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Abstract: We analyze the multilayer structure of sunflower leaves from Terahertz (THz) data
measured in the time-domain at a ps scale. Thin film Reverse Engineering Technique (RET) are
applied to the Fourier amplitude of the reflected and transmitted signals in the frequency range
5 < 1.5 THz. Validation is first performed with success on etalon samples. The optimal structure
of the leaf is found to be a 8-layer stack, in good agreement with microscopy investigations.
Results may open the door to a complementary classification of leaves.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Over the past decades, climate change has challenged agronomist to find new techniques and
plant varieties genetically adapted to water stress. Indeed, lack of water and drought episodes
that threaten several regions of the world in the close future have increased the number of
scientific investigations on new phenotyping tools and techniques. Until now, phenotyping
has required statistical analysis with a huge number of data to measure and process. In this
context, the availability of massive characterization vectors, like phenotyping platforms, offers
new opportunities for the development of optical investigation tools. For example, multi-spectral
and infrared imaging are already operational at the level of the crop [1, 2].

In this new context, there is also a growing demand to develop non-contact (optics, acoustics,
mechanics... ) techniques to analyze leaves microstructure. Among them are optical techniques
that have been used for decades to probe elastic and non-elastic properties of the plants [3].
Luminescence properties were extensively explored and mainly provide chemical information
(chlorophyll-related) about the samples and photosynthesis [4–6], while few information concerns
the opto-geometrical properties, that is, the thicknesses and indices of the layers which constitute
the leaf. Optical coherence tomography (OCT) is another modern technique which allows to
probe the thickness of the sample and may allow to emphasize the multilayer structure [7].
However, the depth probe is often limited around 50 `m, a value which may be decreased
depending on the leaf heterogeneities responsible for high scattering that is plant-dependent.
More classical are the spectro-photometric techniques though they have today led to the

development of hyperspectral imaging systems. Relevant information [8, 9] is collected with
these systems but they do not provide accurate data about the opto-geometrical parameters of the
leaf. Indeed, the leaf structure gathers rough interfaces and inhomogeneous bulks which totally
scatter the incident light and loose the coherence properties of light; the resulting speckle pattern
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is complex (see [10]) and does not allow to retrieve the information about the multilayer structure,
even when exact electromagnetic theories are used.
In order to solve this last point (related to the complexity of the speckle pattern created by

leaf heterogeneities), one basic idea consists in increasing the wavelength (_) of light. Indeed
we know that the weight of the inhomogeneities decreases at large wavelengths, and that the
optical resolution is given by the probing wavelength. Surface light scattering for instance would
be strongly reduced for low roughness-to-wavelength ratios (X/_), with X the root-mean-square
of the leaf roughness. Since roughness measurements obtained with white light interferometry
microscopy indicate that X is of the order of a few micro-meters, a wavelength in the mm range
would guarantee that most of the reflected or the transmitted energies is carried by the specular
beams, that is, in the directions of Snell/Descartes law. This is the reason why this work is
focused on a THz investigation of leaves. As the result of negligible scattering in the THz
frequency-range, the leaf structure is seen by the THz system as a quasi-planar homogeneous
multilayer, and this allows to use most techniques of the optical thin film [11] (optical coatings)
community to retrieve the opto-geometrical parameters (the organization) of the leaf from spectral
data. Roughly speaking, for single layers these techniques take full advantage of the location of
extrema that can be seen in the wavelength variations of reflection and transmission, and of the
contrast between these extrema. For more complex organizations, a specific RET is required.

To summarize, thin film RET is used in this paper to analyse the leaf multilayer through THz
pulsed spectroscopy data measured by reflection and transmission. By comparison with optical
thin film techniques, we must stress on a number of key differences (in addition to the different
wavelength ranges and associated technologies for emitters, detectors and components in the
optics and THz regimes). The first difference is related to the high absorption level of plants in
specific spectral regions (which are mainly due to water and pigments), which does not exist
in high precision multi-dielectric coatings; such difference will give more complexity to the
inverse problem to solve in leaves. The second difference is connected with the nature (temporal
or spectral) of the source; indeed, while broad-band CW sources are currently used in optics,
this is not the case for THz sources, for which reason broad-band THz sources most often work
in a temporal (pulsed) regime. Though the theory is the same if we use the time-frequency
equivalence, this will require to discuss and adjust a number of numerical procedures.
This paper presents in section 2 the THz technics and main caracteristics used for this study.

A validation campaign on samples is performed and depicted in section 3. Once the validation
step is done, the study focuses on the sunflower leaf sample in section 4. Finally, results and
perspectives of this work are summarized in section 5.

