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Abstract

In this paper, some aspects of the physical mechanisms involved in strain-induced

crystallization (SIC) in cross-linked natural rubber networks are discussed. The theory

of SIC as developed by Flory is considered within a somehow innovative perspective,

in analogy to the liquid-gas phase transformation. A simple lever rule is proposed to

relate the crystallinity index to the local and global draw ratios. Equilibrium proper-

ties are considered first. Some simple experiments are discussed within this framework

in order to enlighten some fundamental aspects of SIC. As the order parameter for SIC

is the draw ratio of the amorphous phase, the importance of directly measuring this

parameter is emphasized. Special emphasis is put on the relaxation of the remaining

amorphous fraction that accompanies SIC. The question of crystallization kinetics un-

derlies most aspects of SIC. We show that the actual time-dependence of the crystalline

content may be related to the mechanism of strain relaxation in a quite simple manner,

using the lever rule mentionned above. Crystallization kinetics is also fundamental to

explain the hysteretic behavior observed in dynamical conditions. Similarities and dif-

ferences with static SIC are discussed. We transpose the classical theory of nucleation

to the case of SIC and we discuss the kinetics within this framework.

1 Introduction

Strain-induced crystallization (SIC) in natural rubber (NR) has been reported ninety years

ago1 and the underlying physical mechanism was identified by Flory.2 In view of the high

applicative importance of this material, it has been extensively studied since then.3–12 In

particular, in-situ, real-time X-ray diffraction experiments have been developped in the last

decade or so.13,14

Other theories have been proposed since the seminal work by Flory.15–20 While their

predictions can be quantitatively different, they are generally based on quite similar phys-

ical ideas. Other approaches based on continuum mechanic approaches have been pro-
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posed.21–23 More recently, field theories treated in the Landau-Ginzburg formalism have

been proposed.24,25 In Laghmach 2015,24 the authors introduce an interfacial energy be-

tween the amorphous and crystalline phase (as in any classical nucleation theory) which is

not constant but depends exponentially on the crystal size, in order to take into account the

accumulation of topological constraints (crosslinks and entanglements) near crystal surfaces

as crystals grow further. This prevents crystal growth beyond a typical size related to the

density of topological constraints.

In this paper, we shall discuss some aspects of the physical mechanisms involved in

SIC within a general thermodynamic point of view. In previous theoretical works, various

assumptions on the detailed structure of the crystalline phase, as well as on the chain statis-

tics and conformations, were made.2,15–17 While considering such details is certainly needed

in order to obtain fully quantitative predictions, we show that the general framework of

phase transformations considered here provides a semi-quantitative description of a bunch

of observations. In fact, the profound analogy of the theory of SIC developed by Flory

with e.g. the liquid-gas phase transformation of a substance, as implicitly noted already by

Miyamoto et al.,7 is emphasized. We believe it grasps the essential driving mechanisms at

play. Particular emphasis will be put on the relaxation of the remaining amorphous frac-

tion that accompanies SIC. Indeed, this phenomenon is likely to be so essential that the

term crystallization-induced strain relaxation might perhaps be preferred to strain-induced

crystallization in order to underline its importance.

The theory developed by Flory deals with thermodynamic equilibrium. However, in

practice, the question of the crystallization kinetics underlies most aspects of SIC. A model

for strain-induced crystallization kinetics based on a diffusion-limited process has been pro-

posed.26,27

We discuss kinetic aspects still within a general thermodynamic framework. Empha-

sizing the underlying physics is essential to understand out-of-equilibrium and dynamical

situations. We emphasize the similarities and differences between temperature-induced and
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strain-induced crystallization. We show that the actual time-dependence of the crystalline

content may be related to the mechanism of strain relaxation in a quite simple manner.

Crystallization kinetics is also fundamental to explain the hysteretic behavior observed in

dynamical conditions. Similarities and differences with static SIC will be stressed.

What follows is restricted to the simple case of uniaxial deformation. Other geometries

may be of interest for practical applications.28–30 The difficulty of their analysis essentially

arises from the higher complexity of the associated strain field, while we claim the physics

involved should remain essentially similar.

The paper is organized as follows. In Section 2 we first present the general thermody-

namical framework which describes SIC at equilibrium. ln Section 3 we then present the

general framework to describe the kinetics of SIC. In Section 4 we illustrate the prediction

of the theory by some selected experimental results from the literature. The simplifications,

limitations and assumptions of the proposed framework are discussed in Section 5.

2 Strain-induced crystallization at equilibrium

Before considering strain-induced crystallization (SIC), it is useful to recall some very basic

thermodynamics of phase transformations of a pure substance, as we claim SIC can be

described within this framework, without considering at first detailed structural features of

the crystalline phase. For practical illustration and for the sake of simplicity we consider the

liquid-gas transition of a pure substance.31

2.1 General thermodynamics of the liquid-gas transition

The Gibbs free energy per molecule of a pure substance is a function G(c, P, T ) of the pressure

P , temperature T and an intensive variable c, defined here as the number density c = 1/V ,

where V is the volume available per molecule. The variation dG = −SdT + V dP is zero for

constant T and P , which insures that T and P are uniform at equilibrium.
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In some range of T and P values, G considered as a function of c (at fixed T and P )

has two minima which give the equilibrium values cL and cG of c in the liquid (subscript

L) and gas (subscript G) phases. cG(T, P ) and cL(T, P ) (or equivalently P (VG, T ) and

P (VL, T )) are the constitutive equations and G(cG(T, P ), P, T ) and G(cL(T, P ), P, T ) the

chemical potentials µG(T, P ) and µL(T, P ) of the gas and liquid phases respectively. For

a given P value, the temperature Tc(P ) at which µG = µL is the equilibrium liquefaction

temperature at pressure P . It obeys the standard (P -dependent) relationship Tc = Q/∆Sf

in which Q = ∆Hf is the enthalpy of the transition. The curve Tc(P ) (or equivalently Pc(T ))

defines the (P, T ) phase diagram.

A (P, V, T ) phase diagram can be drawn from the constitutive equations P (VG, T ) and

P (VL, T ). A standard P (V ) isotherm (Clapeyron-Clausius) diagram is schematized in Figure

1. When the volume per molecule V is decreased starting from the gas phase, the system at

equilibrium at temperature T follows the D −→ C curve in gas phase until P reaches the

value Pc(T ), then the liquid-gas C −→ B coexistence plateau, then the B −→ A curve in

the liquid phase.

