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Promoting RES

* Electricity generation from renewable energy sources (RES) needs to
increase significantly to achieve the long-term objectives of the European
Community strategy, which called for fully decarbonized power generation
by 2050. This means that more than 80% of the European electricity will be
produced by RES.

* The growth of the renewables share in the existing grids will require a more
flexible and smarter management of the electric power system.

How to promote the penetration of the environmentally-friendly energy
sources?

* Develop a prediction model to forecast the RES availability based on
possible scenarios of weather conditions.
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Our challenge

Translate daily time series of climate data (air temperature and precipitation)
and (residual) electricity demand
into daily time series of hydropower generation capacity factor at country level
for all Europe.

Difficulties:

* |tis necessary to capture the complex relationship between the availability
of water and the generation of electricity, by considering the coexistence of
several spatial and temporal scale conditions.

* Run-of-river hydropower (HRoR) is limited by the flow of the river in which
the power plants are located. Moreover, the water flow is a nonlinear
function of the climate variables and the physical characteristics of the river
basins.

e The impact of the weather variables on the runoff may occur with a
certain delay, whose determination depends on physically based
phenomena (e.g., melting snow—local temperature). IS



Our challenge

Translate daily time series of climate data (air temperature and precipitation)
and (residual) electricity demand
into daily time series of hydropower generation capacity factor at country level
for all Europe.

Traditional methods:

e Hydrological models:
* Require several inputs (e.g., climate data and physiographic information of the power
plants locations).
* For every location of interest, when all these data are available and the model parameters
are calibrated, hydrological models accurately represent the rainfall-runoff relationship.
* Finally, the transformation from the river runoff to hydropower production requires
additional information about the power plants under investigation (e.g., hydraulic head.).

* Long term calendar mean:
* with the multiplication of extreme weather events occurring in the last years and predicted
in many climate future scenarios, this approach becomes too conservative and risks to mask

the climate change effects.




Our proposal

We want to build a model at the aim of providing an overview of the change in
the European hydroelectricity generation due to different climate scenarios.

We are not interested in providing detailed results in terms of local
hydropower production, but we wish to have information about the variability
of the hydropower production at country level and European regional level
subject to future climate changes.
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Machine Learning for EU

hydropower CF prediction
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We tested the performance of several ML algorithms:

* Random Forest

* Boosted Decision Trees
* Linear Regression

e Support Vector Machine
* Hybrid algorithm

2015 | 2016 | 2017 | 2018 | 2019 Training set

Testing set
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Choice of the ML algorithm

* Random Forest showed to have the best performance in all the evaluative criteria
(R, nMAE, nMAPE) for more that 60% of the EU countries, of which 90% are the
countries mostly contributing to the European hydropower generation.
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Seasonal forecasts

Can we really provided 6 month ahead daily predictions?



October 2019 was one
of the ten most rainy
October months after
1959 (+40%).
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Conclusions

A greater integration of RES in a smart territory can be promoted by
the definition of prediction models able to take into account the
climate variability

Machine learning lends itself well for this goal.

ML models are easy to be built and require few physical input
parameters.

ML models mimic the seasonal behavior of the hydropower
production CF. They are still conservative and the historical dataset
is too short (from 2015 to current days) to catch extreme events.
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Thank you! Merci !

Email: valentina.sessa@mines-paristech.fr



