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Abstract

The random mapping construction of strong stationary times is applied here to finite Heisenberg
random walks over ZM , for odd M ě 3. When they correspond to 3ˆ 3 matrices, the strong station-
ary times are of order M6, estimate which can be improved to M4 if we are only interested in the
convergence to equilibrium of the last column. These results are extended to N ˆ N matrices, with
N ě 3. All the obtained bounds are thought to be non-optimal, nevertheless this original approach
is promising, as it relates the investigation of the previously elusive strong stationary times of such
random walks to new absorbing Markov chains with a statistical physics flavor and whose quantitative
study is to be pushed further. In addition, for N “ 2, a strong equilibrium time is proposed in the
same spirit for the non-Markovian coordinate in the upper right corner and simulations suggest it is
of order M . This result would extend to separation discrepancy the corresponding fast convergence
for this coordinate in total variation and open a new method for the investigation of this phenomenon
in higher dimension.
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1 Introduction
The investigation of the quantitative convergence to equilibrium of random walks on finite groups has
lead to a prodigious literature devoted to various techniques, see for instance the overview of Saloff-
Coste [22] or the book of Levin, Peres and Wilmer [14]. One of the most probabilistic approaches
is based on the strong stationary times introduced by Aldous and Diaconis [1]. Diaconis and Fill [7]
presented a general construction of strong stationary times via intertwining dual processes, in particular
set-valued dual processes. It was proposed in [17] to obtain the latter processes through the resort
of random mappings, in the spirit of Propp and Wilson [21]. Here we apply this method to deduce
strong stationary times for finite Heisenberg random walks. It will illustrate that the random mapping
technique can be effective in constructing strong stationary times in situations where they are difficult
to find and have lead to numerous mistakes in the past. While there is room for improvement in our
estimates, we hope this new approach will help the understanding of the convergence to equilibrium of
related random walks, see for instance Hermon and Thomas [11], Breuillard and Varjú [2], Eberhard
and Varjú [9] or Chatterjee and Diaconis [5] for very recent progress in this direction.

To avoid notational difficulties, we begin by presenting the case of 3ˆ 3 matrices.
For M ě 3 and M odd, let HM be the Heisenberg group of matrices of the form

¨

˝

1 x z
0 1 y
0 0 1

˛

‚

where x, y, z P ZM . Such matrices will be identified with rx, y, zs P Z3
M , the multiplication correspond-

ing to

rx, y, zs ¨ rx1, y1, z1s “ rx` x1, y ` y1, z ` z1 ` xy1s

for any rx, y, zs, rx1, y1, z1s P Z3
M .

Consider the usual system of generators of HM , tr1, 0, 0s, r´1, 0, 0s, r0, 1, 0s, r0,´1, 0su, as well as the
random walk rX,Y, Zs B prXn, Yn, ZnsqnPZ` , starting from the identity r0, 0, 0s and whose transitions
are obtained by multiplying on the left by one of these elements, each chosen with probability 1{6.
With the remaining probability 1/3, the random walk does not move.

The uniform distribution U on HM is invariant and reversible for the random walk rX,Y, Zs.
A finite stopping time τ with respect to the filtration generated by rX,Y, Zs, possibly enriched with
some independent randomness, is said to be a strong stationary time if

• τ and rXτ , Yτ , Zτ s are independent,

• rXτ , Yτ , Zτ s is distributed as U .
The tail probabilities of a strong stationary time enable to estimate the speed of convergence of

the law LrXn, Yn, Zns of rXn, Yn, Zns toward U , in the separation sense, as shown by Diaconis and Fill
[7]. More precisely, recall that the separation discrepancy spm,µq between two probability measures
m and µ defined on the same measurable space is defined by

spm,µq B ess sup
µ

1´
dm

dµ

where dm{dµ is the Radon-Nikodym density of m with respect to µ.
For any strong stationary time τ associated to rX,Y, Zs, we have

@ n P Z`, spLrXn, Yn, Zns,Uq ď Prτ ą ns

It justifies the interest the following bound:
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Theorem 1 There exists a strong stationary time τ for rX,Y, Zs such that for M large enough,

@ r ě 0, Prτ ě rs ď 3 exp
´

´
r

33M6

¯

Taking into account the invariance of the transition matrix of rX,Y, Zs with respect to the right (or
left) group multiplication, the above result can be extended to any initial distribution of rX0, Y0, Z0s.
Note that pX,Y q is an usual random walk on the finite torus Z2

M , so it needs a time of order M2

to reach equilibrium in the strong stationary time sense. This estimate will be made more precise in
Lemma 9.

Nevertheless, the puzzling feature of the 3ˆ3 Heisenberg model over ZM is the fast convergence of
Z, mixing more rapidly than pX,Y q, at a time that should be of order M , up to possible logarithmic
corrections. In the total variation sense, this is known to be true, see e.g. [3, 4] and the references given
there. We believe this also holds in the separation sense and that the new approach presented here can
be refined to go in this direction. More precisely, a strong equilibrium time for (the non-Markovian)
Z is a finite stopping time pτ for rX,Y, Zs (and with respect to possible independent randomness)
such that pτ and Z

pτ are independent and Z
pτ is distributed according to the uniform law on ZM . In

Remark 17 (c), such a time pτ is proposed and believed to be of order M . Simulations programmed by
Chhaïbi [6] suggest it is at most of order M1.5.

Up to our knowledge, no strong stationary time can be found in the literature for finite Heisenberg
models. So the main point of this paper is to show that such a strong stationary time can be constructed
via the random mapping method of [17], even if it is sub-optimal. Indeed in Theorem 1 the right order
should be M2, the same as for the usual random walk pX,Y q on Z2

M , the extra time for Z being
expected to be negligible as said above. Nevertheless, we will be led to new interesting models of
absorbing Markov chains with a statistical physics flavor whose investigation should be pushed further
to get the desired estimate, see Remark 17 in Section 4. Indeed, this is supported by other simulations
by Chhaïbi [6] hinting the strong stationary time we found in Theorem 1 is of the optimal order M2.

If one is only interested in the convergence to equilibrium of the Markovian last column pY,Zq, the
same approach gives a better result, even if it remains sub-optimal according to the above observations.

Theorem 2 There exists a strong stationary time rτ for pY,Zq such that for M large enough,

@ r ě 0, Prrτ ě rs ď 3 exp
´

´
r

33M4

¯

One could think that once the equilibrium has been reached for pY,Zq, it is sufficient to wait for
a supplementary time for X of order M2 to equilibrate to get a strong stationary time for the whole
chain rX,Y, Zs. But one has to be more careful with this kind of assertions (despite we wrote one
before the statement of Theorem 2), see Remark 18 in Section 5 for more details.

These considerations can be extended to the N ˆ N Heisenberg HN,M group model over ZM . It
consists in the matrices of the form

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 x1,2 x1,3 ¨ ¨ ¨ x1,N´1 x1,N

0 1 x2,3 ¨ ¨ ¨ x2,N´1 x2,N

0 0 1 ¨ ¨ ¨ x3,N´1 x3,N
...

...
...

. . .
...

...
0 0 0 ¨ ¨ ¨ 1 xN´1,N

0 0 0 ¨ ¨ ¨ 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

where xk,l P ZM for 1 ď k ă l ď N , the group operation corresponds to the matrix multiplication.
Such matrices will be identified with rxk,ls1ďkălďN P Z4N

M , where 4N B tpk, lq : 1 ď k ă l ď Nu.
Consider the usual system of generators of HN,M , tεδpI,I`1q : I P JN ´ 1K and ε P t˘1uu, where

δpI,I`1q is the element of Z4N
M whose entries all vanish, except the one indexed by pI, I ` 1q which

3



is equal to 1. Let rXs B prXspnqqnPZ` B prXk,lpnqsq1ďkălďN,nPZ` be the random walk starting from
the identity r0s1ďkălďN and whose transitions are obtained by multiplying on the left by one of the
generators, each chosen with probability 1{p3pN´1qq. With the remaining probability 1/3, the random
walk does not move. The invariant measure is the uniform distribution on HN,M . We have a result
similar to Theorem 1:

Theorem 3 There exists a strong stationary time τ for rXs such that for M large enough,

@ r ě 0, Prτ ě rs ď 3 exp

ˆ

´
2r

33pN ´ 1qMNpN´1q

˙

More generally it is possible to exploit the upper diagonal structure of the model. Introduce for
rxs P HN,M and b P JN ´ 1K, the b-th upper diagonal dbrxs B pxk,k`bqkPJN´bK, as well as dJbKrxs B
pdkrxsqkPJbK. Note that rxs “ dJN´1Krxs. Similarly, for b P JN ´ 1K, we can associate the stochastic
chains Db B pdbrXpnqsqnPZ` as well as DJbK B pdJbKrXpnqsqnPZ` to the Markov chain rXs. It is not
difficult to see that DJbK is a Markov chain itself (but Db is not). We will see that for any b P J2, N´2K,
there exists a strong stationary time τb for DJbK of order at most NM bp2N´b´1q, see Theorem 21 in
Section 6. The estimate of Theorem 3 does match exactly that of Theorem 1 when N “ 3, because
we looked for a faithful generalization to facilitate reading. Again, all these bounds are very rough
and we hope they are a preliminary step toward the conjecture that the order of convergence for the
(non-Markovian) up-diagonal Db should be M2{b for fixed N and b P JN ´ 1K (see for instance [3]).

Theorem 2 has equally an extension. Denote CN rXs the last column of rXs and remark this is a
Markov chain.

Theorem 4 There exists a strong stationary time rτ for CN rXs such that for M large enough,

@ r ě 0, Prrτ ě rs ď 3 exp

ˆ

´
2r

33pN ´ 1qM2pN´1q

˙

The plan of the paper is as follows. In the next section, as a warming-up computation and to
recall the approach of [17], we construct strong stationary times for quite lazy random walks on the
finite circle ZM (no longer assuming that M ě 3 is odd). This construction is extended in Section 3
to produce a strong stationary times for the Markov chain pX,Y q on the finite torus extracted from
rX,Y, Zs. This procedure is itself distorted in Section 4 to prove Theorem 1. Section 5 presents the
modification needed for Theorem 2. The extensions to random walks on higher dimensional Heisenberg
groups is the object of Section 6. Finally, Appendix A supplements the investigation of random walks
on the finite circle ZM , when the level of laziness is weak.

2 Strong stationary times for finite circles
Here we construct strong stationary times for certain random walks on discrete circles (the remaining
cases will be treated in Appendix A). It will enable us to recall the random mapping approach, as
developed in [17].

We start by presenting the general situation of random walks on discrete circles with at least 3
points.

Let M P Nzt1, 2u and a P p0, 1{2s be fixed. We consider the Markov kernel P on ZM given by

@ x, y P ZM , P px, yq B

$

&

%

a , if y “ x` 1 or y “ x´ 1
1´ 2a , if y “ x
0 , otherwise

We are looking for strong stationary times for the corresponding random walk starting from 0
(or from any other initial point by symmetry). From Diaconis and Fill [7], it is always possible to
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construct such strong stationary times, except when a “ 1{2 and M is odd, then the random walk has
period 2 and does not converge to its equilibrium (instead, we will recover in this case a dual process
related to the discrete Pitman’s theorem [20]).

More precisely, since a ą 0, the unique invariant probability associated to P is π the uniform
distribution on ZM . It is even reversible, so that the adjoint matrix P ˚ of P in L2pπq is just P ˚ “ P .
In the sequel and in Appendix A, we will consider certain sets V consisting of non-empty subsets of
ZM and containing the whole state space ZM . There will be three instances for V, depending on the
values of a andM (a fourth one will be considered in Section A.3). Here we will deal with the simplest
case, when a P p0, 1{3s. We will then take V “ I, the set of intervals in ZM which are symmetric with
respect to 0, namely

I B tBp0, rq : r P J0, tM{2uKu

where t¨u is the usual integer part and Bp0, rq “ t´r,´r ` 1, ..., 0, ..., r ´ 1, ru is the (closed) ball
centered at 0 and of radius r, for the usual graph distance on ZM . Recall that for k ď l P Z, Jk, lK
stand for the set of integers between k and l (included). By convention, for k ě 0, JkK B J1, kK, which
is the empty set if k “ 0. The same notation will also be used for the “projected” intervals on ZM . For
the other definitions of V, when a P p1{3, 1{2s, we refer to Appendix A. These cases, while instructive,
will not be helpful for the next sections. For the sake of the general arguments below, just assume
that we have chosen a V consisting of “nice” subsets of ZM .

For any S P V, we are looking for a random mapping ψS : ZM Ñ ZM satisfying two conditions:

• the weak association with P ˚ “ P , namely

@ x P ZM , @ y P S, PrψSpxq “ ys “
1

ξpSq
P px, yq (1)

where ξpSq ą 0 is a positive number.

• the stability of V: the set

ΨpSq B ψ´1
S pSq (2)

belongs to V\ tHu.