D
Pc(T)

A

Figure 1: An equilibrium isotherm (blue curve) in the schematic P (V ) phase diagram for
liquid gas transformation.

At pressure Pc(T ), any change of the volume of the system induces a change of the liquid

fraction, meaning that phase transformation is induced by volume variation. If, starting from

point C (pure gas), the volume is decreased down to V ′, or equivalently the gas pressure
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is increased to point C’, the new equilibrium state will be point C”, at pressure Pc(T ) and

molar liquid fraction ϕL given by the lever rule ϕL = (VG − V ′)/(VG − VL).

2.2 Flory’s theory of equilibrium strain-induced crystallization

Figure 2 illustrates the different steps considered for the calculation of the thermodynami-

cal changes occurring during SIC in Flory’s theory. The behavior of the whole material is

obtained by summing up the contributions of all chains (as schematized in Figure 2). As

implicitly recognized by Miyamoto et al.,7 this description has in fact deep analogy with the

liquid-gas transition of a pure liquid. Working out this analogy enables recovering Flory’s

main conclusions in a simple way. Flory’s theory essentially relies on the following assump-

tions for chain conformations: (1) Chains within crystallites are perfectly oriented along the

stretching axis and chain statistics in directions perpendicular to the stretching axis are not

affected by crystallization, apart perhaps from the shortening of the amorphous sub-chain;

(2) Chains do not re-enter a crystallite by folding; (3) Chain elongation in the amorphous

phase remains moderate so that Gaussian statistics apply. The possibility of chain folding

and extension to non-Gaussian statistics have been considered by other authors.16 In a re-

cent work the authors consider the additional loss of entropy associated to the constraint

that some points in the middle of a chain are fixed at crystal surfaces.32 This effect would

however induce an increase of the stress at onset of SIC, that is not observed.

In the following a one-dimensional simple model, which fully parallels the gas-liquid

transition, is outlined. The above hypotheses are implicit in this thermodynamic model.

No detailed description of the crystal shape and structure is needed at this stage. Under

uniaxial tensile strain, the variation of the energy is dU = TdS + σdλ. The first term

dQ = TdS is the heat variation, the second term is the work provided by the stress σ

when the stretching ratio λ = L/L0 varies from λ to λ + dλ. The term PdV related to the

work of hydrostatic pressure is neglected, assuming that volume variation at crystallization

is neglected (then it does not matter to consider the energy U instead of the enthalpy H).
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Figure 2: Schematics of the crystallization process in Flory’s theory. Crystallizing part of a
extended chain relaxes the extension degree of the remaining amorphous part. This is the
driving force of strain-induced crystallization.

Also, as the considered problem is one-dimensional, the conserved quantity should be the

tensile force, i.e. the engineering stress. Accordingly, in what follows, we shall use the

relationship between the engineering stress and the draw ratio as the constitutive equation

of the amorphous fraction. As proposed by Miyamoto et al,7 the appropriate thermodynamic

potential to consider for uniaxial elongation is (per unit volume of polymer):

Ω = U − TS − σλ (1)

The variation dΩ = −SdT − λdσ is zero for constant T and σ, which insures that the tem-

perature T and stress σ (and of course implicitly the hydrostatic pressure) are the intensive

variables which must be uniform within each phase at equilibrium. The generalized thermo-

dynamic potential is a function ΩN(y, σ, T ), where y is an intensive variable, the so-called

”order parameter”, which should discriminate the different phases, in analogy with the vol-

ume per molecule in the liquid-gas transition. Subscript N indicates that, for a crosslinked

system (an elastomer), there is a dependence on the average number N of statistical segments
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between crosslinks and/or entanglements, related to the number density of elastic chains ν

(for a tetrafunctional network, this is twice the crosslink density) by ν ≈ 1/Na3, where a3

is the volume per statistical segment.

The draw ratio λ is the simplest, natural choice for the order parameter y. At the scale

of a single chain, the ”natural” average length of a chain along the stretching direction in

the amorphous (random coil) configuration may be defined by 〈z2〉0
1/2

= a(N/3)1/2. In a

hypothetical fully crystalline state (subscript c), the chain would be fully stretched along the

stretching direction: 〈z2〉c
1/2

= aN , which would correspond to an effective elongation ratio

λc =
〈z2〉c

1/2

〈z2〉0
1/2

= (3N)1/2 (2)

The parameter λc shall play a key role in what follows. As N >> 1, λc should be significantly

larger than one while, according to hypothesis (3) above, one should assume the elongation

ratio of the amorphous phase λa << (3N)1/2.

In some range of T and σ values, ΩN(λ, σ, T ) has two minima which define the potentials

Ωc and Ωa of the crystalline and amorphous phases, respectively. Within this range, for

each value of σ, there is a temperature Tm(σ), or equivalently a value σeq(T ) for a given

temperature T , such that Ωc = Ωa. The (σ, T ) phase diagram is given by the way in which

Tm(σ) varies as a function of σ, or equivalently, σeq(T ) varies as a function of T . Then,

the locations λc(σ) and λa(σ) of the minima of ΩN(λ, σ, T ) for each value of T are the

equilibrium constitutive equations of the coexisting phases. The λ(σ), or equivalently σ(λ),

diagram is equivalent to the liquid-gas Clapeyron-Clausius diagram. σeq(T ) defines the stress

at equilibrium melting at temperature T . Equivalently, the corresponding draw ratio λmelt

in the amorphous phase is the draw ratio at equilibrium melting at T .

An explicit expression for the thermodynamic potential ΩN(λ, σ, T ) is not known a priori.

In the amorphous phase, the thermodynamic potential (per unit volume) is given by rubber

elasticity theory, which, in its simplest form, for a tetrafunctional, affine network , may be
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written:33,34

Ωa =
kBTν

2

(
λ2 + 2λ−1 − 3

)
− σλ (3)

The reference Ωa = 0 was taken in the relaxed state. Using the constitutive equation of the

amorphous (elastomeric) phase33,34

σ = kBTν
(
λ− λ−2

)
(4)

Ωa can be expressed as a function of λ:

Ωa = −kBTν
2

(
λ2 − 4λ−1 + 3

)
(5)

By inverting Equation (4), λ may in principle be expressed as a function of the stress σ

and Ωa in Equation (3) may be expressed as a function of σ. Assuming λ3 >> 1 at SIC

onset, the linear approximation σ ≈ kBTνλ can be used in Equation (4) and an approximate

expression for Ωa as a function of σ in the vicinity of SIC onset is then

Ωa ≈ −
kBTν

2

(
σ2

(kBTν)2
+ 3

)
= − kBT

2Na3

(
(Na3)2σ2

(kBT )2
+ 3

)
(6)

The constitutive law Equation (3) corresponds to the simplest case of an incompressible,

hyperelastic (Neo-Hookean) material.

