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Abstract
Characterizing precisely neurophysiological activity involved in
natural conversations remains a major challenge. We explore in
this paper the relationship between multimodal conversational
behavior and brain activity during natural conversations. This
is challenging due to Functional Magnetic Resonance Imag-
ing (fMRI) time resolution and to the diversity of the recorded
multimodal signals. We use a unique corpus including local-
ized brain activity and behavior recorded during a fMRI exper-
iment when several participants had natural conversations alter-
natively with a human and a conversational robot. The corpus
includes fMRI responses as well as conversational signals that
consist of synchronized raw audio and their transcripts, video
and eye-tracking recordings. The proposed approach includes
a first step to extract discrete neurophysiological time-series
from functionally well defined brain areas, as well as behav-
ioral time-series describing specific behaviors. Then, machine
learning models are applied to predict neurophysiological time-
series based on the extracted behavioral features. The results
show promising prediction scores, and specific causal relation-
ships are found between behaviors and the activity in functional
brain areas for both conditions, i.e., human-human and human-
robot conversations.
Index Terms: multimodal signals processing, natural conver-
sation, machine learning, human-human and human-machine
interactions, Functional MRI

1. Introduction
Identifying dependencies between behavior and brain activity
during conversations is an essential step towards understanding
the brain bases of conversational speech. We study here those
dependencies in two conditions: human-human vs. human-
robot interaction. Besides exploring differences in neurophys-
iological processes of an subject conversing with a human or
with a robot, it also enables us to scrutinize brain activities re-
lated to conversation in the case of impoverished social context.
A strength of our approach is the use of fMRI that provides
invaluable data to localize brain activity and with a methodol-
ogy that allows a relatively fine grained sampling in the time
domain as well. The result is a unique data set of natural langu-
gage conversations recorded in fMRI, providing synchronized
neurophysiological and behavioral signals [1].

This dataset is unique in that participants’ behaviour is un-
constrained and therefore different from fMRI dataset gener-
ally acquired in highly controlled conditions. The classical ap-
proach of contrasting two or more well controlled experimen-
tal conditions therefore cannot be used. Existing works (cf.
Section 2) have a major drawback: They use one or a small

number of behavioral signals that are derived from very con-
trolled tasks. Our contribution consists in handling complex
raw multimodal behavioral signals acquired during relatively
unconstrained conversations, and deriving from them high-level
features as predictive variables to predict fMRI responses in
well-defined functional regions of interest (ROI).

In this paper, we present a framework for (i) predicting
fMRI responses based on behavioral signals in localized brain
areas recorded during conversations, and (ii) identifying causal
relationships between conversational behavior and brain activ-
ity. The proposed approach consists of two main steps:

1. Feature extraction: high level (verbal and non-verbal)
features are extracted from raw behavioral data. They are
grounded on speech produced by the two interlocutors,
as well as eye-tracking signals of the participant and the
video of the human or artificial interlocutor.

2. Applying feature selection and prediction based on the
extracted features and the fMRI time series.

Evaluations are performed on 24 participants (cf. Section
3). The best prediction result allows us to identify the most
relevant features for each brain area, yielding on the way a dis-
cussion comparing the cases where the interlocutor is a human
or a robot.

After presenting related work in the next section, we de-
scribe the fMRI experiment and data sets acquisition in section
3. Then, we present our approach in section 4 and our results in
section 5.

2. Related Work
Several approaches have been proposed in the literature to pre-
dict brain activity based on behavior. In [2], the authors inves-
tigate the effect of adding the visual speech to auditory speech
signals in increasing the activity of auditory cortex areas. The
results show significant increase in the activation of the studied
regions of interests (ROIs) based on ANOVA analysis. In [3],
the fMRI neural activation associated to meanings is predicted
based on a large text data. The brain regions studied are in the
sensory-motor cortex. The model used consists of transforming
the text into semantic features, then building a regression model
that expresses the fMRI brain activity as a linear combination of
semantic features. The authors show a prediction accuracy of
0.62 or higher, but on each participant independently. This is-
sue has also been addressed with multi-subject approach, i.e., by
concatenating data from multiple subjects. For example, in [4],
the goal was to predict voxels activity from cortical areas, mea-
sured via the Blood-Oxygen-Level Dependent (BOLD) signal
based on the speech signal. The data used has been collected
from an fMRI experiment on 7 subjects. The methodology