The interest of such random mappings is that they enable to construct a V-valued intertwining
dual process, and a strong stationary time if the latter ends up being absorbed in the whole set ZM .
Indeed, introduce the Markov kernel Λ from V to ZM given by

@ S P V, @ x P ZM , ΛpS, xq B
πpxq

πpSq
1Spxq

where 1S is the indicator function of S.
Consider next the VˆV-matrix P given by

@ S, S1 P V, PpS, S1q “
ξpSqπpS1q

πpSq
PrΨpSq “ S1s (3)

We have shown in [17] that P is a Markov kernel and that it is intertwined with P through Λ:

PΛ “ ΛP

Note that ZM is absorbing for P, since we always have ΨpZM q “ ZM and ξpZM q “ 1 (by summing
with respect to y P ZM in (1)). Let X B pXnqnPZ` be a Markov chain on V starting from t0u and
whose transition kernel is P. Consider t its absorbing time:

t B inftn P Z` : Xn “ ZMu P N\ t8u
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Let X B pXnqnPZ` be a Markov chain on ZM starting from 0 and whose transition kernel is P .
As in the introduction, a finite stopping time τ for the filtration generated by X (and maybe some
additional independent randomness) is said to be a strong stationary time for X if τ and Xτ are
independent and Xτ is distributed according to π.

According to Diaconis and Fill [7], if t is almost surely finite, then it has the same law as a strong
stationary time for X, since it is possible to construct a coupling between X and X such that t is a
strong stationary time for X (see also [17], where this coupling is explicitly constructed in terms of
the random mappings).

Except when a “ 1{2 and M is even, the t we are to construct here and in Appendix A will be a.s.
finite. Furthermore, when a P p0, 1{3s, t will be a sharp strong stationary time, in the sense that its
law will be stochastically dominated by the law of any other strong stationary time. As a consequence,
we get that

@ n P Z`, spLpXnq, πq “ Prt ą ns (4)

Indeed, this sharpness is a consequence of Remark 2.39 of Diaconis and Fill [7] and the fact that

@ S P IztZMu, ΛpS, tM{2uq “ 0 (5)

This relation, with S P VztZMu, will not be satisfied by the constructions of Appendix A, so we
will not be able to conclude to sharpness when a P p1{3, 1{2q or a “ 1{2 and M odd.

For the remaining part of this section we assume M ě 3 and a P p0, 1{3s. Let us construct the
desired random mappings pψSqSPI. We distinguish S “ t0u from the other cases.

2.1 The random mapping ψt0u

The construction of ψt0u is different from that of the other ψS , for S P Iztt0uu. Choose two mappings
rψ, pψ : ZM Ñ ZM satisfying respectively rψp0q “ 0 “ rψp´1q “ rψp1q and rψpxq ‰ 0 for x P ZMzJ´1, 1K,
and pψp0q “ 0 and pψpxq ‰ 0 for x P ZMzt0u. Take ψt0u to be equal to rψ with some probability
p P r0, 1s and to pψ with probability 1´ p. Let us compute p so that Condition (1) is satisfied, which
here amounts to the validity of

Prψt0upxq “ 0s “
1

ξpt0uq
P px, 0q (6)

for all x P ZM and for some ξpt0uq ą 0.

• When x R J´1, 1K, both sides of (6) vanish.

• When x “ 0, the l.h.s. of (6) is 1, while the r.h.s. is p1´ 2aq{ξpt0uq. This implies that ξpt0uq “
1´ 2a.

• When x P t´1, 1u, (6) is equivalent to

p “
a

1´ 2a

and this number p does belongs to p0, 1s for a P p0, 1{3s.

Next we must check that for this random mapping ψt0u, (2) is satisfied, namely Ψpt0uq P I “ I.
This is true, because rψ´1pt0uq “ J´1, 1K P I and pψ´1pt0uq “ t0u P I.
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2.2 The other random mappings
We now come to the construction of the random mappings ψS , for S P Iztt0uu, which is valid for all
a P p0, 1{2s and does not depend on the particular value of S P Iztt0uu. So let us call this random
mapping φ. It will takes five values tφ1, φ2, φ3, φ4, φ5u, and to describe them it is better to discriminate
according the parity of M .

When M is odd. Here is the definition of the mappings φl, for l P J5K.

• φ1 is defined by

@ x P ZM , φ1pxq B

$

&

%

x` 1 , if x P J´pM ´ 1q{2,´1K
1 , if x “ 0
x´ 1 , if x P J1, pM ´ 1q{2K

• φ2 is defined by

@ x P ZM , φ2pxq B

$

&

%

x` 1 , if x P J´pM ´ 1q{2,´1K
´1 , if x “ 0
x´ 1 , if x P J1, pM ´ 1q{2K

• φ3 is defined by

@ x P ZM , φ3pxq B

$

&

%

x´ 1 , if x P J´pM ´ 1q{2,´1K
1 , if x “ 0
x` 1 , if x P J1, pM ´ 1q{2K

• φ4 is defined by

@ x P ZM , φ4pxq B

$

&

%

x´ 1 , if x P J´pM ´ 1q{2,´1K
´1 , if x “ 0
x` 1 , if x P J1, pM ´ 1q{2K

• φ5 is just the identity mapping

The random mapping φ is taking each of the values φ1, φ2, φ3 and φ4 with the probability a{2 and
the value φ5 with the remaining probability 1´ 2a. It is immediate to check (1) can be reinforced into

@ x, y P Z`, PrψSpxq “ ys “ P px, yq (7)

(called the strong association condition with P ˚ “ P in [17]). Furthermore, we have for any r P
JpM ´ 1q{2´ 1K,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

φ´1
1 pBp0, rqq “ Bp0, r ` 1q

φ´1
2 pBp0, rqq “ Bp0, r ` 1q

φ´1
3 pBp0, rqq “ Bp0, r ´ 1q

φ´1
4 pBp0, rqq “ Bp0, r ´ 1q

φ´1
5 pBp0, rqq “ Bp0, rq

(8)

It follows that I is left stable by the random mapping Ψ defined in (2) (since the remaining set
ZM “ Bp0, pM ´ 1q{2q is left stable by any mapping from ZM to ZM ).
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When M is even. The previous mappings have to be slightly modified, due to the special role of
the point M{2.

More precisely, φ1, φ2, φ3, φ4 and φ5 are defined in exactly the same way on ZMztM{2u and in
addition:

φ1pM{2q “ M{2` 1

φ2pM{2q “ M{2´ 1

φ3pM{2q “ M{2` 1

φ4pM{2q “ M{2´ 1

φ5pM{2q “ M{2

The random mapping φ is taking each of the values φ1, φ2, φ3, φ4 and φ5 with the same probabilities
as in the caseM odd. The strong association condition (7) as well as the stability of I by Ψ are similarly
verified ((8) is now true for r P J1,M{2´ 1K).

2.3 The Markov transition kernel P
To simplify the description of P given in (3), let us identify J´r, rK with r, for r P J0, tM{2uK. Then
it appears that P is the transition matrix of a birth and death chain:

@ k, l P J0, tM{2uK, Ppk, lq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1´ 3a , if k “ 0 “ l

3a , if k “ 0 and l “ 1

a 2l`1
2k`1 , if k P J1, tM{2u´ 1K and |k ´ l| “ 1

1´ 2a , if k P J1, tM{2u´ 1K and k “ l

1 , if k “ tM{2u “ l

0 , otherwise

Since P enables to reach the absorbing point tM{2u from all the other points, the absorbing time t
is a.s. finite and due to (5), its law is the distribution of a sharp strong stationary time for X, namely
the tail probabilities of t correspond exactly to the evolution of the separation distance between the
time marginal distribution and π, see (4). Since the starting point X0 “ t0u, identified with 0,
is the opposite boundary point of the absorbing point tM{2u, Karlin and McGregor [13] described
explicitly the law of t in terms of the spectrum of P (see also Fill [10] or [8] for probabilistic proofs via
intertwining relations). In particular when this spectrum is non-negative, t is a sum of independent
geometric variables whose parameters are the eigenvalues (except 1) of P.

Remark 5 When a “ 1{3, Diaconis and Fill [7] gives another illustrative example of a sharp strong
stationary time for P , see also Section 4.1 of Pak [19].

˝

Remark 6 We could have first projected ZM on J0, tM{2uK (sending 0 to 0, ´1 and 1 to 1, etc.) and
lumpX to obtain a birth-and-death process rX. Its transition matrix rP satisfies rP p0, 1q “ 2a, rP p1, 0q “
a, rP p1, 2q “ a, etc. (note that P ptM{2u, tM{2u ´ 1q is equal to a or 2a, depending on the parity of
M). Constructing a corresponding set-valued intertwining dual, we would have ended with the same
strong stationary time. According to Proposition 4.6 of Diaconis and Fill [7] (where we take into
account that rP is reversible and that rX0 “ 0), there exists a dual process to rX taking values in
tJ0, xK : x P J0, tM{2uKu if and only if rX is monotone. It is easy to check that rX is monotone if and
only if a P p0, 1{3s (compare rP p0, J1, tM{2uKq “ 2a with rP p1, J1, tM{2uKq “ 1 ´ a, this special role of
0 is related to difference between Sections 2.1 and 2.2). This explains the critical position of a “ 1{3
and justifies the different treatment of the case a P p1{3, 1{2s in Appendix A.
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˝

Remark 7 If we had chosen for ψt0u a random mapping satisfying the strong association condition (7)
instead of the weak association (1), then we could not have achieved the stability condition ΨpIq Ă I.
Indeed, the condition Prψ´1

0 p0q “ 1s “ a would have implied that Ψpt0uq must have taken values in
the subsets of t´1, 0, 1u not containing 0. Nevertheless, it is possible to choose a random mapping
verifying (7) and such that the only additional value of Ψpt0uq is the empty set, so that Ψpt0uq P
tH, t0u, t´1, 0, 1uu. Due to the fact that necessarily Ppt0u, ¨qΛ “ ΛP p0, ¨q “ p1´ 2aqδ0 ` apδ´1 ` δ1q

(where δ stands for the Dirac mass), we then end up with the same kernel P.
If with positive probability Ψpt0uq takes other values thanH, t0u and t´1, 0, 1u, and if we keep the

same φ for the other random mappings, then t will not be sharp (if is a.s. finite at all, cf. Remark 30),
as it can be deduced from Appendix A.

˝

2.4 Illustration for a “ 1{3 and M odd
When a “ 1{3, the transition matrix P is given on J0, pM ´ 1q{2K by

@ k, l P J0, tM{2uK, Ppk, lq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 , if k “ 0 “ l

1 , if k “ 0 and l “ 1
1
3

2l`1
2k`1 , if k P J1, pM ´ 3q{2K and |k ´ l| “ 1

1
3 , if k P J1, pM ´ 3q{2K and k “ l

1 , if k “ pM ´ 1q{2 “ l

0 , otherwise

Let t be the time a Markov chain X associated to P and starting from 0 hits pM ´ 1q{2. Consider
W a random walk on Z, starting from 0, whose transition probabilities of going one step upward,
one step downward or to stay at the same position are all equal to 1/3. Let ς be the hitting time
by W of the set t´pM ´ 1q{2, pM ´ 1q{2u. Since for k P J1, pM ´ 3q{2K, we have Ppk, k ` 1q ě 1{3
and Ppk, k ´ 1q ď 1{3, a simple comparison with the random walk W enables us to see that t is
stochastically dominated by ς. This elementary observation leads to:

Corollary 8 The strong stationary time t for the random walk on the circle ZM corresponding to
a “ 1{3, constructed as the absorption of the above Markov chain X, has tail distributions satisfying
for M large enough,

@ r ě 0, Prt ě rM2s ď 2 expp´r{4q

Proof
It is sufficient to prove the same bound for ς: for M large enough,

@ r ě 0, Prς ě rM2s ď 2 expp´r{4q (9)

For any α P R, define

ρα B
1` e´α ` eα

3

We have for any n P Z`,

EreαWn`1 |σpWn,Wn´1, ...,W1,W0 “ 0qs “ ραe
αWn

9



and as a consequence, the process pMnqnPZ` defined by

@ n P Z`, Mn B eαWn´lnpραqn

is a martingale.
Note that by symmetry and since ς is independent from sgnpWςq, we have

ErMςs “ EreαpM´1q{2´lnpραqς1Wς“pM´1q{2s ` Ere´αpM´1q{2´lnpραqς1Wς“´pM´1q{2s

“ coshpαpM ´ 1q{2qEre´ lnpραqςs

Furthermore, pMn^ςqnPZ` is a bounded martingale (since ρα ě 1), so the stopping theorem gives
us ErMςs “ ErM0s “ 1, and we get

Erρ´ςα s “
1

coshpαpM ´ 1q{2q

By analytic extension, this equality is still valid if α is replaced by αi (where i P C, i2 “ ´1), as
long as |α|pM ´ 1q{2 ă π{2, and we get

E
„ˆ

3

1` 2 cospαq

˙ς

“
1

cospαpM ´ 1q{2q

Apply this equality with α “ 1{M , to deduce that for large M ,

E
„ˆ

3

1` 2 cosp1{Mq

˙ς

„
1

cosp1{2q

For r ą 0, remarking that cosp1{Mq ă 1, we get

Prς ě rM2s ď

ˆ

1` 2 cosp1{Mq

3

˙rM2

E
„ˆ

3

1` 2 cosp1{Mq

˙ς

„
1

cosp1{2q

ˆ

1´
1

3M2

˙rM2

“
1

cosp1{2q
expp´rp1` op1qq{3q

Taking into account that 1{ cosp1{2q « 1.139, we see that (9) is satisfied for M large enough.
�

3 A strong stationary time for the finite torus
Here we construct a set-valued dual process associated to the random walk rX,Y, Zs on the Heisenberg
group HM described in the introduction, where the odd number M ě 3 is fixed. It will provide a
strong stationary time for the random walk pX,Y q on the torus. Its main interest is to serve as a link
between the considerations of Section 2 and Section 4, justifying the construction that will be done
there. Except for this pedagogical purpose, this section is not needed in the sequel.