In the crystalline phase, the thermodynamic potential may be written in the standard

form (still refered to the relaxed state):

Ωc = −Q
(
T ∗m − T
T ∗m

)
− σλc (7)

where Q is the enthalpy of melting per unit volume, T ∗m the melting temperature in the

relaxed state, and T > T ∗m. Note that the entropy of the crystalline phase, which is not

strictly zero due to some conformational disorder, is implicitly taken into account in Ωc.
35
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The thermodynamic potentials Ωc(σ, T ) and Ωa(σ, T ), as well as the curve λmelt(T ) re-

sulting from the equilibrium condition Ωc = Ωa, are schematized in Figure 3.

λ

Temperature   [ K ]

potential  [ Jm
-3 ]

Ωc

Ωa

CC'

Figure 3: The thermodynamic potentials Ωc(λ, T ) and Ωa(λ, T ) per unit volume, computed
from equations (3) and (7), with N = 40, Q = 4.7 kJ/mol and T ∗m = 250 K. λ is the
stretching ratio. The thick black curve corresponds to the curve λmelt(T ) resulting from the
equilibrium condition Ωc = Ωa (see Equation 14). Point C corresponds to the stretching
ratio λmelt at equilibrium melting at temperature T . Point C’ corresponds to a metastable,
overstretched system (see Section 3.2).

In the crystalline phase, the constitutive equation is of the form ∆σ = Gc∆λ where Gc

is the Young’s modulus of the crystalline phase. Gc is a decreasing function of temperature

and is of order 109 Pa, much higher than the modulus of the amorphous phase, of order 0.5

MPa typically.

σ(λ) isotherms (that is, a Clapeyron-Clausius diagram) can be established on this basis,

as schematized in Figure 4. Starting from an amorphous system (point D in Figure 4), the

system first follows path D −→ C along the constitutive equation of the amorphous phase as
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the engineering stress is progressively increased. The system enters the coexistence plateau

at point C, which corresponds to the equilibrium value σeq(T ). For a given value of the

macroscopic stretching ratio λ, the equilibrium crystalline fraction χ is given by the lever

rule:

χ =
λ− λa
λc − λa

(8)

C'

C1

C''

st
re

ss
 

C

draw ratio λ

am
or

ph
ou

s

crystal

λcλ = λmelt + Δλ  λonset

Δλ

λmelt

Δσ

σeq(T )

D

Figure 4: σ(λ) ’Clapeyron-Clausius’ diagram in a uniaxially stretched NR elastomer. The
blue curve is an equilibrium isotherm. σeq(T ) is the stress at amorphous/crystal coexistence
at temperature T . When the amorphous material (stretching ratio λmelt, point C) is over-
stretched up to λ = λmelt + ∆λ (C to C’), it relaxes from point C’ down to C”. At C”,
the stretching ratio of the amorphous phase is λmelt and the crystallinity index is given by
the lever rule Equation (8) with λa = λmelt. However, due to kinetic limitation, relaxation
within a limited amount of time reaches point C1 (instead of C”), with the amorphous phase
strained to a value λonset > λmelt and the crystallinity shall be given by the lever rule on
the red plateau with λa = λonset. On stretching at a finite rate, crystallization starts at
λonset > λmelt.

This lever rule is at the core of the model and plays a key role in what follows. It is

simply based on the geometrical conservation of the overall sample length throughout the

crystallization process. It thus applies both to equilibrium and out-of-equilibrium situations.

It has been demonstrated experimentally by a series of careful measurements of the draw
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ratio of the amorphous phase as SIC proceeds, as will be discussed in Section 4.36,37 Any

change of the macroscopic elongation λ of the sample induces a change of the crystalline

fraction. In that sense, it may be said that the phase transformation is induced by the

variation in stretching ratio, or equivalently, that the driving force for crystallization is over-

stretching of the amorphous phase. The decrease of stress associated to crystallization (from

point C’ down to the equilibrium point C” in Figure 4) can be computed from equation (8).

Rewriting Equation (8) as:

λa =
λ− χλc
1− χ

(9)

approximating σ ≈ kBTνλa and using equation (2) gives:

σ ≈ kBTν

1− χ
(
λ− χ(3N)1/2

)
(10)

Equation (10) is in fact very similar to Flory’s formula (within the same level of approx-

imation 1/λ2 << λ):

σ ≈ kBTν

1− χ

(
λ− χ

(
6N

π

)1/2
)

(11)

with λc = (3N)1/2 instead of (6N/π)1/2 in the original Flory’s work.

The dependence of the equilibrium melting temperature Tm(λ) on λ can easily be deduced

as well. At equilibrium melting, the potentials Ωc and Ωa are equal, which gives directly

the melting temperature as a function of the engineering stress σ and melting enthalpy Q

(assumed to be independent of T and λ). Combining equations (3) and (7) gives:

1

T ∗m
− 1

Tm(λ)
=

R

NQ

[
λλc −

λ2

2
+

2

λ
− λc
λ2
− 3

2

]
(12)

where R is the gas constant. Considering that λc = (3N)1/2 and restricting to most

significant factors at high elongation, equation (12) is again quite similar to the original
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Flory’s equation:

1

T ∗m
− 1

Tm(λ)
=
R

Q

[
λ

(
6

πN

)1/2

− 1

N

(
λ2

2
+

1

λ

)]
(13)

Note that, in contrast to the original Flory’s equation (13), equation (12) can be extrap-

olated to λ = 1.

Equivalently, Eq. (12) can be used to express the value λmelt(T ) at a given temperature

T :

1

T ∗m
− 1

T
=

R

NQ

[
λmeltλc −

λmelt
2

2
+

2

λmelt

− λc

λmelt
2 −

3

2

]
(14)

The energy balance along the path from C up to C’ then to C” in Figure 4 can be

delineated as follows:

- from C to C’: according to entropic rubber elasticity, the work provided to stretch the

sample is transformed into entropy decrease, i.e. it is transferred into heat generated into the

sample, while internal energy is not affected. This statement, however, would be correct for

a fully entropic system only. In practice, there generally exists a small enthalpic change upon

stretching (about 10% of the stored mechanical work).34 For an adiabatic process, sample

temperature increases. Recent quantitative calorimetric approaches have been proposed to

measure SIC based on this energy balance.38,39

- from C’ to C”: two changes occur concomitantly. First, a fraction of the material

crystallizes, which generates further heat in the sample. Second, the strain in the amorphous

part relaxes from λmelt + ∆λ down to λmelt, which increases entropy and thus absorbs heat.

