the introduction. More precisely, we have

Ṡince ν β is invariant for r L β , we deduce that

In both Cases ( 1) and ( 4), we have for large β ě 0,

and we deduce from (56) that

From (57), we get

We can now come to the

Proof of Proposition 23

For β ě 0, consider the probability ζ β defined as in (4). We have

and we deduce from (55)

For any β ě 0, we also have, with the notation of the introduction,