Denote by P the transition kernel of rX,Y, Zs. The uniform probability measure U on HM is
reversible with respect to P , so that P ˚ “ P , where P ˚ is the adjoint operator of P in L2pUq.

As in the previous section, we are looking for a dual process X B pXnqnPZ` taking values in a set
V of non-empty subsets of HM , whose transition kernel P is intertwined with P through:

PΛ “ ΛP (10)

10



where the Markov kernel Λ from V to HM is given by

@ Ω P V, @ u P HM , ΛpΩ, uq B
Upuq
UpΩq

1Ωpuq

Since rX,Y, Zs is starting from r0, 0, 0s, we will require furthermore that X0 “ tr0, 0, 0su.
The construction of P will follow the general random mapping method described in [17] and

already alluded to in the previous section. More precisely, for any Ω P V, we are looking for a
random mapping ψΩ : HM Ñ HM satisfying two conditions:

• the weak association with P ˚ “ P , namely

@ u P HM , @ v P Ω, PrψΩpuq “ vs “
1

ξpΩq
P pu, vq (11)

where ξpΩq ą 0 is a positive number.

• the stability of V: the set

ΨpΩq B ψ´1
Ω pΩq (12)

belongs to V\ tHu.

It is shown in [17] that the Markov kernel defined on V by

@ Ω,Ω1 P V, PpΩ,Ω1q “
ξpΩqUpΩ1q
UpΩq

PrΨpΩq “ Ω1s (13)

satisfies (10). Note that the whole state space HM is absorbing for P, so if

t B inftn P Z` : Xn “ ZMu P N\ t8u

is a.s. finite, then it has the same law as a strong stationary time for rX,Y, Zs, as a consequence of
Diaconis and Fill [7].

Let us now describe V and the corresponding random mappings pψΩqΩPV.
The set V consists of subsets Ω Ă HM of the form

Ωr,s,A B trx, y, zs P HM : x P Bprq, y P Bpsq, z P Apx, yqu (14)

where r P J0, pM ´ 1q{2K, s P J0, pM ´ 1q{2K, Bprq B J´r, rK seen as the closed ball of ZM centered
at 0 and of radius r, and A is a mapping from Bprq ˆ Bpsq to the non-empty subsets of ZM . It is
convenient to see A as a special field going from the base space Bprq ˆ Bpsq to the fiber space
consisting of the non-empty subsets of ZM . This notion will be extended in that of a field in the next
section.

In order to construct our random mappings pψΩqΩPV, we need to introduce the following 7 map-
pings, inspired by the considerations of the previous section. Denote Z´M B J´pM ´ 1q{2,´1K and
Z`M B J0, pM ´ 1q{2K, seen as subsets of ZM . We define the mapping sgn on ZM via

@ x P ZM , sgnpxq B

#

´1 , if x P Z´M
1 , if x P Z`M

Here are the mappings that will be the values of the random mappings pψΩqΩPV:

• The mapping rφp0q:

@ rx, y, zs P HM , rφp0qprx, y, zsq B

#

r0, y, z ´ xys , if x P t´1, 0, 1u

rx, y, zs , if x R t´1, 0, 1u

11



• The mapping pφp0q:

@ rx, y, zs P HM , pφp0qprx, y, zsq B

#

rx, 0, zs , if y P t´1, 0, 1u

rx, y, zs , if y R t´1, 0, 1u

• The mapping rφp1q:

@ rx, y, zs P HM , rφp1qprx, y, zsq B rx´ sgnpxq, y, z ´ sgnpxqys

• The mapping pφp1q:

@ rx, y, zs P HM , pφp1qprx, y, zsq B rx, y ´ sgnpyq, zs

The mapping rφp2q:

@ rx, y, zs P HM , rφp2qprx, y, zsq B rx` sgnpxq, y, z ` sgnpxqys

• The mapping pφp2q:

@ rx, y, zs P HM , pφp2qprx, y, zsq B rx, y ` sgnpyq, zs

• pφp3q is just the identity mapping on HM .

We can now define the family pψΩqΩPV.
Again we fix a set Ω B Ωr,s,A as in (14). The underlying probability depends on Ω through the

following cases.

• If r “ s “ 0. The random mapping ψΩ takes with the values rφp0q and pφp0q with probability
1/2 each. The weak association with P is satisfied with ξpΩq “ 1{3: for any rx, y, zs P HM and
rx1, y1, z1s P Ω,

P
“

ψΩprx, y, zsq “ rx
1, y1, z1s

‰

“ 3P prx, y, zs, rx1, y1, z1sq (15)

Indeed, first note that rx1, y1, z1s P Ω0,0,A implies that x1 “ y1 “ 0. Next, both sides vanish if we
do not have px, yq P tp´1, 0q, p1, 0q, p0, 1q, p0,´1q, p0, 0qu, and z1 “ z.
Consider the case px, yq “ p0, 0q, we have for any z P ZM ,

P rψΩpr0, 0, zsq “ r0, 0, zss “ 1

P pr0, 0, zs, r0, 0, zsq “ 1{3

so (15) is satisfied.
When px, yq “ p´1, 0q, we have for any z P ZM ,

P rψΩpr´1, 0, zsq “ r0, 0, zss “ PrψΩ “
rφp0qs “ 1{2

P pr´1, 0, zs, r0, 0, zsq “ 1{6

so (15) is satisfied again. The other cases are treated in the same way.

• If r “ 0 and s ‰ 0. The random mapping ψΩ takes with the value rφp0q with probability p, pφp1q

and pφp2q each with probability q, and pφp3q with probability 1´ p´ 2q, where p, q P r0, 1s are such
that 1 ´ p ´ 2q P r0, 1s. Let us find p, q such that furthermore the weak association with P is
satisfied with some ξpΩq ą 0: for any rx, y, zs P HM and rx1, y1, z1s P Ω,

P
“

ψΩprx, y, zsq “ rx
1, y1, z1s

‰

“
1

ξpΩq
P prx, y, zs, rx1, y1, z1sq (16)
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Indeed, first note that rx1, y1, z1s P Ω0,s,A implies that x1 “ 0. Next we have

P
“

ψΩprx, y, zsq “ r0, y
1, z1s

‰

“ p1
trφp0qprx,y,zsq“r0,y1,z1su

` q1
tpφp1qprx,y,zsq“r0,y1,z1su

`q1
tpφp2qprx,y,zsq“r0,y1,z1su

` p1´ p´ 2qq1
tpφp3qprx,y,zsq“r0,y1,z1su

Let us first investigate the possibility rφp0qprx, y, zsq “ r0, y1, z1s. Necessarily, x P t´1, 0, 1u, y “ y1,
z1 “ z ´ xy. Whatever x P t´1, 0, 1u, we have

P rψΩprx, y, zsq “ r0, y, zss “ p1
trφp0qprx,y,zsq“r0,y,z´xysu

` p1´ p´ 2qq1
tpφp3qprx,y,zsq“r0,y,z´xysu

“

"

p , if x P t´1, 1u
1´ 2q , if x “ 0

On the other hand, we have

P prx, y, zs, r0, y, zsq “

"

1{6 , if x P t´1, 1u
1{3 , if x “ 0

thus we end up with the conditions 1´ 2q “ 2p and ξpΩq “ 1{p6pq.
Next we consider the possibility pφp1qprx, y, zsq “ r0, y1, z1s (the symmetric case pφp2qprx, y, zsq “
r0, y1, z1s is similarly treated). Necessarily x “ 0, z1 “ z and y “ y1 ˘ 1, depending on y P Z`M
or y P Z´M . With these values, it follows that the l.h.s. of (16) is q and the r.h.s. is 1{p6ξpΩqq,
leading us to the equation q “ 1{p6ξpΩqq. Putting together all the equations between p, q and
ξpΩq, we get that p “ q “ 1{4 and ξpΩq “ 2{3. It is then immediate to check that (16) is true.

• If r ‰ 0 and s “ 0. The random mapping ψΩ takes with the values pφp0q, rφp1q, rφp2q and pφp3q, each
with probability 1{4. The treatment of this case is similar to the previous one.

• If r ‰ 0 and s ‰ 0. The random mapping ψΩ takes the value pφp3q with probability 1{3 and each
of the values rφp1q, pφp1q, rφp2q and pφp2q with probability 1{6. This situation is the simplest one, we
clearly have for any rx, y, zs P HM and rx1, y1, z1s P Ω,

P
“

ψΩprx, y, zsq “ rx
1, y1, z1s

‰

“ P prx, y, zs, rx1, y1, z1sq

Our next task is to check that the random mapping Ψ associated to the family pψΩqΩPV lets V
stable and moreover to describe its action.

Fix some Ω B Ωr,s,A P V, we are wondering in which set it will be transformed by Ψ. Again we
consider the previous situations.

• If r “ s “ 0. Then ΨpΩq is equal either to prφp0qq´1pΩq or to ppφp0qq´1pΩq. Let us consider the
first case. By definition, we have

prφp0qq´1pΩq “ trx1, y1, z1s P HM : rφp0qprx1, y1, z1sq P Su

“ trx1, y1, z1s P HM : D rx, y, zs P S, with rφp0qprx1, y1, z1sq “ rx, y, zsu

“ trx1, y1, z1s P HM : D z P Ap0, 0q, with rφp0qprx1, y1, z1sq “ r0, 0, zsu

“ trx1, y1, z1s P HM : D z P Ap0, 0q, with x1 P t´1, 0, 1u and r0, y1, z1 ´ x1y1s “ r0, 0, zsu
“ trx1, 0, z1s P HM : x1 P t´1, 0, 1u and z1 P Ap0, 0qu
“ Ω1,0,A1

where A1 is defined by:

@ px1, y1q P Bp1q ˆ t0u, Apx1, y1q B Ap0, 0q

Similarly, we get ppφp0qq´1pΩq “ Ω1,0,A1 .
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• If r “ 0 and s ‰ 0. There are three possibilities for ΨpΩq: prφp0qq´1pΩq, ppφp1qq´1pΩq, ppφp2qq´1pΩq
or ppφp3qq´1pΩq. The same computation as above shows that

prφp0qq´1pΩq

“ trx1, y1, z1s P HM : D y P Bpsq, D z P Ap0, yq, with x1 P t´1, 0, 1u and r0, y1, z1 ´ x1y1s “ r0, y, zsu
“ trx1, y1, z1s P HM : x1 P t´1, 0, 1u, y1 P Bpsq and z1 P Ap0, y1q ` x1y1u
“ Ω1,s,A1

where A1 is defined by:

@ px1, y1q P Bp1q ˆBpsq, A1px1, y1q B Ap0, y1q ` x1y1

Next consider ppφp1qq´1pΩq:

ppφp1qq´1pΩq “ trx1, y1, z1s P HM : D y P Bpsq, D z P Ap0, yq with x1 “ 0, y1 ´ sgnpy1q “ y, z1 “ zu

“ Ω0,s´1,A1

where A1 is defined by:

@ px1, y1q P t0u ˆBps´ 1q, A1px1, y1q B Ap0, y1 ´ sgnpy1qq

Similarly, ppφp2qq´1pΩq “ Ω0,s´1,A1 , with another set-valued mapping A1:

@ px1, y1q P t0u ˆBps` 1q, A1px1, y1q B Ap0, y1 ` sgnpy1qq

Of course, we have ppφp3qq´1pΩq “ Ω.

• The other cases where r ‰ 0 are treated in a similar way. For instance for r ‰ 0, pM ´ 1q{2 and
s ‰ 0, we have ppφp1qq´1pΩq “ Ωr`1,s,A1 with

@ px1, y1q P Bppr ` 1q ^ ppM ´ 1q{2qq ˆBpsq, A1px1, y1q B Apx1 ´ sgnpx1q, y1q ` sgnpx1qy1

Let P the transition kernel induced by the above family of random mappings pψΩqΩPV and consider
X B pXnqnPZ` an associated Markov chain starting from tr0, 0, 0su. For any n P Z`, let us write
Xn “ ΩRn,Sn,An with the previous notation. Define

σ B inftn P Z` : Rn “ pM ´ 1q{2 “ Snu

Taking into account the considerations of Section 2, σ is a.s. finite and we have

@ n ě σ, Rn “ pM ´ 1q{2 “ Sn

Nevertheless, this Markov chain has a serious drawback:

@ n P Z`, @ x P BpRnq, @ y P BpSnq, |Anpx, yq| “ 1 (17)

Indeed, from the above construction, we deduce that

@ n P Z`, @ x1 P BpRn`1q, @ y
1 P BpSn`1q, D x P BpRnq, D y P BpSnq : |An`1px

1, y1q| “ |Anpx, yq|

This observation is true for any initial condition X0. When X0 “ tr0, 0, 0su, the fiber-valued
component of X0 is only t0u and has size 1. The latter property is inherited by all the following values
of Xn for n P Z`, justifying (17).