The above description of equilibrium crystallization can be summarized by a 3D (Cla-

peyron-Clausius) diagram as shown in Figure 5. The stress σ as a function of T and λ is

schematized as a surface with three different parts. The first part, below the equilibrium

melting curve (thick black curve) corresponds to the hyperelastic constitutive law of the

amorphous phase, the second part corresponds to the coexistence plateau and the third part
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to the crystalline phase. As the modulus of the crystal phase is much larger than that of

the amorphous phase, this part of the 3D surface is drawn nearly vertical. Note that the

extension of a DNA molecule as described in40 also corresponds exactly to this model.

self-reinforcement

iso
therm

iso-stress

T  [K]  increases

λ

iso-λ

Figure 5: Three-dimensional σ(λ, T ) (Clapeyron-Clausius) diagram for the equilibrium be-
tween amorphous and crystalline phases in a uniaxially stretched NR elastomer. Figure 4
corresponds to a slice along an isotherm (red curve). Experiments by Miyamoto et al. corre-
spond to iso-stress curves (green horizontal curve).7 Iso-λ curves as a function of temperature
(yellow curve) correspond to equilibrium crystallization curves shown e.g. by Trabelsi et al.6

3 Kinetics

Polymer crystallization in general and specifically SIC is a kinetic phenomenon which can

extend to very long times scales, over orders of magnitude.41,42 Actually in most experimental
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circumstances, measured SIC parameters are driven by kinetic phenomena rather than by

the equilibrium equations. These kinetic aspects of SIC can be put into evidence in various

ways. The first way is to draw samples at various, fixed draw rates, and investigate how

the onset of SIC depends on the draw rate and on temperature (path C to C’ in Figure

4). A second way is to draw samples in a quasi-instantaneous way at various, fixed draw

ratios beyond the SIC onset, and investigate the subsequent time evolution of the crystalline

ratio, as a function of the imposed draw ratio (or more precisely, of the over-stretching) or

of temperature (path C’ to C” in Figure 4).

3.1 Thermal crystallization

In contrast to SIC, the kinetics of temperature-induced crystallization of polymers have been

extensively studied.41,43–45 Some partial basic results are summarized here, as the kinetics

of SIC has a number of features which parallel those of thermally induced crystallization.

The driving force for thermal crystallization is the supercooling ∆T = Tm − T , where Tm

is the equilibrium melting temperature. The kinetics is driven by nucleation and growth

mechanisms.46 Nucleation can be homogeneous or, in most practical cases, heterogeneous,

related to the presence of impurities or heterogeneities acting as nucleation centers.

For a polymer confined in a set of small cells of volume v such as microdroplets47 or

confined within a micro- or nanotemplate,48 nucleation alone is the relevant mechanism. In

this case the evolution of the crystallinity index χ(t) during isothermal crystallization is

described by

χ(t) = 1− exp [−vωt] ≈ vωt (15)

where ω is the nucleation rate per unit volume of amorphous polymer, with vωt << 1.

It was assumed in writing Equation (15) that only one nucleus is formed at random within

each cell, which fills the volume v of the cell very fast compared to the overall crystallization

15



kinetics and stops further growth. It is further assumed that nucleation is unaffected by

the presence of surfaces or interfaces and that the nucleation rate ω is constant throughout

the evolution, i.e. so-called athermal effects are neglected.49 The nucleation rate depends on

temperature and is expressed by the general expression:

ω = ω0 exp

[
− B

kBT

]
(16)

where the nucleation barrier B (the free energy barrier to produce a nucleus of critical

size) is for a cylindrical crystal31

B =
8πγs

2γeTm
2

Q2(∆T )2
(17)

where γs and γe are the side and end crystal surface energies respectively, Tm is the equi-

librium melting temperature and Q is the melting enthalpy.47 A slightly different expression

was proposed by Hoffman to take the temperature variation of Q into account.50

Equations (15) to (17) describe isothermal crystallization. Often crystallization is recorded

during a cooling ramp at a given cooling rate r. Infering an effective time-temperature super-

position principle by relating the evolution of the crystallinity index during a cooling ramp

to isothermal equations above is not straigthforward and relies on several assumptions, such

as the so-called ’additivity’ principle, which states that the rate of crystallization at any

temperature depends only on this temperature and not on prior thermal history.51 In this

case, it follows from Equation 15 that, if the cooling rate r and temperature T change con-

comitantly in such a way that the quantity ω(T )/r remains constant, then a master curve

should in principle be obtained.

The above considerations apply when the crystallinity index remains small, typically

smaller than 0.3, i.e. relatively close to the onset of crystallization. At further stages of

crystallization, impingement must be considered and the equations describing time evolution

become more complex.52
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3.2 Nucleation barrier for SIC

In what follows we shall assume that crystallization is kinetically limited by homogeneous

nucleation, as it was similarly assumed by Candau et al.53 In crosslinked materials such as

Natural Rubber and other elastomers, the fact that nucleation is the limiting kinetic factor

is justified by the small size of crystallites. Growth beyond nanometer sizes is impeded by

the presence of crosslinks. In classical nucleation theory, crystal nucleation occurs within a

metastable (either supercooled or over-stretched) system because creating a nucleus of the

thermodynamically stable (crystal) phase generates an interface which has an energy cost.