adopted is based, first, on constructing semantic features from
natural language, then, a dimension reduction using PCA (Prin-
cipal Component Analysis) is applied to reduce the number of
the predictive variables, and a model is learned based on multi-
ple linear regression with regularization in order to predict the
BOLD signal. Finally, the obtained prediction results and the
principal components of the predictive variables are both com-
bined to classify brain areas according to the semantic features
categories. Other types of behavioral signals have been inves-
tigated by evaluating the effect of a single feature on the brain
activity. For example, the speech reaction time has been used to
predict activity in specific brain regions [5]. In [6], the prosodic
mimicry generated by computers has been used to study its ef-
fect on interpersonal relations in human–computer interaction.
In [7], the acoustically-derived vocal arousal score [8] is used
to predict the BOLD signal using the Gaussian mixture regres-
sion model. In [9], the authors predict the BOLD signal in the
posterior parietal cortex based on eye movement data using a
multivariate regression model. More general approaches try to
predict the brain activity of various areas using different types
of signals at the same time. For example, in [10], correlations
are analyzed using linear regression between the BOLD signal
and behavioral features computed from observed facial expres-
sions, speech reaction time, and eye-tracking data.

These works analyse dependencies between behavior and
specific functional brain areas. However, one or few modalities
are included to describe the behavior used to predict the brain
activity. In addition, the methods used are generally based on
correlation analysis or multiple regression.

However, machine learning methods can be particularly rel-
evant for this kind of questions, such as prediction models based
on decision trees and artificial neural networks, aside with fea-
ture selection techniques. In our case, we propose a frame-
work that consists in extracting high-level features from raw
data, then applying feature selection and prediction with differ-
ent classifiers to predict discretized neuro-physiological signals
from multimodal behavioral signals composed of audios, videos
and eye-tracking recording.

3. Datasets acquisition and processing
The data is collected from an fMRI experiment described in
[1], and illustrated in Figure 1. It involves 24 participants, and
consists of four sessions, each containing six conversations of
60 seconds, three with a human and three with a conversational
robot alternatively. An "advertising campaign" provides a cover
story: participants are informed that they should guess what is
the message carried by images in which fruits appear either as
’superheroes’ or ’rotten’. Each conversation between the partic-
ipant and either a confederate of the experimenter or a FURHAT
conversational robot [11] (controlled by the confederate in a
Wizard-of-Oz mode, unbeknown to the participant), is about one
single image of the purported "advertising campaign".

3.1. Processing fMRI signals

Standard fMRI acquisition procedures were used, described in
details in [1]. BOLD signal 3-dimensional images are recorded
in the whole brain every 1.205 seconds. Standard SPM12 pre-
processing procedures are used [12], including correction for
time delays in slice acquisition ("slice timing"), image realign-
ment, magnetic field inhomogeneities correction, normalization
to the standard MNI space using the DARTEL [13] procedure
for coregistration of individual participants’ anatomy, and fi-

Figure 1: The experimental design.

nally spatial smoothing with a 5-mm full-width half-maximum
3-dimensional Gaussian kernel. Extraction of the BOLD sig-
nal in regions of interest is performed using the conn toolbox
[14], and includes several denoising procedures, firstly a lin-
ear detrending using a high-pass filter with a threshold of 128
seconds, secondly using realignment parameters to calculate
nuisance regressors related to participants’ movement during
scanning, thirdly taking heartbeat and breathing recordings to
remove physiological artifacts with the PhysIO toolbox [15],
and finally extracting BOLD signal in the white matter and
cerebrospinal fluid and using the 5 first eigen variate of the
time-series as nuisance representing signal fluctuations in non-
cortical brain tissues. A 275-area parcellation based on func-
tional and anatomical connectivity patterns [16] defines ROIs
for the whole brain, and specific regions are chosen based on
their anatomical location. Continuous time-series (385 time
points) are extracted for each ROI and each session and par-
ticipant representing the mean activity after denoising.

4. The Proposed Approach
We propose a framework for (i) predicting local brain activ-
ity based on multimodal behavioral signals during bidirectional
conversations, and (ii) identifying dependencies between them.
The idea is to mimic how brain areas activate in a bidirectional
conversation depending on what the brain receives and pro-
duces. A schema of this framework is shown in Figure 2. It
consists of two main modules. A predictors extractor module
which takes as input raw multimodal signals, then extracts high
level features using methods and pre-trained models. Next, it
resamples them to have time series with the same number of ob-
servations. Finally, the time series are represented as sequences
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Figure 2: A schema of the used multimodal prediction process.

using the same number of time-steps according to Equation 1.
The prediction module applies feature selection and learns su-
pervised classifiers from the processed features and the BOLD
signals. In the rest of this section, we detail the two parts of the
proposed framework.