2. THz Time-Domain Spectroscopy (TDS)

THz spectroscopy is today largely used to probe films of inert materials whose thickness is of the
order of 1mm [12,13]. The measurement techniques are similar to those of optics, that is, the
thickness and index of the film are derived from the reflection or transmission data.
In the field of agronomy, TDS was used to analyze and monitor the water content status of

plants by measuring transmission. Water is a very absorbing material in THz-domain and this
property has been used to evaluate water content and the physiologic behavior of plants during
water stress situation [14–16]. Correlation between water content and transmission level has
been established and these results offer a new way to develop a non-invasive and faster tool to
measure water plant status.

2.1. Experimental set-up

In this study we performed the measurements campaign on a Terapulse 4000 spectrometer
with external sample chamber compatible with a specular reflectance and transmission module
(TeraView Ltd., Cambridge, UK). THz radiation is produced by ultra-short pulse fibre laser



(wavelength 790 nm, pulse duration <100 fs). The pulse is separated into a pump and probe
beam, where the pump beam generates THz radiation and the probe beam detects THz pulses
using laser-gated photoconductive emitters and detectors. The incident THz pulse was sampled
with a spacing of the data points in the time-domain ΔC of 0.02 ps over an optical delay extend
of 1000 ps, enabling a high spectral resolution of 1.0 GHz. Spectra were the average of 100
scans (approximately 10-min measuring time). Parabolic mirrors focus the THz radiation onto
the sample and the set-up can be used in transmission mode or in reflection mode. The sample
compartment can be nitrogen-purged to make sure that no residual water vapour peaks are visible
in the spectra.

Notice that, as a non-destructive and non-invasive technique, THz TDS does not require sample
preparation. Thus the samples under investigation were directly placed on the sample holder
which is an aluminum disk with a 2-cm-diameter-hole at the center. The interested region of
the leaf, placed in the middle of the disk, is maintained steady in an average plane. Concerning
the leaves, the upper epidermis was facing the incoming THz pulse. More details about THz
technology can be found in numerous papers such as [17].

2.2. Calibration

Let us denote by 4(g) the THz pulse incident on the sample, and by B(g) the signal delivered by
the leaf under illumination. Assuming a linear interaction, the input/output relationship can be
written as:

B(g) = 4(g) ∗ ℎ(g) (1)

Where (∗) designates a convolution product over time g, and ℎ(g) the impulse response (or
transfer function) of the sample under study. This impulse response is characteristic of a linear
filter and takes into account of the inertia of the leaf tissues. It carries the information which is
leaf-related. Note that inertia is absorption-related and takes account of the dispersion of the
complex indices of the leaf.

Fig. 1. Input signals delivered in the absence of sample, (a) for reflection and (b)
transmission modes. Signal in reflection has been acquired thanks to a gold mirror.

Reflection and transmission measurements require different set-up geometries. For that reason
it is necessary to measure 4(g) in both configurations (reflection and transmission modes) and
we will note the two incident pulses as 4' (g) and 4) (g) before leaf interaction. We precise here
that reference in reflection is taken with a sample of a gold sheet which is equivalent to a mirror



in the optical range. Hence, according to the mode under study, the leaf signal is written as:

B' (g) = 4' (g) ∗ ℎ' (g) (2)
B) (g) = 4) (g) ∗ ℎ) (g) (3)

where ℎ'(g) and ℎ) (g) are considered for reflection and transmission data. Actually they are
connected with the inverse Fourier transforms of the amplitude reflection A (l) and transmission
C (l) coefficients currently measured in the Fourier space in optics.

The two measured (input) signals 4'(g) and 4) (g) are plotted in Fig. 1(a) and 1(b) in a 15 ps
time interval. These curves are the signals delivered by the detector in response to the incident
THz pulse in reflection and transmission modes in the absence of the leaf. The difference in
these curves is attributed to the difference in the configuration modes. Their characterization is
therefore necessary in the calibration process.

2.3. Fourier spectrum of the reference signals

Since RET will be performed in the Fourier space, it is interesting at this step to analyse the
Fourier spectrum of the input signals. These spectra are given in Fig. 2 at frequencies below 5
THz. We observe the presence of noise at high frequencies ( 5 > 3 THz), for which reason RET
will be limited to the frequency window ( 5 < 3 THz) of meaningful data.

Fig. 2. Frequency-domain projection of incident beam (a) in the reflection mode 4̂' ( 5 )
and (b) transmission mode 4̂) ( 5 ).