At a temperature T , an amorphous NR sample (point C in Figure 6, see also Figures 3 and

4), is instantateously stretched to and maintained at a fixed extension ratio λ corresponding

to the metastable point C’, that is, from σeq(T ) to σeq(T ) + ∆σ (Figure 4) or equivalently

from λmelt to λ = λmelt + ∆λ. It shall then relax towards equilibrium at point C”, λ being

kept fixed. To keep things simple, a cylindrical crystal (height h, radius ξ) is considered. The

variation of free energy ∆H when a crystal is formed includes surface terms and a volume

term:24,31

-15x10
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Figure 6: The thermodynamic potentials Ωa and Ωc as a function of stress σ at T = 293 K
(see also Figure 3. The sample is stretched from the equilibrium melting point C up to point
C’ and the material within a crystalline nucleus then relaxes down to point C”.
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∆H = 2πξhγs + 2πξ2γe − πξ2h∆Ω (18)

The critical nucleation sizes hc and ξc given by the conditions ∂(∆H)/∂ξ = 0 and

∂(∆H)/∂h = 0 are

ξc =
2γs
∆Ω

; hc =
4γe
∆Ω

(19)

The variation of the volume term ∆Ω = Ω(C ′) − Ω(C ′′) > 0 is the work done when

moving the interface. It is estimated to be (see Figure 6):

∆Ω = (Ω(C ′)− Ω(C))− (Ω(C ′′)− Ω(C)) = λc∆σ −
∂Ωa

∂σ
∆σ (20)

where the thermodynamic potential in the amorphous phase is given by equation (3),

with λ given as a function of σ through inverting equation (4). From equation (4) one has

directly ∂Ωa/∂σ ≈ λa, where λa is the instantaneous (time-dependent) draw ratio of the

amorphous phase. Equation (20) above may thus be rewritten:

∆Ω = ∆σ(λc − λa) (21)

which is completely analogous to the equivalent equation for the liquid-gas transition

∆µ = (vG − vL)∆P . Finally the nucleation barrier to crystallize is:

B = ∆H(ξc) =
8πγs

2γe
∆σ2(λc − λa)2

(22)

λa is equal to the imposed λ at t = 0. When considering the factor λc−λa, the difference

between λa and λ should not be important, as λc is significantly larger than λ. The driving

force is the ∆σ2 factor, which depends on the over-stretching parameter ∆λ = λa(t) −

λmelt. Using the approximate constitutive equation ∆σ = kBTν∆λ = kBT∆λ/(Na3), the

nucleation barrier may be equivalently rewritten:
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B =
8πN2a6γs

2γe
(λc − λa)2(kBT )2∆λ2

(23)

which again is analogous to the standard expression for the nucleation barrier.31,47,50

3.3 Kinetic equation for crystallization

In all what follows, it shall be assumed that the lever rule Equation (8) remains valid in out-

of-equilibrium situations, based on the hypothesis that stress relaxation in the amorphous

phase is extremely fast with respect to typical time scales involved in stretching experiments.

SIC experiments can be performed by overstretching the sample to a constant extension

ratio λ and recording the time evolution of the crystallinity index, which is somehow analo-

gous to isothermal crystallization. There is however a notable difference. According to the

lever rule Equation (8), the local over-stretching of the amorphous phase, which provides

the driving force for SIC, relaxes down as SIC proceeds during an experiment at constant

λ, while during isothermal crystallization, the supercooling ∆T stays constant. λa might

in principle relax down to λmelt if true equilibrium would be reached. It follows that the

nucleation rate shall not be constant, contrary to the case of isothermal crystallization. We

neglect so-called athermal effects, meaning that we assume that the nucleation rate depends

on the instantaneous degree of over-stretching only, not on the whole crystallization history.

In a relaxation experiment in which the overall draw ratio λ of the sample is maintained

fixed (dλ/dt = 0), after a time t, the system has reached a crystalline fraction χ(t) and the

stress has relaxed down to a value σ(t) (see point C1 in Figure 4). Accordingly the draw

ratio of the amorphous phase has relaxed from the initial value λ to a value λa(t), related to

χ(t) by the lever rule Equation (8).

Based on Equation (22), the nucleation barrier at time t is:

B(t) =
8πγs

2γe
∆σ2(t)(λc − λa(t))2

(24)
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and the crystallization rate ω per unit volume at time t is given by:

ω = f0 exp

[
−H(t)

kBT

]
(25)

where f0 is the nucleation frequency per unit volume. The kinetic equation for crystal-

lization is then

1

1− χ
dχ

dt
= ω(t) (26)

The nucleation barrier Equation (24) can be rewritten (in kBT units):

B(t)

kBT
=

b0(1− χ)4

(1− χeq)
2 (χeq − χ)2

(27)

in which b0 is the quantity

b0 =
g0

(λc − λmelt)
4 (28)

with g0 the factor

g0 =
8πγs

2γe
kBTG2

(29)

The quantity ∆σ in equation 24 has been replaced by ∆σ = G∆λ = G(λ−λmelt), where

G is the modulus of the amorphous (elastomer) phase, and the lever rule Eq. (8) was used.

Altogether Equation (26) can then be rewritten as an explicit equation for the kinetic

evolution of χ(t):

1

1− χ
dχ

dt
= f0 exp

[
− b0(1− χ)4

(1− χeq)
2 (χeq − χ)2

]
(30)

The general behavior described by Equation (30) is illustrated in Figures 7 and 8. For

γs ≈ γe ≈ 10−2 N/m, kBT ≈ 4 × 10−21 J (T = 20◦C), G ≈ 0.5 × 106 Pa, λc ≈ 2.6 and

20



λmelt = 14.8, the factor b0 is of order a few 10−1.
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Figure 7: The crystallization kinetics curves χ/χeq obtained by solving Equation (30) at
different stretching ratios λ as indicated in the legend and two different sets of parameters:
Blue curves: prefactor f0 = 61; factor g0 = 103, corresponding to an initial energy barrier
b0 = 0.0456; Green curves: prefactor f0 = 108; factor g0 = 8×103, energy barrier b0 = 0.365.

The barrier height b0 drives the sensitivity of the curves to the applied stretching ratio λ.

The higher b0, the more pronounced is the dependence of the curves and of the crystallization

onset on λ. The sets of curves shown in Figure 7 were obtained with g0 = 103 and g0 = 8×103,

corresponding respectively to surface energies γ ≈ 3 × 10−3 and γ ≈ 10−2 N.m−1 (in the

hypothesis γe ≈ γs ≈ γ).

Would the nucleation barrier B, or equivalently the rate ω, be constant along the kinetic

evolution, then a λ-vs-time superposition principle could be applied to the set of curves shown

in Figure 7. It would be possible to change both the time scale and the value of λ in such

a way that the product ωt remains constant, which would lead to a master curve for χ(t).

The evolution of each set of curves is however more complex and λ-vs-time superposition

does not work in an exact way. However, it may be inferred from e.g. the set of green

curves in Figure 7, that such superposition for the χ/χeq curves may be approximately true.
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Figure 8: The nucleation barrier B(t), Equation (24) or (27) as a function of time at different
stretching ratios λ as indicated in the legend and two different sets of parameters: blue curves:
prefactor vf0 = 61; factor g0 = 1000. green curves: prefactor vf0 = 108; factor g0 = 8000
(sames sets of parameters as for Figure 7).