For the fiber-valued components of X to reach the whole state space ZM , we need to change our
strategy. Before doing so in the next section, let us estimate the tail probabilities of σ, taking into
account Corollary 8:
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Lemma 9 For M large enough, we have

@ r ě 0, Prσ ě rM2s ď 5 expp´r{10q

Proof
Let rX B p rXnqnPZ` and rY B prYnqnPZ` be two independent random walks on ZM as in Section 2.4. Let
pBnqnPZ` be a family of independent Bernoulli variables of parameter 1{2 (independent from p rX, rY q)
and define

@ n P Z`, θn B
ÿ

mPJnK

Bm

The chain pX,Y q has the same law as p rXθn ,
rYn´θnqnPZ` and from the above construction, it appears

that

σ “ inftn P Z` : θn ě t1 and n´ θn ě t2u

where t1 (respectively t2) is the strong stationary time constructed as in Section 2.4 for rX (resp. rY ).
It follows that for any n P Z`,

Prσ ě ns ď Prθn ď t1s ` Prn´ θn ď t2s

“ 2Prθn ď t1s

since pθn, t1q and pn´ θn, t2q have the same law.
According to Corollary 8, we have for the conditional expectation knowing θn and for large M :

Prθn ď t1|θns ď 2 expp´θn{p4M
2qq

so that

Prθn ď t1s ď 2Erexpp´θn{p4M
2qqs

“ 2Erexpp´B1{M
2qsn

“ 2

ˆ

1` expp´1{p4M2qq

2

˙n

It follows that if n is of the form rrM2s for some r ě 0, then

Prσ ě rM2s ď 4

ˆ

1` expp´1{p4M2qq

2

˙rM2

ď 5 expp´r{10q

for M large enough (uniformly in r ě 0).
�

Note that σ is a strong stationary time for the random walk pX,Y q on the torus Z2
M . Thus Lemma 9

enables to recover the order M2 for the speed of convergence to equilibrium of pX,Y q in separation.

4 A strong stationary time for the finite Heisenberg walk
Here we modify the family of random mappings considered in the previous section, in order to con-
struct another set-valued dual process associated to the random walk rX,Y, Zs, with better spreading
properties.
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We begin by presenting a representation of the subsets of HM in terms of fields. A field is
mapping A from Z2

M to the set of subsets of ZM . The set of fields is denoted A. To any field
A B pApx, yqqpx,yqPZ2

M
P A, we associate the subset ΩA Ă HM via

ΩA B trx, y, zs P HM : z P Apx, yqu

This relation is in fact a bijection between A and the set of subsets of HM . The subsets Apx, yq,
for px, yq P Z2

M , will still be called the fibers. The special fields considered in the previous section are
the fields such that the non-empty fibers are exactly indexed by sets of the form BprqˆBpsq, for some
r, s P J0, pM ´ 1q{2K.

Here it will be more convenient to work with fields than with the subsets of HM .
The main difference between our new family of random mappings pψAqAPA and that pψΩqΩPV of

Section 3 consists in replacing the function sign that was acting on the first coordinates of HM by a
much more general mapping. More precisely, let us fix a field A P A. Assume that for any x, y P ZM , we
are given two partitions of ZM into two disjoint subsets respectively rB´A,x,y\

rB`A,x,y and pB´A,x,y\
pB`A,x,y,

that depend on A, x and y. We define corresponding functions rϕA and pϕA on HM via

@ rx, y, zs P HM , rϕApx, y, zq B

#

´1 , if z P rB´A,x,y
1 , if z P rB`A,x,y

@ rx, y, zs P HM , pϕApx, y, zq B

#

´1 , if z P pB´A,x,y
1 , if z P pB`A,x,y

Next we replace rφp1q, rφp2q, pφp1q and pφp2q respectively by

@ rx, y, zs P HM , rφ
p1q
A prx, y, zsq B rx´ rϕApx, y, zq, y, z ´ rϕApx, y, zqys

@ rx, y, zs P HM , rφ
p2q
A prx, y, zsq B rx` rϕApx, y, zq, y, z ` rϕApx, y, zqys

@ rx, y, zs P HM , pφ
p1q
A prx, y, zsq B rx, y ´ pϕApx, y, zq, zs

@ rx, y, zs P HM , pφ
p2q
A prx, y, zsq B rx, y ` pϕApx, y, zq, zs

The random mapping ψA is constructed as the corresponding ψΩ in the case r ‰ 0 and s ‰ 0.
Namely, the random mapping ψA takes the value pφp3q with probability 1{3 and each of the values
rφ
p1q
A , pφ

p1q
A , rφ

p2q
A and pφ

p2q
A with probability 1{6. There is no difficulty in checking that ψA is associated to

P :

@ rx, y, zs P HM , @ rx
1, y1, z1s P ΩA, P

“

ψAprx, y, zsq “ rx
1, y1, z1s

‰

“ P prx, y, zs, rx1, y1, z1sq

(note that rφp0q and pφp0q are no longer required, they were only useful to initiate the spread of the evolv-
ing sets associated to pψΩqΩPV on the base space ZM ˆZM corresponding to the two first coordinates
of HM ).

Consider the random mapping Ψ associated to the family pψAqAPA and let us describe its action.
Fix some A P A, we are wondering what is ΨpΩAq, namely we have to compute prφp1qA q

´1pΩAq,
ppφp1qq´1pΩAq, prφ

p2q
A q

´1pΩAq and ppφp2qq´1pΩAq. Let us start with

prφ
p1q
A q

´1pΩAq “ trx1, y1, z1s P HM : D rx, y, zs P ΩA, with rφ
p1q
A prx

1, y1, z1sq “ rx, y, zsu

The belonging of rx, y, zs to ΩA means that z P Apx, yq, and the equality rφ
p1q
A prx

1, y1, z1sq “ rx, y, zs
is equivalent to

$

&

%

x1 ´ ϕApx
1, y1, z1q “ x

y1 “ y
z1 ´ ϕApx

1, y1, z1qy1 “ z
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Thus rx1, y1, z1s belongs to prφp1qA q
´1pΩAq if and only if

z1 P Apx1 ´ ϕApx
1, y1, z1q, y1q ` ϕApx

1, y1, z1qy1

namely, either

ϕApx
1, y1, z1q “ ´1 and z1 P Apx1 ` 1, y1q ´ y1 (18)

or

ϕApx
1, y1, z1q “ 1 and z1 P Apx1 ´ 1, y1q ` y1 (19)

Thus defining the new field rAp1q via

@ px1, y1q P Z2
M ,

rAp1qpx1, y1q B
´

pApx1 ` 1, y1q ´ y1q X rB´A,x1,y1
¯

Y

´

pApx1 ´ 1, y1q ` y1q X rB`A,x1,y1
¯

we get that

prφ
p1q
A q

´1pΩAq “ Ω
rAp1q

The other cases are treated in a similar way and we get

ppφ
p1q
A q

´1pΩAq “ Ω
pAp1q

prφ
p2q
A q

´1pΩAq “ Ω
rAp2q

ppφ
p2q
A q

´1pΩAq “ Ω
pAp2q

where for any px1, y1q P Z2
M ,

pAp1qpx1, y1q B
´

Apx1, y1 ` 1q X pB´A,x1,y1
¯

Y

´

pApx1, y1 ´ 1q X pB`A,x1,y1
¯

rAp2qpx1, y1q B
´

pApx1 ` 1, y1q ´ y1q X rB`A,x1,y1
¯

Y

´

pApx1 ´ 1, y1q ` y1q X rB´A,x1,y1
¯

pAp2qpx1, y1q B
´

Apx1, y1 ` 1q X pB`A,x1,y1
¯

Y

´

pApx1, y1 ´ 1q X pB´A,x1,y1
¯

Let Q be the transition kernel induced by the above family of random mappings pψAqAPA as in (3).
More precisely, it is given by

QpA,A1q B
|A1|

|A|

ˆ

1

6
1

rAp1q
pA1q `

1

6
1

pAp1q
pA1q `

1

6
1

rAp2q
pA1q `

1

6
1

pAp2q
pA1q `

1

3
1ApA

1q

˙

for any fields A,A1, where A P AztHu (where H is the field whose fibers are all empty) and where for
any field A, the thickness of A is defined by

|A| B
ÿ

x,yPZM

|Apx, yq|

It corresponds to the cardinal of the subset of HM associated to the field A.
Note in particular that transitions to H have the probability 0.
Markov chains whose transitions are dictated by Q will be denoted pAnqnPZ` , they start from an

initial field A0 P AztHu and stay afterward in AztHu.
Our next task is to make an appropriate choice of the partitions ZM “ rB´A,x,y \

rB`A,x,y and
ZM “ pB´A,x,y \

pB`A,x,y so that the Markov chain pAnqnPZ` ends up at the full field A8, defined by

@ x, y P ZM , A8px, yq “ ZM

17



(note that this field is absorbing).
A guiding principle behind such a choice should be that there is a chance to get a “big” field

(measured through its thickness). It leads us to following choice:

@ A P A, @ x, y P ZM ,

$

’

’

’

’

’

&

’

’

’

’

’

%

rB´A,x,y B Apx` 1, yq ´ y

rB`A,x,y B ZMz rB´A,x,y
pB´A,x,y B Apx, y ` 1q

pB`A,x,y B ZMz pB´A,x,y

We get that for any A P A and any px, yq P Z2
M ,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rAp1qpx, yq B
´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯

rAp2qpx, yq B
´

Apx` 1, yq ´ y
¯

X

´

Apx´ 1, yq ` y
¯

pAp1qpx, yq B Apx, y ` 1q YApx, y ´ 1q

pAp2qpx, yq B Apx, y ` 1q XApx, y ´ 1q

(20)

Remark 10 The fact that rAp1qpx, yq (respectively pAp1qpx, yq) is the biggest possible has to be com-
pensated by the fact rAp2qpx, yq (resp. pAp2qpx, yq) is the smallest possible. But we should not worry so
much about this feature, as Q promotes bigger fields.

˝

Let us check that this choice of dual process goes in the direction of our purposes.

Proposition 11 The Markov kernel Q associated to (20) admits only one recurrence class which is
tA8u, i.e. the Markov chain pAnqnPZ` ends up being absorbed in finite time at the full field.

Proof
Let be given any A0 P AztH, A8u. It is sufficient to find a finite sequence pAlqlPJLK with L P N,
AL “ A8 and

@ l P J0, L´ 1K, QpAl, Al`1q ą 0

Here is a construction of such a sequence.
Denote rT (respectively pT ) the mapping on fields corresponding to the transition A Ñ rAp1q (resp.

AÑ pAp1q).
We begin by constructing A1, A2, A3 and A4 by successively applying rT , pT , rT and pT . Fix

px, yq P Z2
M as well as z P A0px, yq. Applying rT , we get that z`y P A1px`1, yq and z´y P A1px´1, yq.

Applying pT , we have that z ` y P A2px` 1, y ` 1q and z ´ y P A2px´ 1, y ` 1q. Next rT insures that
z ´ 1 “ z ` y´ py` 1q P A3px, y` 1q and z ` 1 “ z ´ y` py` 1q P A3px, y` 1q. Finally, under rT , we
get that z ´ 1 P A4px, yq and z ` 1 P A4px, yq.

Successively applying again rT , pT , rT and pT , we construct A5, A6, A7 and A8. By the above
considerations, we deduce that z ´ 2, z and z ` 2 belong to A8px, yq. Let us successively apply
M ´ 3 more times rT , pT , rT and pT , to get A9, ..., A4pM´1q. It appears that A4pM´1qpx, yq contains
z ´M ` 1, z ´M ` 3, ..., z `M ´ 3, z `M ´ 1. Due to the fact that M is odd, the latter set is just
ZM .

Thus we get that for any px, yq P Z2
M , A4pM´1q “ ZM , namely A4pM´1q “ A8. It provides the

desired finite sequence with L “ 4pM ´ 1q.
�
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Remark 12 The successive applications of rT , pT , rT and pT is not without recalling the construction
of the bracket of two vector fields in differential geometry. The latter is used to investigate hypo-
ellipticity, see for instance the book of Hörmander [12], the continuous Heisenberg group being a
famous instance. Our objective of showing that the full space is covered by the dual process is a
discrete analogue of the property of hypoelliptic diffusions to admit a positive density at any positive
time (see also [16] for another link between hypoellipticity and intertwining dual processes).

˝

From the above results, we can construct a strong stationary time for the random walk on HM .
Consider τ the the hitting time of the full field. From [17], we get that τ has the law of a strong
stationary time for the random walk on HM .

This ends the qualitative construction of a strong stationary time. To go quantitative, the hitting
time τ has to be investigated more thoroughly. More precisely, our goal is to prove Theorem 1.

Fix A P AztHu for the two following results.

Lemma 13 We have
´

| rAp1q| “ |A| “ | pAp1q|
¯

ñ A “ A8

Proof
So let us assume that

| rAp1q| “ |A| “ | pAp1q| (21)

For any px, yq P Z2
M , we have

| rAp1qpx, yq| “

ˇ

ˇ

ˇ

´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯
ˇ

ˇ

ˇ

ě |Apx` 1, yq ´ y|

“ |Apx` 1, yq|

and we get

| rAp1q| ě
ÿ

px,yqPZ2
M

|Apx` 1, yq|

“
ÿ

px,yqPZ2
M

|Apx, yq|

“ |A|

Due to (21), the previous inequality must be an equality, and we deduce that

@ px, yq P Z2
M ,

ˇ

ˇ

ˇ

´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯ˇ

ˇ

ˇ
“ |Apx` 1, yq ´ y|

namely

@ px, yq P Z2
M ,

´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯

“ Apx` 1, yq ´ y

Similarly, we get

@ px, yq P Z2
M ,

´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯

“ Apx´ 1, yq ` y
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so that

@ px, yq P Z2
M , Apx` 1, yq ´ y “ Apx´ 1, yq ` y (22)

The same reasoning with pAp1q instead of rAp1q, leads us to

@ px, yq P Z2
M , Apx, y ` 1q “ Apx, y ´ 1q

or equivalently

@ px, yq P Z2
M , Apx, y ` 2q “ Apx, yq

Since M is odd, the mapping ZM Q y ÞÑ y ` 2 has only one orbit, which by consequence covers
ZM . It follows that for any fixed x P ZM , the set Apx, yq does not depend on y, let us call it Apxq.