3. Etalon samples

Before proceeding to the leaf analysis, it is prudent to test the procedure on etalon samples. These
3 reference materials are one Corning microscope slide (provided by SIGMA-ALDRICH ref :
CLS294775X50) of thickness in the range 900 to 1100 `m, one Menzel Cover Slip (provided by
Thermo Fisher Scientific ref : 24X30-1W-YO) of thickness around 150 `m, and a high-resistivity
silicon wafer double slide polished with a thickness around 525 `m (provided by NEYCO). The
time-domain signals and their Fourier spectra are given in reflection and transmission modes for
these 3 samples in Fig. 3. In these plots, we only consider the frequency range 5 < 1.5 THz due
the weak signal-to-noise ratio beyond this limit. Notice here that the Fourier spectra are those of
the samples, that is, the transfer functions given by the ouput-to-input ratios of the signals:

ℎ̂( 5 ) = B̂( 5 )
4̂( 5 ) (4)
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The input signal is also plotted in dotted line for each time-domain curve. This allows to
emphasize the different echoes by reflection and transmission, that are related to the thickness
and index dispersion of the samples. The higher the thickness, the later the echoes. Depending
on the sample parameters, such echoes are easy to observe or not. The sample parameters are
also responsible for the quasi-periodic oscillations in the spectrum of the signal. The higher the
thickness, the smaller the period. The oscillations should contain absorption information due to
finger-prints of the chemical substances. However, these finger-prints are negligable in our case
for the frequency range 5 < 1.5 THz. This oscillation vanishes at high frequencies for the first
two samples, due to absorption. Note in the Fourier space that we plotted the square modulus of
the transfer function, that is: ��ℎ̂' ( 5 )��2 and

��ℎ̂) ( 5 )��2 (5)

Also, the absorption is taken as:

� = 1 − (
��ℎ̂' ( 5 )��2 + ��ℎ̂) ( 5 )��2) (6)

We notice that the high-resistivity silicon wafer sample has a negligible absorption in the whole
frequency range f < 1.5 THz. This can be seen by the repeated zero values taken by reflection
at specific frequencies. Indeed at these frequencies the sample is a multiple half- wave layer
between 2 identical surrounding media, so that reflection cancels in the absence of absorption
(the transparent half-wave layer is known to be absentee). Hence, it would be useless to measure
transmission since we can deduce it by T = 1-R. We also notice the presence of noise in the
vicinity of the zero frequency, whose origins are not clearly identified at this step (the values
approach the mean value of the time signal and this could require a lower time sampling).



Corning

Wafer

Fig. 3. Time signals and Fourier spectra of the 3 etalon samples measured in reflection
and transmission modes, (a-d) for Corning Microscope Slide and (e-h) for Menzel
Cover Slip sample. For High-resistivity Silicon Wafer, (i) is time-domain signal on
reflection mode and (j) its transfer function.



3.1. Transfer function, reflection and transmission coefficients

Here we connect the transfer function to the amplitude reflection and transmission coefficients of
the sample. The input pulsed signal is collimated at quasi-normal illumination on the sample.
Hence the THz pulse 4(g) can be written as a collimated frequency wave packet:

4(g) =
∫

�(l)4 9:0 (l) (I−I0)4− 9lg3l (7)

with I0 (I0,' or I0,) ) is related to a phase origin, and where the width Δl of the amplitude
distribution �(l) is the inverse of the pulse duration. The parameter : follows :0 (l) = l=0/2 =
2c=0/_, with 2 the speed of light in vacuum, _ the illumination wavelength in vacuum and =0 the
refractive index of the incident medium. Most often, except in vegetal domain where water is
majority, this index dispersion is negligible, which leads to:

4(g) = �̌[g − ( =
2
) (I − I0)] = �̌(g) ∗ X[g − (

=

2
) (I − I0)] (8)

with �̌(g) the inverse Fourier transform of �(l) and X the Dirac distribution.
The transmitted field is given by a formula similar to (8) but in which the amplitude distribution

is weighted at each frequency by the transmission coefficient C (l) of the leaf, that is:

B) (g) =
∫

C (l)�(l)4 9:0 (l) (I−I0,) )4− 9lg3l (9)

This yields:
B) (g) = Č (g) ∗ �̌(g) ∗ X[g −

=

2
(I − I0,) )] (10)

with Č (g) the inverse Fourier transform of the transmission coefficient C (l). The result is
analogous for the reflected field, that is:

B' (g) = Ǎ (g) ∗ �̌(g) ∗ X[g −
=

2
(I − I0,')] (11)

Relations (10) and (11) show that the transfer functions are identified to the inverse Fourier
transforms of the reflection and transmission coefficients:

ℎ) (g) = ℎ̌)
[
g − =

2
(I0 − I) )

]
⇔ ℎ̃) (l) = C (l)4[− 9l

=
2
(I0−I) )] (12)

ℎ' (g) = ℎ̌'
[
g − =

2
(I0 − I')