Increasing λ, that is increasing the overstretching, decreases the nucleation barrier and thus

accelerates the kinetics. Then it may be possible to shift the time scale depending on λ in

such a way that the kinetics remains roughly the same. Such an heuristic master curve was

recently established in.37 This point will be discusses further in Section 4.2.

4 Comparison to experimental results

Numerous experimental studies of SIC in NR have been published. Here we shall select

some specific results which directly illustrate the above considerations. Several types of

experiments can be discussed. The first type is related to the evolution of the melting

temperature as a function of the stretching ratio or the applied stress, according to Equations

(12) or (14). These data involve the chain length N , the maximum (crystalline) extension

ratio λc and the melting enthalpy Q as material parameters. The second type is related to

the lever rule, Equation (8), which contains essentially one single adjustable parameter λc.
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Kinetic evolutions may finally be discussed and, besides λc, involve also crystal-amorphous

surface energies γs and γe and the modulus G (or more generally the parameters of the

hyperelastic constitutive equation in the amorphous phase).

The evolution of the melting temperature as a function of the stretching ratio or the

applied stress has been measured by several authors.6,7 The data from Miyamoto et al7

are reproduced in Figure 9, together with the fitting curve obtained from Equation (12)

combined with the constitutive equation σ = (RT/vmN)(λ−λ−2), using the values N = 70,

Q = 4.7 kJ/mol, λc = 14.8 and vm = 6.7× 10−5 m3/mol (which corresponds roughly to one

monomer). This fitting curve is similar to that shown by Miyamoto et al.7 Trabelsi et al.6

show such curves as well with similar values of the fitting parameters.
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Figure 9: The melting temperature as a function of the applied nominal stress. Bullets are
data reproduced from Miyamoto et al,7 the curve is a fit with equation (12) combined with
σ = (RT/vmN)(λ − λ−2). The following parameter values were used: N = 70, Q = 4.7
kJ/mol, λc = 14.8 and vm = 6.7× 10−5 m3/mol.

The melting temperature extrapolated at zero stress T ∗m reported in Figure 9 as well as

by other authors is about 260 K.6,7 This temperature should be clearly distinguished from

the equilibrium melting temperature of NR crystallized in the quiescent (relaxed) state and

extrapolated to infinite lamellar thickness, which is commonly denoted T 0
m. Indeed, crystal
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morphologies are likely to be very different in either case.54 In the quiescent state, NR forms

folded crystals. T 0
m is determined by extrapolation using the Gibbs-Thomson equation, which

contains the fold-surface energy as a parameter.55 The T 0
m value determined in this way is

36◦C.55 A more recent estimate is about 60◦C.56 This quite large difference between T ∗m

and T 0
m is likely to come from the fact that strain-induced crystals in crosslinked materials

remain of nanometric sizes and that the fold energy does not contribute in a significant way.

Indeed, the surface energies used here, of order 5× 10−3 J.m−2, are significantly lower than

the fold-energy value 46× 10−3 J.m−2 proposed in ref.56

Data involving the lever rule and the kinetics are discussed in the next sections.

4.1 The lever rule

When considering the evolution of the stress as a function of the crystallinity, the presence

of crystallites induces a dramatic self-reinforcement effect in the material. This has been

extensively documented and tentatively modelled by numerous authors.18,23,57,58 During a

stretching cycle, the stress first decreases at the onset of SIC relative to the stress which

would be measured in a non crystallizing sample, in qualitative agreement with Equation

(10). However, this decrease is quite limited, as the stress rises abruptly quite soon after

SIC onset, due to the strong self-reinforcing effect of crystallites acting as solid fillers in the

material.

The approach proposed here circumvent this problem by considering the relationship be-

tween the crystallinity index and the local strain in the amorphous phase λa, instead of the

stress. λa was used here as the order parameter of the SIC phase transformation, character-

ized by the fact that it takes two distinct values in the two coexisting crystal and amorphous

phases. This relationship is described by the lever rule, Equation (8), which plays a cen-

tral role in the theory. Equation (12) or equivalently (14), which predicts the relationship

between the equilibrium melting temperature and the draw ratio, is a direct consequence

of this lever rule, as well as Equation (10), which predicts the variation of the stress as a
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function of the crystallinity. Equation (10), however, disregards the self-reinforcement effect

mentionned above. These variations have been semi-quantitatively verified by a number of

authors.

Another direct observation of the lever rule was given by Miyamoto et al. who performed

stress-controlled experiments over a range of temperatures.7 They indeed obtained curves

qualitatively similar to the iso-stress curve shown in green in Figure 5. However, one central

message of this work is that the order parameter λa can be directly measured in real time

together with the crystallinity index by in-situ X-ray diffraction experiments.36,37,59 Such

measurements thus provide direct access to the thermodynamic parameter suitable to de-

scribe the transition. Note that λa may also be measured by NMR, though in a somehow

more indirect way.60

In Section 3.3 it was assumed that the lever rule remains valid during time evolution. This

statement was illustrated in two ways in reference.37 First, during a cycle performed at a given

drawing rate, the draw ratio λa can be used to predict the crystallinity χ by using Equation

(8), with only one adjustable parameter, namely the extension ratio of the crystalline phase

λc. This prediction can then be compared to the measured χ. Good agreement was found

nearly along the whole cycles, except perhaps during part of the retraction branch of the

cycles, due to some creep contribution not related to crystallization.

Secondly, this statement is also evidenced by relaxation experiments such as shown in our

recently published work.37 In such experiments an amorphous sample is quasi instantaneously

stretched to a draw ratio λ beyond the onset of SIC. The sample is then maintained at

this fixed λ while both the crystallinity χ(t) and amorphous draw ratio λa(t) are recorded

simultaneously as a function of time. This is illustrated in Figure 10, in which relaxation

data obtained at different values of λ are shown. The quantity 1 − χ(t) (the amorphous

fraction) is plotted as a function of the quantity (λc − λ)/(λc − λa(t)). The line illustrates

the predicted one-to-one relationship between both quantities.
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Figure 10: The amorphous fraction 1−χ(t) as a function of the quantity (λc−λ)/(λc−λa(t))
during relaxation experiements done at various λ values as indicated. The line illustrates
the predicted one-to-one relationship between both quantities according to the lever rule
equation (8). The time scale goes from top right to left along these curves. Data are the
same as in ref.37
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4.2 Crystallization kinetics

Two situations may be discussed. First, as reported by several authors, the SIC onset

depends on the draw rate during a stretching cycle.5,26,37,61,62 Conversely, the stretching

ratio at melting λmelt does not seem to depend signifciantly on the rate.37 Qualitatively both

observations are in full agreement with the general framework presented above.