Coming back to (22), we get

@ px, yq P Z2
M , Apx` 2q “ Apxq ` 2y

Since any element z P ZM can be written under the form 2y for some y P ZM , we deduce

@ px, zq P Z2
M , Apx` 2q “ Apxq ` z

Iterating M times this relation in x, we obtain

@ px, zq P Z2
M , Apxq “ Apxq ` z

and this relations implies that Apxq “ ZM .
This amounts to say that for any px, yq P ZM , Apx, yq “ ZM , namely A “ A8.

�

Here is a quantitative version of the previous lemma:

Corollary 14 When A ‰ A8, then either

| rAp1q| ě |A| ` 1 or | pAp1q| ě |A| ` 1

Proof
When A ‰ A8, then either | rAp1q| ą |A| or | pAp1q| ą |A|, since the proof of Lemma 13 shows that we
always have | rAp1q| ě |A| and | pAp1q| ě |A|, and that | rAp1q| “ |A| “ | pAp1q| implies that A “ A8. It
remains to take into account that thicknesses are integer numbers.

�

Define the stochastic chain R B pRnqnPZ` via

@ n P Z`, Rn B |An|

The following result is the crucial element in the proof of Theorem 1:

Lemma 15 We have

@ n P Z`, ErRn`1|Ans ě Rn `
1

12Rn
on tτ ą nu

(where the filtration pAnqnPZ` is generated by pAnqnPZ`).
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Proof
By the Markov property, for any n P Z`, we have ErRn`1|Ans “ ErRn`1|Ans. Furthermore, for any
A P AztHu, we have

ErRn`1|An “ As “
ÿ

A1PAztHu
QpA,A1q|A1|

“
1

|A|

ÿ

A1PA
KpA,A1q|A1|2 (23)

where K is the kernel on A defined by

KpA,A1q B
1

6
1

rAp1q
pA1q `

1

6
1

pAp1q
pA1q `

1

6
1

rAp2q
pA1q `

1

6
1

pAp2q
pA1q `

1

3
1ApA

1q

Recall that

@ A P AztHu,
ÿ

A1PA
KpA,A1q|A1| “ |A| (24)

as a consequence of the Markovianity of Q.
We deduce that

ErRn`1|An “ As ´ |A| “
1

|A|

˜

ÿ

A1PA
KpA,A1q|A1|2 ´ |A|2

¸

“
1

|A|

¨

˝

ÿ

A1PA
KpA,A1q|A1|2 ´

˜

ÿ

A2PA
KpA,A2q|A2|

¸2
˛

‚

“
1

2|A|

ÿ

A1PA
KpA,A1qp|A1| ´ |A|q2

Assume now that A ‰ A8. With the above notation, it means that An ‰ A8, i.e. τ ą n.
According to Corollary 14, either | rAp1q| ě |A|`1 or | pAp1q| ě |A|`1. Whatever the case, we deduce

that
ÿ

A1PA
KpA,A1qp|A1| ´ |A|q2 ě

1

6

and the desired bound follows.
�

The next result goes in the direction of Theorem 1, by proving in a weak sense that τ is of order
M6.

Proposition 16 We have

Erτ s ď 12M6

Proof
According to Lemma 15, the stochastic chain pRτ^n´ 1

12M3 pτ ^nqqnPZ` is a submartingale. It follows
that

@ n P Z`, ErRτ^ns ě
1

12M3
Erτ ^ ns
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Letting n go to infinity, we get, by dominated convergence in the l.h.s. and by monotone convergence
in the r.h.s.,

ErRτ s ě
1

12M3
Erτ s

To conclude to the desired bound, note that

ErRτ s “ |A8|

“ M3

�

We can now come to the

Proof of Theorem 1
Traditional Markov arguments enable to strengthen the weak estimate of Proposition 16 into a
stronger one about the tail probabilities of τ . More precisely the previous computations did not take
into account that the Markov chain pAnqnPZ` starts from a field A0 whose fibers are singletons. In
fact they are valid for any initial field A0. So whatever A0, we have

Prτ ě e12M6s ď
Erτ s
e12M6

ď
1

e

By the Markov property we deduce

@ n P Z`, Prτ ě ne12M6s ď e´n

For any r ě 0, writing

r ě

Y r

12eM6

]

12eM6

(where t¨u stands for the integer part), we get

Prτ ě rs ď P
”

τ ą
Y r

12eM6

]

12eM6
ı

ď exp
´

´

Y r

12eM6

]¯

ď e exp
´

´
r

12eM6

¯

ď 3 exp
´

´
r

33M6

¯

�

Remark 17
(a) Lemma 15 cannot be essentially improved under its present form, because it is almost an

equality when An is very close to A8. Away from the latter end, there is a lot of room for improvements.
Nevertheless, it will not be really helpful, since we think that much of the time needed by R to go from
1 to M3 is the time required to go from, say M3{2, to M3. For a field A such that M3{2 ď |A| ďM3,
it is likely that the conditional variance

ErpRn`1 ´Rnq
2|An “ As “

1

|A|

ÿ

A1PA
QpA,A1qp|A1| ´ |A|q2
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is of order 1. Thus the evolution of R could be compared to that of a diffusion ρ B pρtqtě0 solution of
the stochastic differential equation

dρt “ cdβt `
c1

ρt
dt

where c, c1 are two positive constants and β B pβtqtě0 is a Brownian motion. It appears that ρ is a
Bessel process (up to a linear time change). Taking into account its scaling property, it takes a time
of order M6 for ρ to go from M3{2 to M3.

(b) In view of the above observation, it seems hopeless to get a bound on τ of order M2 up to
logarithmic corrections, which is the kind of results we are looking for. We believe that only working
with the thickness is not sufficient for this purpose, as there is more structure than just the size in
this problem. This is illustrated by the proof of Lemma 13, where the translations of the fibers of the
field A induced by rAp1q played an important role for the “diversification” of the fibers. But this feature
is lost in Corollary 14 and Lemma 15, where only the size is taken into account. Better estimates
in Theorem 1 (and by consequence in Theorem 2 and Theorem 3, whose proofs will follow the same
pattern) would require to investigate more carefully this point.

(c) If we are only interested in the speed of convergence to equilibrium of the component Z,
we should introduce another hitting time pτ . More precisely, to any field A P AztHu, associate the
probability distribution ηA of z when rx, y, zs is sampled uniformly on ΩA. It is given by

@ z P ZM , ηApzq B
1

|A|

ÿ

x,yPZM

1Apx,yqpzq

Let B be the set of A P AztHu such that ηA is equal to the uniform distribution on ZM . Note that
the full field belongs to B. Define pτ as the hitting time of B. The interest of pτ is that Z

pτ is uniformly
distributed (and independent from pτ , as seen via the classical arguments of Diaconis and Fill [7]). We
conjecture that pτ is of order M , the simulations of Chhaïbi [6] suggesting it is at most of order M1.5.
In particular, it would justify that Z goes to equilibrium much faster than pX,Y q in the separation
sense.

˝

5 A reduced strong stationary time
In this section, we indicate the changes in the above arguments needed to prove Theorem 2. It will
give us the opportunity to give a broad view of the whole approach by revisiting it.

First note that pY,Zq is indeed a Markov chain, whose state space is Z2
M and whose generic elements

will be denoted ry, zs. The associated transition matrix P is given by

@ ry, zs, ry1, z1s P Z2
M , P pry, zs, ry1, z1sq “

$

&

%

1{6 , if ry1, z1s P try ˘ 1, zs, ry, z ˘ ysu
1{3 , if ry1, z1s “ ry, zs
0 , otherwise

and the corresponding reversible probability is the uniform distribution on Z2
M . To construct a cor-

responding set-valued intertwining dual X as in [17], we are to specify a set V of non-empty subsets
of Z2

M and a family of random mappings pψΩqΩPV compatible with P , namely satisfying the weak
association and stability conditions recalled in Section 2.

Every subset Ω Ă Z2
M is uniquely determined by a field A B pApyqqyPZM of subsets of ZM such

that

ry, zs P Ω ô z P Apyq
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Denote A the set of such fields. Given A B pApyqqyPZM P A, the corresponding subset of Z2
M is

ΩA “ try, zs P Z2
M : z P Apyqu

In the sequel, we identify Ω “ ΩA with A and V with AztHu, where H is the field corresponding
to the empty subset of Z2

M .
For any given A P A, the description of the random mapping ψA follows the pattern given in

Section 4. More precisely, it corresponds to forgetting the x-component there. Thus we consider the
following sign functions

@ ry, zs P Z2
M , rϕApy, zq B

"

´1 , if z P Apyq ´ y
1 , if z R Apyq ´ y

@ ry, zs P Z2
M , pϕApy, zq B

"

´1 , if z P Apy ` 1q
1 , if z R Apy ` 1q

as well as the corresponding mappings acting on Z2
M

@ ry, zs P Z2
M ,

rφ´Apry, zsq B ry, z ´ rϕApy, zqys

@ ry, zs P Z2
M ,

rφ`Apry, zsq B ry, z ` rϕApy, zqys

@ ry, zs P Z2
M ,

pφ´Apry, zsq B ry ´ pϕApy, zq, zs

@ ry, zs P Z2
M ,

pφ`Apry, zsq B ry ` pϕApy, zq, zs

The random mapping ψA takes each of the rφ´A,
rφ`A,

pφ´A,
pφ`A with probability 1{6 and the identity

mapping rφp0q with the remaining probability 1/3.
As in Section 4, we check that ψA is weakly associated to P , with ξpAq “ 1. It is also stable,

since A corresponds to the whole set from subsets of Z2
M . Furthermore, we have prφ´Aq

´1pAq “ rA´,
prφ`Aq

´1pAq “ rA`, ppφ´Aq
´1pAq “ pA´ and ppφ`Aq

´1pAq “ pA`, where by definition

@ y P ZM ,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rA´pyq B
´

Apyq ´ y
¯

Y

´

Apyq ` y
¯

rA`pyq B
´

Apyq ´ y
¯

X

´

Apyq ` y
¯

pA´pyq B Apy ` 1q YApy ´ 1q

pA`pyq B Apy ` 1q XApy ´ 1q

From the family of random mappings pψAqAPA, construct the field-valued dual A B pApnqqnPZ` ,
as in [17]. Its transition kernel Q is given, for any fields A,A1 by

QpA,A1q B
|A1|

|A|

ˆ

1

6
1

rA´
pA1q `

1

6
1

rA`
pA1q `

1

6
1

pA´
pA1q `

1

6
1

pA`
pA1q `

1

3
1ApA

1q

˙

where for any field A, the thickness of A is defined by

|A| B
ÿ

yPZM

|Apyq|

Consider the full field A8 B pZM qyPZM and the associated hitting time

τ B inftn P Z` : Apnq “ A8u

According to the general intertwining theory of Diaconis and Fill [7], the absorption time τ has
the same law as a strong stationary time for pY, Zq. It remains to investigate the tail probabilities of
τ to prove Theorem 2.
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Our first task is to check that Q leads to the a.s. absorption at A8 from any starting field. In
this direction the proof of Lemma 13 is still valid and even simpler: it is sufficient to remove the first
component x in the fields. It follows that for any field A,

´

| rA´| “ |A| “ | pA´|
¯

ñ A “ A8

As a consequence, Corollary 14 and Lemma 15 provide exactly the same estimates:
When A ‰ A8, then either

| rA´| ě |A| ` 1 or | pA´| ě |A| ` 1

and

@ n ă ζ, ErRn`1|Ans ě Rn `
1

12Rn

ě Rn `
1

12M2

where

@ n P Z`, Rn B |An|

and where the filtration pAnqnPZ` is generated by pAnqnPZ` .
Since |A8| “M2 instead of M3, we get as in Proposition 16,

Erζs ď 12M4

The proof of Theorem 1 can then be transposed to show Theorem 2.

Remark 18 Coming back to the whole finite Heisenberg Markov chain rX,Y, Zs, we could think that
after the strong stationary time τ defined above, rX,Y, Zs will reach equilibrium after a new strong
stationary time of order M2. This is not clear from our approach, since at time τ we don’t know how
X and pY, Zq are linked.

˝

6 Extension to higher dimensional Heisenberg walks
Here we explain how the constructions of the two previous sections can be extended to deal with higher
dimensional Heisenberg random walks. The goal is to prove Theorems 3 and 4.

Concerning Theorem 3, we are to show directly the extension mentioned after its statement. Recall
that in the introduction we associated to any rxs B rxk,ls1ďkălďN P HN,M and to any b P JN ´ 1K, the
bth upper diagonal dbrxs B pxk,k`bqkPJN´bK. Denote Db the set of such elements, i.e.

Db B Ztpk,k`bq : kPJN´bKu
M

We also write

dJbKrxs B pdkrxsqkPJbK P DJbK B
ź

kPJbK

Dk

Let d0 be the usual diagonal consisting only of 1, when necessary, we will also see elements of DJbK
as elements of

ś

kPJ0,bK Dk, where D0 “ td0u. Note that DJN´1K identifies with HN,M .
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Similarly, for b P JN ´ 1K, we introduced after Theorem 3 the Markov chains Db B pDbpnqqnPZ` B
pdbrXnsqnPZ` and DJbK B pDJbKpnqqnPZ` B pdJbKrXnsqnPZ` , respectively taking values in Db and DJbK.
In particular, DJN´1K is the Markov chain rXs on HN,M .