4.1. Extracting features from multimodal signals

This step involves processing 3 types of signals. Facial features
are directly extracted from video of the interlocutor, speech fea-
tures are extracted from manual transcripts, and eye-tracking
features are extracted from participant’s data recorded inside the
fMRI scanner. In total, more than 40 features are extracted. For
the sake of space, we just present the name of these features per
modality in Table 1. For more details, all features are available
online1, and described in [17].

Raw
signals

Extracted Features

Audios Speech activity, interpersonal speech items (parti-
cles items and discourse markers [18]), Overlap, Re-
action Time, Filled-breaks, Feedbacks, Laughters,
Lexical Richness, Sentiment analysis (polarity and
subjectivity).

Videos Facial Action Units, Head pose coordinates, Gaze
coordinates, smiles, emotions.

Eye-
tracking
data

Coordinates of the gaze movement, and binary vari-
ables categorizing resp. the presence of saccades,
and where the participant is looking at interlocutor’s
face, eyes of mouth.

Table 1: Summary of the extracted behavioral features.

The extracted time series have two types (discrete and con-
tinuous), and have different frequencies, while the used ma-
chine learning models require variables with the same number
of observations. We adopted two resampling methods. For con-
tinuous features, we resample them by considering their relative
average between each two successive time points. For discrete
features, we consider the number of occurrences.

4.2. The prediction module

Before starting the prediction formulation, let us describe the
dynamic link BOLD signal and the behavior events from a neu-
roscience point of view. The fMRI response to a behavioral
event is characterized by the Hemodynamic Response Function
(HRF), which peaks around 5 seconds after a trigger event [19].
We focus in this work on predicting if a brain area is active or
not. Therefore, we discretize first the BOLD signal in each ROI.

The BOLD time series of each participant are normalized, then
discretized using thresholding. The thresholds used are chosen
after cross-validating the prediction module with different val-
ues close to the mean activation of each ROI, then selecting the
appropriate value in terms of the prediction scores.

Let Y (t) be the discretized BOLD signal of a given
brain area, and X(t) = {X1(t), X2(t), . . . , Xk(t)} be k-
dimensional time series representing the behavioral variables.
One could express each value of the BOLD signal at time t
as a function of the predictive features at time t − 5s. Con-
sidering the fact that the delay varies around 5s depending on
behaviors, brains areas, and subjects, our approach consists in
considering more points near to this delay in order to cover its
variability. We express the BOLD signal at time t as a function
of the lagged variables of each feature between times t−7s and
t− 4s. This model can be written as follows:

Y (t) = f(Xt−τ1:t−τ2
1 , . . . , Xt−τ1:t−τ2

k ) + U(t), (1)

where f is the function that we aim at determining, Xt−τ1:t−τ2
i

are the lagged variables of the ith behavioral feature Xi, τ1 =
7s, τ2 = 4s, and U(t) represents the error of the model.

5. Evaluations and results
5.1. Prediction Procedure

In the current study, we focus on 6 ROIs: the left and right
Fusiform Gyrus (FG) involved in face perception, the left and
right Motor Cortex (MC) which support speech production, and
the left and right Superior Temporal Sulcus (STS) involved in
speech perception. Two evaluations are performed indepen-
dently in two conditions: human-human and human-machine
interactions. For each condition, the obtained data contain
13248 observations1 in which the data associated to 4 partici-
pants (≈ 17%) are kept as test set. The classifiers used are from
the Scikit-learn library [20]: Support-Vector Machine (SVM),
Random Forest (RanForest), and the Logistic Regression (Lo-
gReg). Since the predictive variables are in form of sequences,
we also used the Long Short Term Memory (LSTM) network
from the Tensorflow library [21]. A baseline classifier is used
with 3 strategies: a stratified way by generating random predic-
tions regarding the distribution of the training data, a uniform
way by generating random predictions uniformly, and the last
one based on the most frequent label.

Brain activation does not follow the same distribution in all
ROIs. For example some ROIs may be activated rarely dur-
ing conversations depending on the situation. This may cause

1The processed datasets, the implementations, and the detailed
results are available in https://github.com/Hmamouche/
NeuroTSConvers, last accessed on 28/07/2020.