Assuming, as noted above, that the lever rule Equation (8) remains valid during time-

dependent situations, the following equation is derived:

dλa
dt

=
dλ

dt
− (λc − λa)

dχ

dt
(31)

During a stretching cycle in which dλ/dt is constant, after a short transient regime, the

crystallization rate is fixed by the drawing velocity in such a way that λa remains constant.

This effect has been denoted as strain regulation effect.37 Thus λonset is such that the initial

rate (rate at onset) ω = dχ/dt, which itself depends on λonset, obeys the equation

dλ

dt
= (λc − λonset)ω (32)

From equations (24) and (25) the rate ω is expressed as a function of λonset as:

ω ∼ exp

[
− 8πγs

2γe
kBTG2(λc − λonset)2(λonset − λmelt)2

]
(33)

Values of the λonset values measured during drawing at various strain rates are re-

ported in Figure 11. The data were fitted using combined equations 32 and 33. The val-

ues λc = 14.8 and λmelt = 2.63 were fixed. The obtained adjusted value for the factor

g0 = 8πγs
2γe/(kBTG

2) is 3000, and this value is within the anticipated range, see Section

3.3. The corresponding surface energies are of order 5× 10−3 N.m−1.

The second type of experiment that we shall consider is the follow-up of the kinetics

under a fixed λ value, as already discussed in Section 4.1. While λ is maintained fixed,
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Figure 11: The draw ratio at SIC onset λonset (in abscissa) measured when stretching at a
given strain rate (in ordinate). The data are the same as in ref.37 The curve is a fit using
equations (32) and (33). The values λc = 14.8 and λmelt = 2.63 were fixed and the value
g0 = 3000 was obtained.

both the crystallinity χ(t) and amorphous draw ratio λa(t) are recorded simultaneously as

a function of time.

This is illustrated in Figure 12, in which the quantity χ(t)/χeq (in which χeq is calculated

for each value of λ by using the lever rule χeq = (λ−λmelt)/(λc−λmelt)) is shown as a function

of time for different values of λ. The full curves are obtained by solving equation (30) using

for the factor g0 = 8πγs
2γe/(kBTG

2) the same value 3000 as found previously, without

further adjustment. A good qualitative agreement is obtained. From a quantitative point of

view, the adjustment is not much better than the one proposed e.g. in ref.27 One major point

to emphasize here is the correct order of magnitude of the factors involved in the model.

Basically, besides the prefactor f0 which scales the overall nucleation rate and is related

to chain dynamics, the model contains only one unknown adjustable parameter, namely the

combination γs
2γe in the factor g0 in the nucleation barrier, related to the crystal - amorphous

interfacial energies. Reported values for the interfacial energies for e.g. polyolefins are of
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order 2− 2.5× 10−2 N/m.41 However, the values relevant to SIC cannot be directly inferred

from quiescent thermal crystallization, as crystal morphologies may be completely different in

both cases. As already mentionned above, a fold-energy value 46×10−3 J.m−2 was proposed

in ref.56 As noted above, from the value g0 = 3000, values of order 5× 10−3 are obtained for

surface energies. This value is noticeably smaller than the values mentionned above, but is

realistic.

To take into account the disorder in the system, a distribution of local strain values

should perhaps be considered. This is equivalent to considering a distribution of λmelt values.

Indeed, introducing a log-normal distribution of λmelt centered on the measured, previosuly

considered value λmelt = 2.63, significantly improves the adjustement to experimental data,

as shown by the dashed curves in Figure 12.

It results from the general evolution of the curves shown in Figure 12 that an apparent,

approximate master curve may be drawn by renormalizing the time scale with a λ-dependent

factor. This is in agreement with the basic outcome of the nucleation model that the crystal-

lization rate depends on λ (or more precisely on the overstretching parameter λ− λmelt), as

it was already mentionned in Section 3.3. Such a master curve was recently proposed in.37

The data of Figure 12 are plotted in Figure 13 as a function of a reduced time scale

a(λ)t in which the shift factor a(λ) is determined to optimize the overlap of the different

partial curves. The curve measured at λ = 4.60 was chosen as reference. Experimental data

overlap nearly perfectly, except perhaps for the curve at λ = 5.05. Curves calculated with a

distribution λmelt (dashed curves in Figure 12) are also plotted in Figure 13 using the same

set of shift factors. As explained above, they do not overlap but show the general tendency

that time scales related to different values of λ roughly correspond to each other.

The values of the shift factor a(λ) used to draw figure 13 are reported in Table 1 and

in Figure 14. The strain rate vs λonset data in Figure 11 are also shown again in Figure 14.

The comparision of both sets of data shows that the general relationship between the draw

ratio and the time scale is indeed similar in both types of experiments. Note that the perfect
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Figure 12: The quantity χ(t)/χeq as a function of time for various λ values as indicated. Same
data as in ref.37 Curves correspond to equation (30) using g0 = 8πγs

2γe/(kBTG
2) = 3000 as

previously. Other parameters are f0 = 102, λc = 14.8. A log-normal distribution was used
for λmelt, centered around λmelt = 2.63. Full curves: distribution width 0.005 (very narrow
distribution, full curve in inset); dashed curve: width 0.1 (wide distribution, dashed curve
in inset).
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coincidence of both sets of data on the vertical scale is fortuitous.

An approximate way of analysing the values of the shift factor a(λ) is to compute the

initial nucleation rates corresponding to the imposed λ values. This was done using Equation

(25). The curve in Figure 14 was obtained with the value g0 = 5200 and a distribution for

λmelt of width w = 0.06, still using the same values λc = 14.8 and λmelt = 2.63.

As the crystallization rate is not constant along the time evolution, this is only a rough

approximation of the whole behavior. Parameters used to obtain the curve in Figure 14 are

slightly different from those used previously. However, this analysis once again shows that

the general relationship between the draw ratio and the time scale can be understood on the

basis of the proposed model.

Table 1: The shift factor a(λ) used to construct the master curves in ref.37 λmelt = 2.63.
∆λ is the initially imposed over-stretching value.