]
⇔ ℎ̃' (l) = A (l)4[− 9l

=
2
(I0−I')] (13)

and finally:

|ℎ) ( 5 ) |2 = |A ( 5 ) |2 = ) ( 5 ) (14)

|ℎ' ( 5 ) |2 = |C ( 5 ) |2 = '( 5 ) (15)

These last intensity quantities (14) and (15) can be easily measured whatever the position of
detectors by reflection and transmission, and on which reverse engineering techniques can be
applied. Note also that RET can be applied on the amplitude quantities, (12) and (13), but the
difference I0 − I' and I0 − I) should be perfectly controlled. Indeed they create in the Fourier
space an additional residual phase term which can be written as:

iA4B =
2c 5
2
=ΔI (16)



For this phase term to be negligible, we must have iA4B � 2c, that is:

2c 5
2
=ΔI � 2c ⇒ ΔI � 2

5
with = = 1 (17)

Since the maximum frequency is 1.5 THz, we obtain ΔI � 200 `m. To summarize, this last
condition should be satisfied when working with the amplitude coefficients rather than with the
intensity coefficients.

3.2. Non dispersive analysis of the samples

In the Fourier space multiple reflections at each interface of a single layer classically allow to
write the amplitude reflection and transmission coefficients of the layer as:

A (l) = A0 + C0C ′0A1
∑
@

(A ′0A1)@42 9 (@+1)i (18)

C (l) = C0C1
∑
@

(A ′0A1)@4 9 (2@+1)i (19)

with A8 and C8 the Fresnel coefficients of interface (8) between media 8 (incident) and 8 + 1, while
A ′
8
, C ′
8
are the same coefficients when the illumination is reversed. The phase term is given by:

i = U4, with U = (:2
1 − f

2) 1
2 and :8 =

2c=8
_

(20)

with _ the illumination wavelength in vacuum, =1 the complex index of the layer and 4 its
thickness. The spatial pulsation f is given by : f = :0B8=\0 with \0 the illumination incidence
angle. Note here that the substrate is air (=2 = =0 = 1 ).
In formulae (18) and (19) if we assume negligible absorption (real indices =8) and index

dispersion, the frequency dispersion is only hold in the phase term i, so that the inverse time
Fourier transform is immediate at normal illumination (U = : = l=/2), that is:

Ǎ (g) = A0X(g) + C0C ′0A1
∑
@

(A ′0A1)@X[g − 2(@ + 1)=1
4

2
] (21)

Č (g) = C0C1
∑
@

(A ′0A1)@X[g − (2@ + 1)=1
4

2
] (22)

with X the Dirac function. These last formulae emphasize the time locations of the echoes at
instants g' (=) = 2(= + 1)=14/2 by reflection and g) (=) = (2= + 1)=14/2 by transmission. Taken
into account the fact that the orders of magnitude of the Fresnel transmission (C8) and reflection
(A8) coefficients are unity and a few percent, respectively, we also observe that the first two echoes
by reflection have the same order of magnitude (they are proportional to A0 and C0C ′0A1), which is
not the case of the echoes by transmission (proportional to C0C1 and C0C1A ′0A1). For that reason
and when possible (depending on the receiver detectivity), one would measure the first echo by
transmission, and the first two echoes by reflection.

A first evaluation of the sample optical thickness can be extracted from these time instants in
reflection and transmission by measuring time delay peaks :

g@,' = 2(@ + 1)=1
4

2
Reflection (23)

g@,) = (2@ + 1)=1
4

2
Transmission (24)

For both modes, reflection and transmission, time delays between two peaks @ and @ + 1, is
equal to:

Δg(@,@+1) =
2=14

2
(25)



Results are given in Table 1, 2 and 3 where optical thicknesses are extracted for each sample.
Note that the agreement is high between values extracted by reflection and transmission. Moreover,
the agreement is also high for values extracted from more than 2 echoes (case of silicon wafer
sample).

Table 1. Time delays of the echoes measured by reflection and transmission for Menzel
Cover Slip sample with the associated optical thicknesses.

Menzel

Time delay (ps) g0 g1 Δg X = =14 (`<)

R -18.51 -16.09 2.42 363

T -9.11 -6.71 2.4 360

Average ∅ ∅ 2.41 362

Table 2. Time delays of the echoes measured by reflection and transmission for Corning
Microscope Slide sample with the associated optical thicknesses.

Corning

Time delay (ps) g0 g1 Δg X = =14 (`<)

R -18.47 -1.43 17.04 2556

T -4.41 12.63 17.04 2556

Average ∅ ∅ 17.04 2556

Table 3. Time delays of the echoes measured by reflection and transmission for High
resistivity silicon Wafer sample with the associated optical thicknesses.