Our goal here is to construct strong stationary times for these Markov chains, via set-valued dual
processes. The case b “ 1 is simpler and will only be quickly treated in Lemma 26 below. Until then,
we fix b P J2, N ´ 1K.

Again we apply the random mapping method described in [17] and recalled in the previous sections.
So our main ingredients will be a set Vb of non-empty subsets of DJbK, and for any Ω P Vb, a random
mapping ψΩ : DJbK Ñ DJbK. The set Vb is very simple: it is the collection of all non-empty subsets of
DJbK.

As in the last two sections, a subset Ω Ă DJbK is described by a field, which is the family A B
pApdJb´1KqqdJb´1KPDJb´1K of subsets of Db, where

dJb´1Krxs P Ω ô @ dJb´1K P DJb´1K, dbrxs P ApdJb´1Kq (25)

As before, the sets ApdJb´1Kq, for dJb´1K P DJb´1K, are called the fibers of the field A. To simplify
the already heavy notations, we will also write rxs B rxk,ls1ďkălďk`b for the elements of DJbK, instead
of dJb´1Krxs.

To describe the random mappings ψΩ, for Ω P Vb, another notation is required. For I P JN´1K and
ε P t˘1u, let FI,ε be the mapping acting on HN,M by adding (respectively subtracting) the pI ` 1qth

row to the Ith row, if ε “ 1 (resp. ε “ ´1). We will also see FI,ε as a mapping acting on the DJbK, for
l P JN ´ 1K (and this is the only reason for the addition of the diagonal d0 to DJbK).

For fixed Ω P Vb, ψΩ is defined as follows.
The field corresponding to Ω is denoted A B pApdJb´1KqqdJb´1KPDJb´1K .
Aside from the identity, the values of ψΩ are the φΩ,I,ε, for I P JN ´ 1K and ε P t˘1u, where

@ rxs P DJbK, φΩ,I,εprxsq B FI,εϕApI,rxsqprxsq

where ϕApI, rxsq P t´1, 1u will be defined below.
Each φΩ,I,ε will be chosen with probability 1{p3pN ´ 1qq and the identity with the remaining

probability 1{3. It remains to define the quantity ϕApI, rxsq. The index I P JN ´ 1K is assumed to be
fixed now.

Let be given a family pBApI, dJb´1KqqdJb´1KPDJd´1K of subsets from Db, whose dependence on the field
A will be specified later on. Consider an element rxs P DJbK, it can be naturally decomposed into
dJb´1Krxs P DJd´1K and dbrxs P Db. The quantity ϕApI, rxsq has the form:

ϕApI, rxsq B

"

1 , if dbrxs P BApI, dJb´1Krxsq

´1 , otherwise

Since Vb is the whole set of subsets of DJbK, the stability property is automatically fulfilled. Let us
investigate the action of the mappings φΩ,I,ε, with Ω P Vb, I P JN ´ 1K and ε P t´1, 1u. Here is a first
case:

Lemma 19 For any Ω P Vb and any I P JN ´ 1K, Ω1 B φ´1
Ω,I,1pΩq is described by the field A1 B

pA1pdJb´1KqqdJb´1KPDJb´1K whose fibers are given by

@ dJb´1K P DJb´1K, A1pdJb´1Kq “
`

rApFI,1pdJb´1Kqq ´ θIrdb´1ss XBApI, dJb´1Kq
˘

Y
`

rApFI,´1pdJb´1Kqq ` θIrdb´1ss XBApI, dJb´1Kq
c
˘

where θIrdb´1s is the element of Db whose coordinates vanish, except the Ith one, which is equal to the
pI ` 1qth coordinate of db´1 (with the convention that θIrdb´1s “ 0 if this coordinate does not exist,
i.e. I ` 1 ą N ´ b` 1).
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Proof
An element rx1s P DJbK belongs to Ω1 if and only if there exists rxs P Ω such that φΩ,I,1prx

1sq “ rxs.
Namely, rxs being defined by

@ 1 ď k ă l ď k ` b, xk,l “

"

x1k,l ` ϕApI, rx
1sqx1k`1,l , if k “ I

x1k,l , otherwise (26)

must satisfy (25).
Note that (26) can written in terms of the upper diagonals:

@ l P JN ´ 1K, dbrxs “ dbrx
1s ` ϕApI, rx

1sqθIrdb´1rx
1ss (27)

We distinguish two cases.
‚ If dbrx1s P BApI, dJb´1Krx

1sq, then (27) implies

dbrxs “ dbrx
1s ` θIrdb´1rx

1ss

Taking into account that

dJb´1Krxs “ FI,ϕApI,rx1sqpdJb´1Krx
1sq “ FI,1pdJb´1Krx

1sq

the condition dbrxs P ApdJb´1Krxsq translates into

dbrx
1s P ApFI,1pdJb´1Krx

1sqq ´ θIrdb´1rx
1ss

and we get

dbrx
1s P

`

ApFI,1pdJb´1Krx
1sq ´ θIrdb´1rx

1ss
˘

XBApI, dJb´1Krx
1sq

Conversely, this inclusion implies dbrxs P ApdJb´1Krxsq, since the above arguments can be reversed.
‚ If dbrx1s R BApI, dJb´1Krx

1sq, then similar considerations lead to the equivalence of dbrxs P
ApdJb´1Krxsq with

dbrx
1s P

`

ApFI,´1pdJb´1Krx
1sqq ` θIrdb´1rx

1ss
˘

XBc
I,dJb´1Krx

1s

It follows that we can take A1pdJb´1Kq equal to
`

rApFI,1pdJb´1Kqq ´ θIrdb´1ss XBApI, dJb´1Kq
˘

Y
`

rApFI,´1pdJb´1Kqq ` θIrdb´1ss XBApI, dJb´1Kq
c
˘

�

Similar arguments, or replacing the sets BApI, dJb´1Kq by their complementary sets, leads to

Lemma 20 For any Ω P Vb and any I P JN ´ 1K, Ω1 B φ´1
Ω,I,1pΩq is described by the field A1 B

pA1pdJb´1KqqdJb´1KPDJb´1K whose fibers are given by

@ dJb´1K P DJb´1K, A1pdJb´1Kq “
`

rApFI,´1pdJb´1Kqq ´ θIrdb´1ss XBApI, dJb´1Kq
˘

Y
`

rApFI,1pdJb´1Kqq ` θIrdb´1ss XBApI, dJb´1Kq
c
˘

Due to the guideline recalled in Remark 10, we are lead to choose

@ I P JN ´ 1K, @ dJb´1K P DJb´1K, BApI, dJb´1Kq B ApFI,1pdJb´1Kqq ´ θIrdb´1s (28)
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It follows from Lemma 19, that the fibers of Ω1 B φ´1
Ω,I,1pΩq are given by

@ dJb´1K P DJb´1K, A1pdJb´1Kq “
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

From Lemma 20, we deduce that the fibers of Ω1 B φ´1
Ω,I,´1pΩq are given by

@ dJb´1K P DJb´1K, A1pdJb´1Kq “
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

X
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

As in the two previous sections, we identify a subset with its field. Denote Ab,8 the field whose
fibers are all equal to Db, equivalently, it corresponds to Ω “ DJbK. Denote Xb the subset valued
Markov chain associated to the random mappings pψΩqΩPVb . It is clear from Lemmas 19 and 20 that
Xb is absorbed at Ab,8.

Define

tb “ inftn P Z` : Xbpnq “ Ab,8u

In particular, tb has the same law as a strong stationary time for DJbK according to [17]. It is the
τ of Theorem 3 when b “ N ´ 1.

Here is the extension of Theorem 3 mentioned in the introduction.

Theorem 21 For b P J2, N ´ 1K and M odd and large enough (uniformly in b and N), we have

@ r ě 0, Prtb ě rs ď 3 exp

ˆ

´
2r

33pN ´ 1qM bp2N´b´1q

˙

As in Section 4, this result is to be proven by getting an estimate on the tendency of Xbpnq to
grow. With this respect, introduce for any field A, the quantity

|A| B
ÿ

dJb´1KPDJb´1K

|ApdJb´1Kq| (29)

where in the r.h.s. | ¨ | corresponds to the cardinality. In particular, we have |A| “ |Ω|.
To any field A B pApdJb´1KqqdJb´1KPDJb´1K of subsets of Db and to any I P JN ´ 1K, associate the

new fields AY,I B pAY,IpdJb´1KqqdJb´1KPDJb´1K and AX,I B pAX,IpdJb´1KqqdJb´1KPDJb´1K defined by taking
for any dJb´1K P DJb´1K,

AY,IpdJb´1Kq B
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

AX,IpdJb´1Kq B
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

X
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

The following result is the generalization of Lemma 13,

Lemma 22 We have

@ I P JN ´ 1K, |AY,I | ě |A|

and if for all I P JN ´ 1K, |AY,I | “ |A|, then A “ Ab,8.

Proof
Concerning the first point, for any dJb´1K P DJb´1K and I P JN ´ 1K, we have

|AY,IpdJb´1Kq| “ |
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

|

ě |ApFI,1pdJb´1Kqq ´ θIrdb´1s| (30)
“ |ApFI,1pdJb´1Kqq|
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so that

|AY,I | “
ÿ

dJb´1KPDJb´1K

|AY,IpdJb´1Kq|

ě
ÿ

dJb´1KPDJb´1K

|ApFI,1pdJb´1Kqq|

“
ÿ

dJb´1KPDJb´1K

|ApdJb´1Kq|

“ |A|

where we used that the mapping FI,1 is a bijection on DJb´1K, with inverse mapping given by FI,´1.
Assume next that the field A is such that |AY,I | “ |A|, for any I P JN ´ 1K. According to the

above computation, we must have for any dJb´1K P DJb´1K,

|
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

| “ |ApFI,1pdJb´1Kqq ´ θIrdb´1s|

namely
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

“ ApFI,1pdJb´1Kqq ´ θIrdb´1s

Similarly, replacing (30) by

|
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

| ě |ApFI,´1pdJb´1Kqq ` θIrdb´1s|

we get for any dJb´1K P DJb´1K,
`

ApFI,1pdJb´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJb´1Kqq ` θIrdb´1s
˘

“ ApFI,´1pdJb´1Kqq ` θIrdb´1s

and we deduce

ApFI,1pdJb´1Kqq ´ θIrdb´1s “ ApFI,´1pdJb´1Kqq ` θIrdb´1s

i.e.

ApdJb´1Kq “ ApFI,´1 ˝ F
´1
I,1 pdJb´1Kqq ` 2θIrpF

´1
I,1 pdJb´1Kqqb´1s

“ ApF 2
I,´1pdJb´1Kqq ` 2θIrpFI,´1pdJb´1Kqqb´1s

where F 2
I,´1 is the composition of FI,´1 with itself.

Recall from its definition in Lemma 19 that if I ě N ´ b ` 1, then the θIrpFI,´1pdJb´1Kqqb´1s

vanishes. First consider the case I “ N ´ 1, where this condition is satisfied, so that

ApdJb´1Kq “ ApF 2
N´1,´1pdJb´1Kqq (31)

Let us write rxk,ls1ďkălďk`b´1 B dJb´1K and rx1k,ls1ďkălďk`b´1 B F 2
N´1,´1pdJb´1Kq P DJb´1K. We

have x1k,l “ xk,l, except for pk, lq “ pN ´ 1, Nq, where x1N´1,N “ xN´1,N ´ 2. Since the mapping
ZM Q z ÞÑ z ´ 2 P ZM is a bijection, it follows from (31) that ApdJb´1Kq does not depend on the
coordinate xN´1,N of dJb´1K.

Next assume that b ě 3 and take I “ N ´ 2. We have

ApdJb´1Kq “ ApF 2
N´2,´1pdJb´1Kqq (32)

Writing rxk,ls1ďkălďk`b´1 B dJb´1K and rx1k,ls1ďkălďk`b´1 B F 2
N´2,´1pdJb´1Kq, these coordinates coin-

cide, except that x1N´2,N´1 “ xN´2,N´1 ´ 2 and x1N´2,N “ xN´2,N ´ 2xN´1,N . Since both side of
(32) do not depend on xN´1,N , it follows that they also do not depend on the coordinate xN´2,N .
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Resorting again to the bijectivity of the mapping ZM Q z ÞÑ z ´ 2 P ZM , we see they equally do not
depend on xN´2,N´1. By iteration, considering successively I “ N ´ 2, ..., I “ N ´ b` 1, it appears
that ApdJb´1Kq does not depend on the coordinates xk,l, where k ą N ´ b (and k ă l ď k ` b´ 1).

For I “ N ´ b, we have

ApdJb´1Kq “ ApF 2
N´b,´1pdJb´1Kqq ` 2θN´brpFN´b,´1pdJb´1Kqqb´1s (33)

Note that the diagonal FN´b,´1pdJb´1Kqqb´1 P Db´1 is different from db´1 only in the last-but-one
coordinate. It follows that θN´brpFN´b,´1pdJb´1Kqqb´1s “ θN´bpdb´1q “ p0, 0, ..., 0, xN´b`1,N q P Db,
with the above notation. Denote y B pxN´b`1,N´b`2, xN´b`1,N´b`3, ..., xN´b`1,N´1q. We have that

• the set ApdJb´1Kq does not depend on y nor on xN´b`1,N ,

• the set ApF 2
N´b,´1pdJb´1Kqq a priori depends on y, but not on xN´b`1,N ,

• the vector 2θN´brpFN´b,´1pdJb´1Kqqb´1s only depends on xN´b`1,N .