λ ∆λ a(λ)
3.70 1.07 6× 10−6

4.15 1.52 3.26× 10−3

4.60 1.97 1
5.05 2.42 27.16

5 Discussion

The theory presented in Section 2.2 captures the essential features and physical mechanisms

of SIC in a simple way. One key feature in the model is the lever rule as expressed in

Equation (8). Special emphasis was put on the importance of considering and elaborating

strategies to directly measuring the local draw ratio of the amorphous phase λa, which

was introduced as the order parameter of SIC. Indeed, it has been shown experiementally

that λa indeed exhibits a plateau during SIC. Conversely the measured stress under SIC

does not show a plateau. After a relatively tiny downward inflexion, it exhibits strong self-

reinforcement. This is due to the reinforcement effect brought by crystallites acting as rigid

reinforcing fillers. Describing this reinforcing effect in a quantitative way is a matter of
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Figure 14: Blue squares: the shift factor a(λ) used to construct the master curves in ref.37

Symbols are from experimental data, the curve was calculated from Equation (25) with
parameters λmelt = 2.63, λc = 14.8, g0 = 5200 and width of the λmelt distribution w = 0.06
. Data for λonset vs strain rate (same data as in Figure 11) are also reported for comparison
(red circles).
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involved modelling, which was not addressed in the present work.58

As regards the analysis of kinetic phenomena, it was assumed that SIC is entirely driven

by nucleation, and that the contribution of crystal growth is negligible. It follows that one

key parameter is the height of the nucleation barrier, as expressed e.g. in Equation (24). This

nucleation barrier contains the modulus of the amorphous phase, which is can be measured

directly, and contains a factor related to the crystal-amorphous interfacial energies. This is

the only unknown factor in the expression of the nucleation barrier. One main difference

with commonly considered thermal crystallization is that the crystallization rate evolves

along the crystallization process due to relaxation of the driving force. Recently obtained

data on the crystallization kinetics were compared to the predictions of the model. It was

first demonstrated that the general trend of the crystallization kinetics can be reproduced

in a satisfactory way, with perfectly realistic values of the nucleation barrier. Nevertheless,

the fact that perfect superposition is observed experimentally when drawing a master curve

from the data in Figure 12 (see Figure 13), while this is not what is predicted, is intriguing.

The model is however clearly oversimplified in several aspects and some important ques-

tions remain elusive. First, the model is one-dimensional. As a first approach, this is justified

by the experimental observation that crystals generated during SIC are strongly oriented,

with chains along the tensile direction, as reported in numerous references.

A more basic question is the following one. In contrast to a simple substance, crys-

tallization is never complete in a polymer, and this of course remains true for SIC. Then,

which phase equilibrium should actually be considered? Should equilibrium between the

amorphous and crystalline phases be considered, as was implicitly assumed in this work, or

between a fully amorphous and a semi-crystalline phase be assumed, as suggested by the

observation of an inverse striction phenomenon on retraction.63

It results from the model that the critical nucleation sizes (Equation (19)) shall evolve

during relaxation experiments. The critical nucleation size ξc is estimated to be ξc ≈ 4

nm at the beginning of relaxation, assuming ∆σ ≈ 1 MPa. It then increases progressively
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as relaxation proceeds, as noted above. This is comparable, though a little bit smaller,

than crystal dimensions measured in comparable conditions, which amounts to 5 to 20 nm,

depending on the considered direction. Actually this comparison is a strong argument to state

that crystallization is mostly driven by nucleation. Note also that the heterogeneity in the

crystallite population has been proposed to be an important factor to explain the peculiar

features of SIC.53,64 Besides, in crosslinked Natural Rubber (NR) elastomers as commonly

studied in the literature, the assumption that SIC is entirely driven by nucleation and that

the contribution of crystal growth is negligible may be further justified as the presence of

crosslinks must inhibit crystal growth. The dependence of the overall crystallization kinetics

on the crosslink density shall be investigated in a forthcoming work.

Discrepancies between the model and experimental observations may come from the

contribution of heterogeneous nucleation, as crosslinked NR usually contain additives which

may act as nucleating agents, such as e.g. sulfur micrometric aggregates, ZnO particles

and stearic acid crystals. Heterogeneous nucleating agents may have an impact at small

overstretching values. Indeed, crystallization kinetics seems to be faster than predicted at

low overstretching, i.e. low λ values (see Figure 12). A distribution of interfacial energies

γ should perhaps be considered to take this into account. The approach proposed here

may then allow elucidating the effect of filler particles in reinforced NR materials. In the

presence of carbon black (CB), a downward shift of the draw ration at SIC onset is generally

observed.60,65 This has been interpreted as mostly due to a nucleating effect of fillers60 or

alternatively to local strain amplification.65 The relative contributions of either effect in

various circumstances or measuring conditions remain to be fully clarified. A distribution of

λmelt was introduced, based on the idea that the local disorder in the material in terms of

local strain should be considered. Using a single log-normal distribution should be considered

as a preliminary attempt, which illustrates the relevance of the model. Using Tikhonov

regularization techniques might be used to access experimentally determined distributions of

local strains.
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6 Conclusion

We have given a unified picture of Strain Induced Crystallization (SIC) in Natural Rubber

in which the basic physical ingredient of the seminal theory by Flory, that is, the entropic

relaxation of amorphous chains concomitant to SIC, is implemented in the form of a simple

phase equilibrium, similar to e.g. liquid-gas equilibrium of a pure substance. The order

parameter describing this phase transformation is the local draw ratio. This emphasizes the

key importance of directly measuring this quantity, which was proposed recently.36,37,59 At

a given temperature (above the melting temperature in the relaxed state), there is a critical

value λmelt at which crystalline and amorphous phases coexist at equilibrium. It follows

from the model that the driving force for strain induced crystallization crystallization is the

overstretching parameter ∆λ = λ− λmelt.

The evolution of the crystallinity index as a function of the strain (equivalently, of the

over-stretching) when stretching a sample at a constant drawing rate is conceptually anal-

ogous to the evolution of the crystallinity index as a function of temperature (equivalently,

of the undercooling) when cooling a sample at a fixed cooling rate. However, the evolu-

tion of the crystallintiy index in a sample maintained at a fixed macroscopic over-stretching

parameter is not exactly analogous to isothermal crystallization, because the draw ratio

(or over-stretching) of the amorphous phase, which determines the driving force, relaxes as

crystallinity increases, whereas in isothermal crystallization, temperature is constant.

A kinetic equation for the crystallization rate was proposed based on standard homoge-

neous nucleation theory. The dependence of the thermodynamic barrier for nucleation on the

overstretching parameter ∆λ was inferred. The results predicted from the model compare

well to experiemental data with realistic values of the nucleation barrier.
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