Wafer

Time delay (ps) g0 g1 g2 g3

R -18.21 -6.53 5.09 17.03

Time delay (ps) <Δg> =14 (`<)

R 11.81 1772

However, from these data, we only evaluated the optical thickness of each sample. In order to
compare the results to the thickness values of the provider, we have to know the value of the
refractive index, which is addressed in the next 2 sub-sections.

3.3. Dispersion estimation of refractive index

Though neglected until now, a few information can also be emphasized about the index dispersion.
Indeed, minima of the reflection spectrum correspond to optical thicknesses related to a half



wavelength in the form:

=@4 = @
_@

2
or =@4 =

@

2
2

5@
(26)

with 5@ the location of the @Cℎ minimum of the reflection curve '( 5 ) and 4 the thickness of
the sample. Actually in the frequency-domain and following the optical thicknesses given in
Table 1, @ starts at 1 with the first minimum of the '( 5 ). From this consideration we can define
and evaluate the variation rate of the index Δ=@/=@ = (=@+1 − =@)/=@ as :

Δ=@

=@
=

2

2=@4

[
@

(
1
5@+1
− 1
5@

)
+ 1
5@+1

]
(27)

Finally, after calculus, we obtain:

Δ=@

=@
=

5@

5@+1

(
@ + 1
@

)
− 1 (28)

Results are depicted in Table 4, 5 and 6 and show for the three samples that the dispersion of
the real index is negligible (lower than 3%).

Table 4. Dispersion of the real indices for the Menzel Cover Slip etalon, measured
between successive wavelengths of minimum reflection.

Menzel

5@ ()�I) 0.44 0.87 1.32

Δ=@/=@ (%) 1.15 1.14 ∅

Table 5. Dispersion of the real indices for the Corning Microscope Slide etalon,
measured between successive wavelengths of minimum reflection.

Corning

5@ ()�I) 0.06 0.12 0.18 0.24 0.30 0.36

Δ=@/=@ (%) 0.00 0.00 0.00 0.00 0 2.44

5@ ()�I) 0.41 0.48 0.53 0.60

Δ=@/=@ (%) 2.38 1.89 1.85 ∅

3.4. Refraction index estimation

In a similar way, an estimation of the refractive index can be done with the amplitude of the
maxima. Indeed the maxima occur for optical thicknesses in the form:

=@4 = (2@ + 1)
_@

4
(29)

Provided that absorption can be neglected at low frequencies, means large wavelengths, the
reflection maxima can be written as:

A =
1 − =2

@

1 + =2
@

⇔ ' = (
1 − =2

@

1 + =2
@

)2 (30)



Table 6. Dispersion of the real indices for the High resistivity silicon Wafer etalon,
measured between successive wavelengths of minimum reflection.

Wafer

5@ ()�I) 0.08 0.17 0.26 0.34 0.43 0.51

Δ=@/=@ (%) 0 1.92 1.96 1.16 1.18 0.83

5@ ()�I) 0.60 0.68 0.77 0.85 0.94

Δ=@/=@ (%) 0.84 0.65 0.65 0.53 ∅

That is:

=@ =

√√
1 +

√
'@

1 −
√
'@

(31)

Table 7. Refraction index and thickness values extracted at frequencies of maximum
reflection.

Sample 1BC max (THz) R (%) = 4(`<) =4

Menzel 0.21 48 2.34 155 0.36.10−3

Corning 0.09 48 2.34 1092 2.56.10−3

Wafer 0.13 71 3.42 518 1.77.10−3

Notice that absorption at low frequencies or large wavelengths can be approximated by:

4

_
� 1⇒ � ≈| 1 + A |2 lY′′ 4

2
(32)

with l = 2c 5 and Y′′ is the imaginary part of the permittivity. This relation shows why
absorption is lower at low frequencies (under the assumption of negligible dispersion), which
legitimates the use of (31) to estimate refraction index. Results are given in Table 7 and show
realistic values of the real index and associated thickness. For example, if we consider the silicon
wafer refractive index as 3.4, we find a thickness of the wafer sample 4 ≈ 521 `m. This value is
in a very good agreement with manufacturing data since the thickness is announced to be 525 +/-
20 `m.

4. THz organization analysis of the sunflower leaf

4.1. RET

Here, we go further with a RET, a well-known procedure currently used in optical thin films. In
regard to the previous sections, note also that absorption is now considered, though dispersion is
still neglected.

In this section, the data are analyzed in the Fourier space while we could have chosen to do so
in time-domain like some studies already did [18,19]. For each set of parameters, we define a
merit function as the distance between the measurements (A" , C" ) and the calculation (A� , C� )



performed with these parameters, that is :

" (=8 , 48 , &) =
&∑
8=1
{[A" ( 58) − A� ( 58)]2 + [C" ( 58) − C� ( 58)]2} (33)

Notice here that the distance is not normalized. 48 and =8 are respectively the thicknesses and
the complex indices of the stack layers, while & is the number of frequencies.