It follows that ApdJb´1Kq is preserved by the translations by vectors of the form p0, 0, ..., 0, zq P Db
with z P ZM . Namely, we can write ApdJb´1Kq “ Ap1qpdJb´1Kq ˆ ZM , where Ap1qpdJb´1Kq is a subset of
Ztpk,b`kq : kPJN´b´1Ku
M . Coming back to (33), we deduce that Ap1qpdJb´1Kq do not depend on y (nor on

the rows indexed by JN ´ b` 1, NK of dJb´1K.
The previous arguments can be iterated with I “ N ´ b ´ 1, ..., I “ 1. At the end we get that

ApdJb´1Kq “ Db, as desired.
�

The next result is the generalization of Corollary 14.

Corollary 23 When A B pApdJb´1KqqdJb´1KPDJb´1K ‰ Ab,8, there exist I P JN ´ 1K such that

|AY,I | ě |A| ` 1

Proof
Lemma 22 shows that when A ‰ Ab,8, there exists I P JN ´ 1K such that |AY,I | ą |A|. It remains to
take into account that the cardinals are integer-valued.

�

Let us keep following the path of Section 4 by presenting the generalization of Lemma 15. We need
the following notations:

@ n P Z`,

#

An B σpXbp0q,Xbp1q, ...,Xbpnqq

Rn B |Xbpnq|

Lemma 24 We have for any n P Z` such that Xbpnq ‰ Ab,8,

ErRn`1|Ans ě Rn `
1

6pN ´ 1qM bp2N´b´1q{2

Proof
From the general theory developed in [17], from Lemmas 19 and 20 and from the choice (28), the
conditional law of the field A1 representing Xbpn ` 1q knowing An, in particular knowing the field A
standing for Xbpnq, is given by

QpA,A1q B
1

3
δApA

1q `
1

3pN ´ 1q

ÿ

IPJN´1K

|A1|

|A|
pδAY,I pA

1q ` δAX,I pA
1qq
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This is a Markov kernel on Ab, the set of fields A with |A| ě 1. As in the proof of Lemma 15, the
kernel Q is the modification through the cardinal weights of the kernel K defined by

KpA,A1q B
1

3
δApA

1q `
1

3pN ´ 1q

ÿ

IPJN´1K

pδAY,I pA
1q ` δAX,I pA

1qq

Note that since Q is a Markov kernel, we have for any A P Ab,

ÿ

A1PAb

KpA,A1q|A1| “ |A|
ÿ

A1PAb

KpA,A1q
|A1|

|A|

“ |A|
ÿ

A1PAb

QpA,A1q

“ |A| (34)

With the above notations, it follows that

ErRn`1|Ans ´Rn “
1

2|A|

ÿ

A1PAb

KpA,A1qp|A1| ´ |A|q2

From Corollary 23, when A ‰ Ab,8, there exists I P JN ´ 1K such that KpA,AY,Iq ě 1{p3pN ´ 1qq
and |AY,I | ´ |A| ě 1, so that

ErRn`1|Ans ´Rn ě
1

6pN ´ 1q|A|

Note that

|A| ď |Ab,8|

“ |DJb´1K||Db|

“ M pN´1q`pN´2q`¨¨¨`pN´b`1qM pN´bq

“ M bp2N´b´1q{2

it follows that

ErRn`1|Ans ´Rn ě
1

6pN ´ 1qM bp2N´b´1q{2

�

We deduce a weak estimate on tb, as in Proposition 16:

Proposition 25 We have, for b P J2, N ´ 1K,

Ertbs ď 6pN ´ 1qM bp2N´b´1q

Proof
According to Lemma 24, the stochastic chain

ˆ

Rtb^n ´
1

6pN ´ 1qM bp2N´b´1q{2
ptb ^ nq

˙

nPZ`

is a submartingale. It follows that

@ n P Z`, ErRtb^ns ě
1

6pN ´ 1qM bp2N´b´1q{2
Ertb ^ ns
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Letting n go to infinity, we get, by dominated convergence in the l.h.s. and by monotone convergence
in the r.h.s.,

ErRtb`1
s ě

1

6pN ´ 1qM bp2N´b´1q{2
Ertbs

To get the first announced bound, note that

ErRtb`1
s “ |Ab,8| “ M bp2N´b´1q{2

so that

Ertbs ď 6pN ´ 1qM bp2N´b´1q{2M bp2N´b´1q{2

“ 6pN ´ 1qM bp2N´b´1q

�

Note that the quadratic mapping R Q b ÞÑ bp2N´b´1q attains its maximum value at b “ N´1{2.
So on JN ´1K its maximum value is attained at b “ N ´1. It follows that the bound of Proposition 16
is increasing in b P J2, N ´ 1K (as it should be) and its largest value is 6pN ´ 1qMNpN´1q.

Theorem 21 is now obtained via the Markovian arguments recalled in the proof of Theorem 1.
In its turn, Theorem 21 implies Theorem 3 and provides the justification of the assertions made

after its statement.
Theorem 21 is only valid for b ě 2, but for b “ 1 a direct argument is available, close to the proof

of Lemma 9. We get:

Lemma 26 For M large enough, we have

@ N ě 3, @ r ě 0, Prt1 ě rs ď 5
N ´ 1

2
exp

ˆ

´
r

5pN ´ 1qM2

˙

(the factor 5/2 is here just to recover Lemma 9 when N “ 3).

Proof
Consider p rXkqkPJN´1K B p rXkpnqqnPZ`,kPJN´1K, N ´ 1 independent random walks on ZM as in Sec-
tion 2.4. Let pBnqnPZ` be a family of independent variables uniformly distributed on JN ´ 1K (and
independent from the rXk, for k P JN ´ 1K) and define

@ k P JN ´ 1K, @ n P Z`, θkpnq B
ÿ

mPJnK

1tBm“ku

The chain rXk,k`1pnqskPJN´1K, nPZ` “ pd1rXspnqqnPZ` has the same law as p rXkpθkpnqqqkPJN´1K, nPZ`
and from the above construction, it appears that

t1 “ inftn P Z` : @ k P JN ´ 1K, θkpnq ěrtku

where for any k P JN ´ 1K, rtk is the strong stationary time constructed as in Section 2.4 for rXk.
It follows that for any n P Z`,

Prt1 ě ns ď
ÿ

kPJN´1K

Prθkpnq ďrtks

“ pN ´ 1qPrθ1pnq ďrt1s

since the pθkpnq,rtkq have the same law for all k P JN ´ 1K.

32



According to Corollary 8, we have for the conditional expectation knowing θkpnq and for large M :

Prθ1pnq ďrt1|θ1pnqs ď 2 expp´θ1pnq{p4M
2qq

so that

Prθ1pnq ďrt1s ď 2Erexpp´θ1pnq{p4M
2qqs

“ 2Erexpp´1tB1“1u{M
2qsn

“ 2

ˆ

N ´ 2` expp´1{p4M2qq

N ´ 1

˙n

“ 2

ˆ

1`
expp´1{p4M2qq ´ 1

N ´ 1

˙n

ď 2 exp

ˆ

´
n

5pN ´ 1qM2

˙

for M large enough, uniformly in n P Z` and in N P N, N ě 3.
As a consequence, for any r ě 0, we have

Prt1 ě rs ď Prt1 ě trus

ď 2pN ´ 1q exp

ˆ

´
tru

5pN ´ 1qM2

˙

ď 2pN ´ 1q exp

ˆ

´
r ´ 1

5pN ´ 1qM2

˙

ď 2pN ´ 1q exp

ˆ

´
1

5pN ´ 1qM2

˙

exp

ˆ

´
r

5pN ´ 1qM2

˙

ď 5
N ´ 1

2
exp

ˆ

´
r

5pN ´ 1qM2

˙

since we have 2 expp´1{p5ˆ 2ˆ 32qq » 2.02234613753 ă 5{2.
�

The above estimate implies the more telling bound, for M large enough and uniformly in N P N,
N ě 3,

@ r ě 0, Prt1 ě N lnpNqM2 ` rNM2s ď 5 expp´r{5q

To end this section, let us mention the modifications required by the proof of Theorem 4. They
extend to higher dimensions the arguments of Section 5. It is possible to consider an extension in
the spirit of Theorem 21, namely to construct a strong stationary times for rXk,N skPJN´b,N´1K, for
b P J2, N ´ 1K. But up to removing the N ´ b´ 1 first rows of matrices from HN,M , this is the same
Markov chain, except for the time spent to changing the removed rows.

First note that the last column CN rXs B rXk,N skPJN´1K is indeed a Markov chain, whose state
space is ZN´1

M and whose generic elements will be denoted rxs B rxkskPJN´1K. The associated transition
matrix P is given by

@ rxs, rx1s P ZN´1
M , P prxs, rx1sq “

$

’

&

’

%

1{p6pN ´ 1qq , if rx1s “ FI,εrxs for some I P JN ´ 1K and ε P t˘1u

1{3 , if rx1s “ rxs
0 , otherwise

where for any rxs B rxkskPJN´1K P ZN´1
M , k P JN ´ 1K, I P JN ´ 1K and ε P t˘1u, the k-th coordinate

of FI,εrxs is given by

pFI,εrxsqk B

"

xk , if k ‰ I
xk ` εxk`1 , if k “ I
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with the convention xN “ 1.
The transition kernel P admits the uniform distribution on ZN´1

M as reversible probability.
The method of [17] is applied with V being the whole collection of non-empty subsets of ZN´1

M .
Let us describe the family of random mappings pψΩqΩPV.

As usual, note that any subset Ω of ZN´1
M is uniquely determined by a field A B

pApxJ2,N´1KqqxJ2,N´1KPZ
J2,N´1K
M

of subsets of ZM (still called fibers) such that

rxs P Ω ô x1 P ApxJ2,N´1Kq

(with the traditional notation xJ2,N´1K B pxkqkPJ2,N´1K).
The construction of the random mappings is similar to the one presented earlier in this section, just

keeping the effects on the last column. As before, the subsets Ω are identified with their representative
field A. Given such a field

A B pApxJ2,N´1KqqxJ2,N´1KPZ
J2,N´1K
M

(35)

and I P JN´1K, associate two other fields AY,I and AX,I defined by taking for any xJ2,N´1K P Z
J2,N´1K
M ,

AY,IpxJ2,N´1Kq B
`

ApFI,1pxJ2,N´1Kqq ´ δ1pIqx2

˘

Y
`

ApFI,´1pxJ2,N´1Kqqq ` δ1pIqx2

˘

AX,IpxJ2,N´1Kq B
`

ApFI,1pxJ2,N´1Kqq ´ δ1pIqx2

˘

X
`

ApFI,´1pxJ2,N´1Kqqq ` δ1pIqx2

˘

where δ1pIq is the Kronecker symbol whose value is 1 if I “ 1 and 0 otherwise.
Let A be the set of fields of the form (35) corresponding to non-empty subsets of ZN´1

M , i.e.
elements of V. Following meticulously the method described in the first part of this section, we are
led to investigate Markov chains pApnqqnPZ` on A whose transition kernel Q is given by

@ A,A1 P A, QpA,A1q B
1

3
δApA

1q `
1

3pN ´ 1q

ÿ

IPJN´1K

|A1|

|A|
pδAY,I pA

1q ` δAX,I pA
1qq

where

@ A P A, |A| B
ÿ

xJ2,N´1KPZ
J2,N´1K
M

|ApxJ2,N´1Kq|

Specifying Lemma 22 to the last column of the objects considered there, it appears that pApnqqnPZ`
ends up being absorbed into A8, the element of A whose fibers are all equal to ZM . Denote t the
corresponding absorbing time. Our approach relies on the possibility to estimate the tail probabilities
of t. Here is the equivalent of Theorem 21:

Proposition 27 For any initial distribution of A0, we have for M large enough (uniformly in N),

@ r ě 0, Prt ě rs ď 3 exp

ˆ

´
2r

33pN ´ 1qM2pN´1q

˙

The proof of these bounds is similar to that of Theorem 21. The difference is that the index set
is ZJ2,N´1K

M (instead of DJb´1K) and that the fibers are included into ZM (instead of Db) so we replace
|Db||DJb´1K| by |Z

J2,N´1K
M ||ZM | “ MN´1, i.e. 1{M bp2N´b´1q{2 by 1{MN´1, in Lemmas 23 and 24, and

M bp2N´b´1q by M2pN´1q in Proposition 25.
This ends the proof of Theorem 4, since t has the same law as a strong stationary time for CN rXs,

according to [17].

Remark 28 An estimate for a strong stationary time for the coordinate XN´1,N is provided by the
analogue of Lemma 26, where the factor N ´ 1 in the r.h.s. can be removed, since we don’t have to
wait for the whole first upper diagonal to reach equilibrium.
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˝

Remark 29 Remark 17 (c) admits a natural extension to the present higher dimension situation, to
get a strong equilibrium time for the right-up component X1,N , believed to be of order M1{pN´1q.

˝

A The finite circle: remaining cases
In the context of the beginning of Section 2, we deal here with the remaining cases where a P p1{3, 1{2s.
To construct the sets V and the corresponding random mappings pψSqSPV satisfying the conditions of
weak association with P and of stability of V, we distinguish two situations, depending on the parity
of M P Nzt1, 2u.