ROIs F-scores (Human-human) F-scores (Human-machine)

LogReg LSTM RanForrest SVM baseline LofReg LSTM RanForrest SVM baseline

Left FG 0.59 0.65 0.66 0.57 0.54 0.63 0.69 0.69 0.62 0.55
Left MC 0.70 0.67 0.72 0.71 0.54 0.68 0.64 0.72 0.72 0.55
Left STS 0.70 0.70 0.72 0.71 0.53 0.65 0.65 0.66 0.66 0.51
Right FG 0.64 0.61 0.64 0.59 0.53 0.65 0.65 0.65 0.60 0.54
Right MC 0.71 0.65 0.73 0.73 0.53 0.68 0.64 0.73 0.73 0.53
Right STS 0.68 0.68 0.69 0.65 0.53 0.66 0.60 0.68 0.68 0.54

Table 2: Prediction results on test data. The F-scores of classifiers are provided for both human-human and human-robot interactions.

imbalanced data, and can affect the classification quality. To
handle this issue, we applied the ADASYN algorithm on the
training data [22], which generates synthetic observations tak-
ing into account the distribution of the data. Then, a 10-fold-
cross-validation is applied on training data to find the appropri-
ate parameters of the classifiers and avoiding over-fitting. This
is conducted on all classifiers except the LSTM network, be-
cause it takes a huge amount of time. For this specific model,
we applied one training-test pass directly with a fixed architec-
ture composed of one LSTM hidden layer and a fully connected
output layer containing one neuron to provide one prediction
each time using the sigmoid activation function. The network is
trained using the ADAM optimization algorithm [23], and the
binary cross-entropy is used as loss function.

Feature selection is performed with the help the classifiers
themselves by ranking features based on their weights. To eval-
uate the predictions, three classification measures are consid-
ered, the weighted recall, precision and F-score. We focus here
on the weighted F-score.

5.2. Results

Table 2 shows the prediction results for both human-human and
human-robot data. Overall, the Random Forest provides the
best predictions with F-scores between 0.64 and 0.73. The Stu-
dent’s t-test is applied to test the equality (null hypothesis) of
the means of the F-scores between the best and the baseline
classifiers obtained by the 10-fold-cross-validation. This test is
one of recommended methods to compare the performance of
machine learning algorithms [24]. The obtained p-values (the
probability of the null hypothesis) are shown in Table 3. For
MC and STS, the p-values are less than 0.01. The best F-scores
are significantly better than the baseline F-scores at a signifi-
cance threshold less than 1%. The right FG area are the most
difficult to predict, where the p-value is equal to 0.005.

ROIs T-test pvalues

Human-human Human-robot

Left MC 1.34e-06 2.61e-07
Right MC 4.04e-07 1.59e-07
Left STS 4.62e-07 8.27e-10
Right STS 2.05e-08 4.41e-07
Left FG 0.00041 0.00091
Right FG 0.00508 0.00075

Table 3: The obtained p-values of the statistical test (T-test)
between F-scores of best and baseline classifiers.

5.3. Discussion

The obtained results show promising F-scores, especially for
MC and STS areas. However, it is not easy to get very accurate
predictions perhaps because brain activities might depends on
other factors that can not be recorded during this fMRI experi-
ment.The statistical test used to compare the best classifier and
the baseline can be applied to compare the results of a classi-
fier with two different subsets of features. We performed that
by comparing the F-scores of the best classifier with two con-
ditions: the first one using the best set of features obtained via
feature selection, and the second one using non related features,
which belong to the set of non-selected features that are sup-
posed to have no effect on the ROIs. We obtained very low
p-values. Finally, we discuss the obtained dependencies be-
tween behavior and the brain activity. They are the output of
the combination between feature selection and prediction, by
selecting, for each ROI, the smallest subset of features yielding
the prediction scores. These dependencies can be divided into
two categories:

(i) Existing dependencies: our results confirm existing hy-
pothesis related to MC and FG areas. For left and right MC,
only the speech activity of the participant is selected for both
human-human and human-robot interactions. For left and right
FG, the selected features are: variables characterizing where the
participant is looking (face, eye or mouth), head movements,
facial expressions of the interlocutor, and participant’s saccades
and eyes movements speed.

(ii) New dependencies: for left and right STS areas, in ad-
dition to existing hypothesis which include speech perception,
we found three modalities involved in perception. The first one
includes linguistic features of the interlocutor: speech activity,
reaction time, lexical richness, sentiments (polarity and subjec-
tivity). The second one includes facial features of the interlocu-
tor: head movements, and facial expressions. The third modal-
ity includes a binary variable that represents the existence or not
of the participant’s saccades.

6. Conclusion
In this paper, we developed a framework for identifying causal
relationships between brain activity and behavioral features
for bidirectional non-controlled conversations. Evaluations are
made on ROIs involved in speech perception and production,
and face perception. The results show that the obtained pre-
dictions are significantly better than those obtained with the
baseline model, and the obtained dependencies confirm hypoth-
esis about the relationship between behaviors and the functional
brain areas. Importantly, new dependencies are found for the
STS area.
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