As it is shown in Fig. 4, each layer is associated with 3 different parameters which are thickness
48 , and the two parameters of the complex refractive index =8 + 9 :8 . With # layers, the number
of parameters is 3# if index dispersion can be neglected.

Fig. 4. Modelisation of a ?-layer stack. \ is a gathering matrix of the 3? parameters.

4.2. Results on etalon samples

The algorithm was first tested on the 3 etalon samples we used in section 3.1. Minimization has
been done over a range of frequency from 0.1 to 1.5 THz. The parameters (real optical thickness
and complex index) which give the lowest merit function for each sample are the following:

=4 = 1.79 10−3 < and : = 0 Silicon Wafer (34)

=4 = 2.52 10−3 < and : = 0.09 Microscope slide (35)

=4 = 0.34 10−3 < and : = 0.19 Cover slip (36)

When compared to those of the preceeding section, we find the following relative differences:

Δ(=4)
(=4) ≈ 0.6% Silicon Wafer (37)

Δ(=4)
(=4) ≈ 5.0% Microscope slide (38)

Δ(=4)
(=4) ≈ 6.1% Cover slip (39)

These results are rather successfull and the slight differences can be attributed to absorption
which was not considered in the previous section. The corresponding signals by reflection in
the time and frequency domains are plotted in Figs. 5-7, and show a high agreement between
calculation and measurement since the ending value of the normalized merit function (residual
error) are lowest than 10% in each case. Hence these first results validate the inverse engineering
procedure.
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Fig. 5. Numerical fit in frequency-domain on reflection (a) and transmission (b) for
5 < 1.5 THz on the cover slip sample. Reconstruction of the time-domain signal in
reflection (c). The measured data are plotted in blue, while the calculation is in red.

Corning

Fig. 6. Numerical fit in frequency-domain on (a) reflection and (b) transmission for
5 < 1.5 THz on the microscope slide sample. Reconstruction of the time-domain
signal in (c) reflection. The measured data are plotted in blue, while the calculation is
in red.



Wafer

Fig. 7. Numerical fit in frequency-domain on reflection (a) for 5 < 1.5 THz on the
silicon Wafer sample. Reconstruction of the time-domain signal in reflection (b). The
measured data are plotted in blue, while the calculation is in red.

4.3. Preliminary information on the sunflower leaf

Conversely to living tissues, investigations on vegetal physiology has just started few decades
ago but is nowadays a domain largely studied with numerous different aspects. Many works on
this topic have been published [20, 21]. For example, photosynthesis mechanisms are clearly
identified and understood by biological community as well as stoma functions in temperature and
hydration regulation in plants [22]. However, other mechanisms like production of Abscisic acid
in leaves or adaptive behaviour in front of different kinds of stress are only partially assimilated.
The internal structure of plant leaves is classically described in books [20] but few information
can be found about the typical dimensions of their different layers. Thickness, roughness and
hairiness of leaves could be a trait that would reveal the way the varieties protect themselves
against stresses.
In opposition with the previous cases of single-layer reference samples, the leaf problem is

more complex due to the multilayer structure. We will see that eight layers are required to
approach the leaf structure. Given this complexity, one cannot deal anymore with multiple
reflections at each interface, so that the time echoes and periodic oscillations (when existing in
the time and frequency domains) cannot be attributed to a specific interface. Actually the data
must be analyzed with the admittance formalism which takes account of the global structure of
the stack. Furthermore the assumption of negligible dispersion cannot be justified a priori, so
that the number of parameters may be excessive. For that reason preliminary information on the
sunflower leaf is crucial before the inverse algorithm is applied on the THz data.

Procedures for scanning electron microscopy (SEM) are quite hard and delicate. For observa-
tions of samples have to be water free and covered by a thin conductive layer before being placed
onto the sample holder of the system. However plant leaves are living tissues that contain almost
90 percent of water with various internal structures. This means that a simple drying would
destroy the leaf organization and lead to useless measurements. Hence, instead of drying the
leaf, it is necessary to fix the cell structure and substitute the water by an organic product such as
osmium tetroxide OsO4. These two steps are very delicate and take several hours because of the
fragile character of the leaves and their complex structures. Eventually a nanometer-thin gold
layer is sprayed over the sample to allow electric interaction so that secondary electrons can be
produced and detected [23]. The resulting sample is then ready for the SEM analysis and the
results are given in Fig. 8.
As expected, the leaf structure reveals strong heterogeneities but the structure can still be