A.1 When M is even
For a P p1{3, 1{2s, we need to add new kinds of sets in V, in addition to the segments from I. More
precisely, for r P J0,M{2K, let B´p0, rq be the set of x P Bp0, rq which have the same parity as r (there
is no ambiguity in the definition of the parity in ZM , since M is even). Consider

I´ B tB´p0, rq : r P J1,M{2Ku
V B I\ I´

Note that the only subset of the form B´p0, rq that belongs to I is B´p0, 0q “ t0u, which does not
belong to I´.

A.1.1 The random mapping ψt0u

When a P p1{3, 1{2s, the construction of ψt0u given in Section 2.1 is no longer valid. So here is
another construction (an alternative one will be provided in Section A.3.1). Choose two mappings
rψ, pψ : ZM Ñ ZM satisfying respectively rψp0q “ 0 “ rψp´1q “ rψp1q and rψpxq ‰ 0 for x P ZMzJ´1, 1K,
and pψp´1q “ 0 “ pψp1q and pψpxq ‰ 0 for x P ZMzt´1, 1u. Take ψt0u to equal to rψ with some
probability p P r0, 1s and to pψ with probability 1 ´ p. Let us compute p so that Condition (1) is
satisfied, which here still amounts to (6).

• When x R J´1, 1K, both sides of (6) vanish.

• When x P t´1, 1u, the l.h.s. of (6) is 1, while the r.h.s. is a{ζpt0uq. This implies that ζpt0uq “ a.

• When x “ 0, (6) is equivalent to

p “
1´ 2a

a

and this number p does belongs to r0, 1s for a P p1{3, 1{2s.

Next we must check that for this random mapping ψt0u, (2) is satisfied, namely Ψpt0uq P V “ I\I´.
This is true, because rψ´1pt0uq “ J´1, 1K P I and pψ´1pt0uq “ t´1, 1u “ B´p0, 1q P I´.
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A.1.2 The other random mappings and the Markov transition kernel P

For S P I\ I´zt0u, take the same random mapping ψS “ φ defined in Section 2.2. It is clear that (7)
is still satisfied, since the proof is valid for any a P p0, 1{2s (and any M ě 3). Concerning the stability
of I\ I´ by φ, note that in addition to (8), we also have for any r P J1,M{2K,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

φ´1
1 pB´p0, rqq “ B´p0, r ` 1q

φ´1
2 pB´p0, rqq “ B´p0, r ` 1q

φ´1
3 pB´p0, rqq “ B´p0, r ´ 1q

φ´1
4 pB´p0, rqq “ B´p0, r ´ 1q

φ´1
5 pB´p0, rqq “ B´p0, rq

(36)

(where M{2` 1 has to be understood as M{2´ 1).

As in Section 2.3, we identify Bp0, rq with r, for r P J0,M{2K, and furthermore, for r P J1,M{2K,
we identify B´p0, rq with ´r.

It appears that P is also the transition matrix of a birth and death chain, but this time on
J´M{2,M{2K:

@ k, l P J´M{2,M{2K, Ppk, lq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

1´ 2a , if k “ 0 and l “ 1

3a´ 1 , if k “ 0 and l “ ´1

a 2l`1
2k`1 , if k ě 1, k ‰M{2 and |k ´ l| “ 1

a |l|`1
|k|`1 , if k ď ´1, and |k ´ l| “ 1

1´ 2a , if |k| ě 1, k ‰M{2 and k “ l

1 , if k “M{2 “ l

0 , otherwise

(we used that |B´p0, rq| “ r ` 1, for r P J0,M{2K).
When p P p1{3, 1{2q, P enables to reach the absorbing point M{2 from all the other points, thus

the absorbing time t is a.s. finite and its law is the distribution of a strong stationary time for X. A
different feature is that the starting point X0 “ t0u, identified with 0, is at the middle of the discrete
segment J´M{2,M{2K and the left boundary is not absorbing.

When p “ 1{2, the transition from 0 to 1 is forbidden: Pp0, 1q “ 0. Starting from 0, the Markov
chain X stays on the irreducible state space J´M{2, 0K and never reaches M{2, i.e. t “ 8 a.s. This
result could have been guessed, as due to the periodicity of order 2, X does not converge to π in large
times. The Markov chain ´X is a finite equivalent of the process on Z` introduced by Pitman in [20]
(see also [17] for an approach via random mappings).

Remark 30 It is important that ψt0u is different from the random mapping φ considered in Sections 2.2
and A.1.2. Indeed, whatever a P p0, 1{2s, if we had taken ψt0u “ φ, we would have ended up with
X1 P tt´1, 1u, t0uu and from (36), we can deduce that for any n P Z`, we would have Xn P tt0uu\I´.
In particular t “ `8 when M is even.

˝

A.2 When M is odd
In this situation, we enrich the set I´. For r P J0, pM ´ 1q{2K, B´p0, rq is defined as at the beginning
of Section A.1. Now the parity of an element x P ZM is the parity of its representative in J´pM ´

1q{2, pM ´ 1q{2qK. Furthermore, for r P JpM ` 1q{2,M ´ 1K, we consider

B´p0, rq “ B´p0, pM ´ 1q{2q YBp´pM ´ 1q{2, r ´ pM ´ 1q{2q YBppM ´ 1q{2, r ´ pM ´ 1q{2q
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namely this subset contains all the points encountered when going clock-wise from r ´ pM ´ 1q to
M´1´r, and all the other points which have the parity of r´pM´1q. In particular when r “M´1,
we get B´p0,M ´ 1q “ ZM . We take

I´ B tB´p0, rq : r P J1,M ´ 1Ku
V B IY I´

Note that the only element in the intersection of I and I´ is the whole state space ZM “ Bp0, pM´

1q{2q “ B´p0,M ´ 1q, nevertheless, it will be convenient to see Bp0, pM ´ 1q{2q and B´p0,M ´ 1q as
different (i.e. to interpret V as a multiset, with ZM of multiplicity 2), namely to write V “ I\ I´.

We consider the same random mappings as those constructed in Section A.1: The random mapping
ψt0u is the one of Section A.1.1 and for S P Vztt0uu, ψS “ φ, defined in Sections 2.2 and A.1.2.

It follows that (1) holds (with ζpt0uq “ a and ζpSq “ 1, for S P Vztt0uu). Furthermore, due to
the fact that M is odd, we get that (36) is still true for r P J1,M ´ 1K, with the convention that
B´p0,Mqq “ ZM .

Now we identify Bp0, rq with r, for r P J0, pM ´ 1q{2K, and B´p0, rq with ´r, for r P J1,M ´ 1K.
In accordance with the multiplicity 2 of ZM mentioned above, the whole state space ZM is seen as the
two points pM ´ 1q{2 and ´pM ´ 1q.

This identification enables us to see P as the transition matrix of a birth and death chain on
J´pM ´ 1q, pM ´ 1q{2K:

@ k, l P J´pM ´ 1q, pM ´ 1q{2K, Ppk, lq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1´ 2a , if k “ 0 and l “ 1

3a´ 1 , if k “ 0 and l “ ´1

a 2l`1
2k`1 , if k ě 1, k ‰M{2 and |k ´ l| “ 1

a |l|`1
|k|`1 , if k ď ´1, k ‰ ´pM ´ 1q and |k ´ l| “ 1

1 , if k “ l P t´pM ´ 1q, pM ´ 1q{2u

0 , otherwise

(we used that |B´p0, rq| “ r ` 1, for r P J0,M ´ 1K).
When p P p1{3, 1{2q, P enables to reach the two absorbing points pM ´ 1q{2 and ´pM ´ 1q from

all the other points, thus the absorbing time t is a.s. finite and its law is the distribution of a strong
stationary time for X. The Markov chain X still starts from 0 and ends up being absorbed in one of
boundary points pM ´ 1q{2 or ´pM ´ 1q.

When p “ 1{2, the transition from 0 to 1 is still forbidden: Pp0, 1q “ 0. Starting from 0, the
Markov chain X stays on the irreducible state space J´pM ´ 1q, 0K and ends up being absorbed at
´pM ´ 1q. Thus t is a.s. finite and X admits a strong stationary time, it was expected as there is no
problem of periodicity when M is odd.

A.3 Alternative random mappings, still for a P r1{3, 1{2q
The constructions of the previous subsections could also have been obtained by first lumping X (see
Remark 6, whose “projection” is valid for all a P p0, 1{2s). Here we propose another construction which
is no longer compatible with this procedure. We take for V the set of all balls Bpx, rq, for x P ZM and
r P J0, tM{2uK. All these balls are different, except that Bpx, tM{2uq “ ZM for any x P ZM . The space
V can be seen as a wheel: the tyre is the discrete circle consisting of the Bpx, 0q “ txu for x P ZM .
For any fixed x P ZM , the set tBpx, rq : r P J0, tM{2uu is a ray going from the tyre to the center of
the wheel, represented by ZM . The Markov kernel P that we are to construct will respect this wheel
graph.
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A.3.1 The alternative random mappings ψtxu, for x P ZM
Fix some x P ZM . We sightly modify the random mapping considered in Section A.1.1 (after rotating
ZM by ´x). Choose three mappings rψx, pψx, qψx : ZM Ñ ZM satisfying respectively

• rψxpxq “ x “ rψxpx´ 1q “ rψxpx` 1q and rψxpyq ‰ x for y P ZMzJx´ 1, x` 1K

• pψxpx´ 1q “ x and pψxpyq ‰ x for y P ZMztx´ 1u

• qψxpx` 1q “ x and qψxpyq ‰ x for y P ZMztx` 1u

Take ψtxu to equal to rψx with some probability p P r0, 1s and to each of pψx and qψx with probability
p1´ pq{2. Let us compute p so that Condition (1) is satisfied, which here amounts to

@ y P ZM , Prψtxupyq “ xs “
1

ζptxuq
P py, xq (37)

• When y R Jx´ 1, x` 1K, both sides of (37) vanish.

• When y P tx ´ 1, x ` 1u, the l.h.s. of (37) is 1 ´ p1 ´ pq{2, while the r.h.s. is a{ζptxuq. This
implies that ζptxuq “ 2a{p1` pq.

• When y “ x, (37) is equivalent to

p “
p1´ 2aqp1` pq

2a

namely p “ p1´ 2aq{p4a´ 1q, which belongs to r0, 1q for a P p1{3, 1{2s.

For the computations of the next section, note that according to (3),

Pptxu, tx´ 1, x, x` 1uq “ 3ζptxuqp

“ 3
2a

1` p

p1´ 2aqp1` pq

2a

“ 3p1´ 2aq

and

Pptxu, tx´ 1uq “ Pptxu, tx` 1uq

“
1´Pptxu, tx´ 1, x, x` 1uq

2
“ 3a´ 1

Next we must check that for this random mapping ψtxu, (2) is satisfied, namely ψxptxuq P V. This
is true, because rψ´1

x ptxuq “ Bpx, 1q, pψ´1
x ptxuq “ Bpx´ 1, 0q and qψ´1

x ptxuq “ Bpx` 1, 0q.

A.3.2 The other random mappings and the Markov transition kernel P

For any x P ZM , the mappings φ1,x, φ2,x, φ3,x, φ4,x and φ5,x, as well as the random mapping φx, are
constructed as φ1, φ2, φ3, φ4, φ5 and φ in Sections 2.2 and A.1.2, but are centered at x instead of 0.
Then we take ψS “ φx, for any S “ Bpx, rq, with r P J1, tM{2uK. By the same proofs as before
(“rotated” by ´x), we get that these random mappings are strongly associated to P and that (2) is
satisfied, since we have for any r P J1, tM{2uK,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

φ´1
1,xpBpx, rqq “ Bpx, r ` 1q

φ´1
2,xpBpx, rqq “ Bpx, r ` 1q

φ´1
3,xpBpx, rqq “ Bpx, r ´ 1q

φ´1
4,xpBpx, rqq “ Bpx, r ´ 1q

φ´1
5,xpBpx, rqq “ Bpx, rq

38



(where Bpx, tM{2uq “ Bpx, tM{2u` 1q “ ZM ).
The corresponding Markov kernel P is compatible with the wheel structure of V and we have for

any S, S1 P V which are neighbors in this graph, and where x is the center of S,

PpS, S1q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

3a´ 1 , if S “ txu and S1 “ tx` 1u or S1 “ tx´ 1u

3´ 6a , if S “ txu and S1 “ tx´ 1, x, x` 1u

a 2l`1
2k`1 , if S “ Bpx, kq and S “ Bpx, lq with k P J1, tM{2u´ 1K and |k ´ l| “ 1

1´ 2a , if S “ Bpx, kq “ S1 with x P ZM and k P J1, tM{2u´ 1K
1 , if S “ S1 “ ZM

For a corresponding Markov chain, X starting from t0u, we are interested in the absorption time t
in ZM , since its distribution is the law of a strong stationary time for X. Note that we can again come
back to a birth and death chain: for any ball S P V, denote ρpSq its radius (with ρpZM q “ tM{2u).
Remark that ρpXq is a birth and death chain, starting from 0, absorbed at tM{2u and whose transition
matrix is:

@ k, l P J0, tM{2uK, Qpk, lq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

3a´ 1 , if k “ 0 “ l

3´ 6a , if k “ 0 and l “ 1

a 2l`1
2k`1 , if k P J1, tM{2u´ 1K and |k ´ l| “ 1

1´ 2a , if k P J1, tM{2u´ 1K and k “ l

1 , if k “ tM{2u “ l

0 , otherwise

The absorption time of ρpXq at tM{2u has the same law as t and Karlin and McGregor [13] enable
to compute it in terms of the spectrum of Q.
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