glimpsed. In fact, the protocol has roughly maintained the organization of the leaf together with
part of the cells shape. The high-resolution picture emphasizes a specific elongated shape of the
palisade mesophyll cells, and the multilayer organization. According to this SEM investigation,
and though the protocol has largely reduced the typical dimensions and destroyed part of the
inner structure, the sunflower leaf can roughly be described as a 4 layer stack organization, that
is: the two upper and lower epidermis layers and the largest mesophyll ones which are called
palisade mesophyll and spongy mesophyll. Both of them contain water and chlorophyll pigment
but have not the same function. Palisade mesophyll presents a well-organized elongated cells
which collect light, use it to photosynthesis reaction and guide it toward lower layers. Spongy
mesophyll is composed by cells with different shapes and sizes completely desorganised and
unsticked at each other. This typicall organization in spongy mesophyll permits gazes to move.
Actually, thickness of palisade layer is about 2 times thinner than spongy one.

Fig. 8. Scanning electron micrograph of the sunflower leaf cross-section showing a 4
layers stack organization.

Though the conclusions drawn from Fig. 8 cannot serve as a reliable basis for the leaf
investigation, they give a first idea of the leaf heterogeneities responsible for the failure of optical
techniques (due to complex speckle patterns). Also, they emphasize the symmetry properties
within the multilayer structure of the sunflower sample, a symmetry that we use for RET in
section 4.5. Eventually at this step we keep in mind that the thicknesses have been reduced by
the preparation process and that more layers are expected to be revealed, as announced by the
litterature (see Fig. 9 involving 6 layers). Note also that other techniques (environmental SEM or
CryoSEM) could be tried to allow less damage on the samples.

4.4. Protocol for the sunflower leaf

Different sunflower plants (dicotyledonous plants) similar in size were watered regularly and
used for the THz experiments. The plants were grown from seeds in green houses room under
log-day conditions in single pots. Plants were enlightened with horticultural lamp during 8 hours
per day (Fig. 10). Two leaves were cut from the petiole before being placed in the THz system,
due to the difficulty to place the entire plant close the THz device. In order to minimize plant
water stress, we wrapped up the petiole with a wet cotton. Then, to be measured, the samples



Fig. 9. Expected natural structure of leaf cross-section.

are placed on a metallic sample holder with a hole at the centre. The leaf is delicately stretched
and fixed with little magnet to hold the interested zone flat and stable in time. It is necessary to
ensure that the measured area does not contain a large rib but only tertiary. These manipulations
last about 5 minutes before measurements. The duration of acquisition can varies from 10 to 15
minutes for each acquisition depending on the number of scan we choose.

Fig. 10. Growing chamber of sunflower plants equipped with horticultural lamp,
ventilation system and tide tank.

4.5. Reverse engineering on the sunflower leaf

The reflexion THz data on the leaf sample are given in Fig. 11, both in the time and frequency
domains.

One key problem is the unicity of the solution, and the time-consuming algorithm. This is why
we simplify the problem by considering the leaf structure as a symmetric organization (except



Fig. 11. (a) squared modulus of frequency-domain projection and (b) the reflection
signal acquired in time-domain.

mesophyll layers), with an a priori knowledge that was summarized in Fig. 12. Therefore the
solutions will be explored in the vicinity of these values. Due to the high number of parameters,
we will extract the best solutions (lowest merit functions) for different layer numbers ranging
from 1 to 8.

Fig. 12. Symmetry assumptions of the layers for the RET algorythm implemented with
Matlab.

We have to face another difficulty in the case of leaves, due to the stationarity of their properties.
Indeed when passing from the reflection to the transmission mode, the sample must be removed
and replaced and we cannot guarantee that the same surface is illuminated with the required
accuracy. In a near future a specific mechanical system will be available to solve this difficulty,
but for the moment we are limited to reflection measurements, which reduces the data for RET.
However the absence of transmission data can be partially compensated if we work with the
amplitude data by reflection (rather than the modulus as done until now) and work with the
real and imaginary parts of the reflection spectrum. This is possible because the geometry of
the system is not modified between the reference measurement and the reflection measurement,
so that the difference |I0 − I' | is much lower than 200 `m, which satisfies relation (17). To



summarize, in the case of leaves we will use the RET simultaneously on the real and imaginary
part of the reflected spectrum.

=;0H4A = 2

Fig. 13. (a) numerical fit of the Fourier amplitude signal plotted in the complex plane
for a 2-layer stack. (b) is a time-domain reconstruction by inverse Fourier transform.

Table 8. Estimated parameters, =, : and 4 of the two-layer stack model.

=;0H4A = : 4 (`<)

=1 1 0.09 91.0

=2 1.61 0.43 243

Figure 13 is given to show that the sunflower leaf cannot be reduced to a double layer structure.
Indeed the best solution is far from the measured data, both in the time and frequency domains.
Hence we have to deal with the complexity of the leaf structure and go further with more layers.
A good approximation is then reached with 8 layers. With this 8-layer solution (see Fig.14) the
two curves (theory and experiment) are quasi-superimposed, and the layer thicknesses of the two
mesophyll layers are in agreement with what was expected.

This solution is quite interesting since it allows to recognize the characteristic cross-section of
the leaf that was discussed in section 4.3. The two mesophyll layers in the middle of the stack
exhibit the expected magnitude orders, with thicknesses equal to 44 = 108.1 `m and 45 = 176.3
`m. Similar results are obtained for the two epidermis layers (43 = 15.3 `m and 46 = 30 `m)
and the two cuticle layers (42 = 3.5 `m , 47 = 1 `m). Eventually the first and the last layer of
the leaf are unexpected, since they exhibit high thicknesses (41 = 76.4 `m, 48 = 134.7 `m).
However their index value is low and this makes us think of the trichomes of the leaf (its hair)
whose characteristic dimension is known to vary in the range (50 − 200 `m); such trichrome
layers are seen here as homogenized layers and this would explain their low index value.

It is important to stress on the fact that the lowest value (18%) of the normalized merit function
is reached for layer numbers greater than 6 (= < 6). Odd numbers were eliminated because of
the symmetry conditions that we forced. Hence the 8 layers solution gives the minimum layer



=;0H4A = 8

Fig. 14. (a) numerical fit of the Fourier amplitude signal plotted in the complex plane
for a 8-layer stack. (b) is a time-domain reconstruction by inverse Fourier transform.

Table 9. Estimated parameters, =, : and 4 of the eight-layer stack model. The color of
the layer 4 and 5 are different since they represent the two mesophyll layers which are
not considered symmetrical.

=;0H4A = : 4 (`<)

=1 1.03 0 76.4

=2 1.83 0 3.5

=3 1.52 0 15.3

=4 1.79 0.36 108.1

=5 1.99 0.27 176.3

=6 1.81 1.05 30.0

=7 1.6 0.3 1

=8 1 0.33 134.7

number which minimizes the merit function. Higher even numbers (10 or 12) also give a merit
function around 18%, but the layer thicknesses are not realistic since they are all quasi-similar
(around 60 micrometers including the cuticle layers) and do not provide a credible representation
of the dicotyledonous layer stack.

5. Conclusion

Due to the leaf dimensions (around 500 `m), a THz investigation is well adapted to recover the
opto-geometrical multilayer organization of a leaf. Futhermore, these large THz wavelengths
reduce all scattering phenomena so that the leaf behaves like a homogeneous multilayer. This
balance allowed us to apply the well known (optical thin films) RET to analyze the organization



of a sunflower leaf. Notice however that the reflected and transmitted leaf signals are here
measured in the time-domain regime, while they are mostly measured in the frequency-domain
in the optical thin film community. These time-domain signals provide the key advantage of an
amplitude RET analysis, rather than an intensity one. They were recorded at a ps scale, and their
Fourier spectra analyzed in the frequency range f < 1.5 THz.
In a first step our RET techniques were tested and validated with success on 3 etalon single

layer inorganic samples. Then they were extended to the analysis of multilayer leaves. The leaf
problem is more complex due to the high number of parameters (number of layers, thicknesses
and complex indices for each layer, index dispersion). In order to reduce this complexity, the
RET thickness solutions were explored in the vicinity of premilinary results issued from SEM
microcopy (leaf cross-section). Absorption was considered but dispersion was neglected, thanks
to the absence of resonances.
First results clearly show that the leaf organization cannot be reduced to one or 2 layers. A

highly realistic solution is reached with 8 layers and allows to recognize the leaf cross-section,
including the presence of two mesophyll layers, two epidermis layers, two cuticle layers and
two trichrome layers, all of them showing the expected thickness magnitude orders. Notice that
the trichrome layers ("leaf hair") lie at the top and the bottom of the leaf and exhibit the higher
thicknesses and lower indices, so that they take account of a homogeneization process.

In a near future all results will be improved taking into account, when using the RET technique,
the amplitude of both the reflected and transmitted signals on the leaves. This will first allow
to approach a unicity in the solution, and then consider complex index dispersion. A specific
motorized mechanical system with high positioning accuracy will be required for this application.
All results emphasize the fact that the multilayer leaf structure can be revealed with high

accuracy thanks to THz data, and this may open the door to a complementary classification
of leaves. In addition, the same investigations can be applied to different kinds of leaf stress,
including the water stress.
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