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Abstract

We provide an economically sound micro-foundation to linear price impact models, by deriving
them as the equilibrium of a suitable agent-based system. Our setup generalizes the well-known
Kyle model, by dropping the assumption of a terminal time at which fundamental information is
revealed so to describe a stationary market, while retaining agents’ rationality and asymmetric in-
formation. We investigate the stationary equilibrium for arbitrary Gaussian noise trades and funda-
mental information, and show that the setup is compatible with universal price diffusion at small
times, and non-universal mean-reversion at time scales at which fluctuations in fundamentals de-
cay. Our model provides a testable relation between volatility of prices, magnitude of fluctuations
in fundamentals and level of volume traded in the market.
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1 Introduction

Financial markets are designed to achieve two seemingly unrelated goals: they allow market partici-
pants to find other agents with whom to transact (thereby solving a liquidity problem), and at the same
time they allow to discover the price at which such transactions should take place (thereby solving an
information-related task).

The Efficient Market Hypothesis (EMH) states that prices integrate all information that is publicly
available [1]. If this is the case, there can be no forecastable structure in asset returns for agents in
possession of public information only. Historically, the EMH was first rationalized theoretically with
the introduction of the Rational Expectation Hypothesis (REH). According to the REH all agents are
rational and perfectly informed about the other players’ strategies. This hypothesis is appealing since
it allows to build analytically tractable setups [2] in which financial markets are able to deliver the
promise they were conceived for, once some exogenous source of dynamics is injected into the system,
thus preventing no-trade theorems. It has also important drawbacks: for example, the REH implies
that the value of a risky asset is completely determined by its fundamental price, equal to the present
discounted value of the expected stream of future dividends. As already argued by Shiller [3], the excess
volatility puzzle, i.e., the fact that the price deviates substantially from the fundamental value, cannot
be explained by the REH. Nevertheless, the REH is still considered the main expectation formation
paradigm in many economic circles [4].

An important class of REH models is the so-called Information-Based Models. These models typi-
cally involve the presence of agents that trade due to exogenous reasons (noise traders) that use finan-
cial markets in order to find counterparties for satisfying needs that come from outside of the market,
and arbitrageurs that possess privileged information on the traded goods (informed traders), and thus
choose to transact whenever they expect to use their informational advantage in their favor. From
this perspective, informed traders provide a service (making prices informative) that noise traders can
choose to pay in order to be granted access to liquidity. To lubricate this mechanism, dealers (market
makers) are typically required: instead of letting noise traders and informed traders interact directly,
market makers can temporarily incorporate the imbalance in the trading pressure, accepting to bear
inventory risk for a limited time under the promise of some reward (bid-ask spread, rebate fees). Their
activity allows to defer in time the moment at which the initial buyer and the final seller meet, thus
enabling both informed and noise traders to find more easily possible counter-parties.

When one tries to validate empirically how (or whether) this idealized mechanism takes place in
real markets, one is confronted with a very different picture: liquidity at the “efficient” prices tends to
be scarce [5, 6], so that both informed and noise traders are required to fragment their orders in long
streams of correlated trades in order to conceal their intentions. On the other hand, (statistical) price
efficiency is empirically supported to a large extent [6, 7], indicating that the information contained
in the trade flows is quite effectively disentangled from its uninformed component through what is
referred to as price impact. The price to pay in order to have statistically efficient markets in presence
of vanishing liquidity is to introduce a non-trivial impact function, one that strongly reacts to small
trades, potentially triggering market instabilities and flash crashes [8, 9]. This is to be contrasted
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with the more resilient view of the market that arise from classical Information-Based Models, that
prescribe an impact function linear in the size of the imbalance and constant along time [10]. Linear
impact models are nevertheless a good starting point to investigate price impact.

A particularly successful class of models to describe statistical regularities in financial markets in-
volves the notion of propagator, a linear kernel used in autoregressive models that couples price changes
to past order flow imbalances. In this setting, the (discounted) price of a good at time t, which we de-
note pt , can be expressed as a function of the past signed order flow imbalance qt as:

pt :=
t
∑

t ′=−∞
Gt−t ′qt ′ , (1)

where the causal kernel Gt is the propagator.1 Propagator models were originally proposed in order
to solve the so-called diffusivity puzzle, namely the fact that price efficiency, and consequently price
diffusion, can be achieved even if the order flow imbalances qt display long-ranged correlation [11].
Moreover, variations of these models have proven to be effective in order to paint an accurate picture
of the market at high frequency [12, 13], in the sense that a large fraction of the price fluctuations can
be explained by the past order flow [14].

On the other hand, the perspective taken in order to construct such models is quite distinct from
the one preferred in the literature of theoretical economics. The propagator setup is not properly
microfounded. In fact, it builds on statistical stylized facts, rather than on an economic rationale. The
goal of this paper is to bridge this gap in an economically orthodox setting by showing how propagator-
like models can be rationalized as the equilibrium resulting from a set of rational agents seeking to
achieve optimality. Along this line, our work is closely related to the classic Kyle setting [10], in which
the price discovery mechanism emerges as a linear equilibrium between three representative agents
with asymmetric information.

We establish a setting for an Information Based Model that gives rise to a stationary market (akin to
Ref. [15, 16]), where the equilbrium pricing rule is given by Eq. (1). Our work goes beyond the purely
theoretical aspect, since the framework we build allows to explicitly construct kernels Gt that ensure
price efficiency under different circumstances.

The organization of the paper is as follows. Section 2 introduces the notations we use throughout
the paper. In Section 3 we present the model. Section 4 is devoted to the study of the equilibrium
of the model. Section 5 discusses the relation of our model with its building blocks, namely the orig-
inal propagator and the Kyle model. In Section 6 we further investigate the model we propose in
the paradigmatic Markovian case, whose tractable solution allows to gain intuition on the system. In
Section 7 we conclude.

2 Notations

Throughout the paper, we will alternate between scalar notations, in which the time dependence of
the variables is explicit (e.g. X t), vector notations, and matrix notations. We will use bold symbols for
vectors and Sans Serif symbols for matrices.

For convenience we introduce two types of vectors: XXX t := {X t ′}tt ′=−∞ and XXX /t := {X t ′}∞t ′=t . Further,
for a given vector XXX t we define the associated Toeplitz matrix as Xt,t := {X t ′−t ′′}tt ′,t ′′=−∞. In some
cases, we will omit the time index for brevity. In situations where such omission would be ambiguous,
we will restore time indices explicitly, e.g. to deal with matrices such as X/t,/t = {X t ′−t ′′}∞t ′,t ′′=t or
X/t,t = {X t ′−t ′′} with t ′≥ t and t ′′≤ t. The transpose operation will be denoted by the superscript >.

The identity matrix is denoted I, the vector with all components equal to one is written 111, the matrix
with all entries equal to 1 is denoted with U, the elements of the canonical basis are denoted with et ,

1Note that we are omitting from Eq. (1) a residual noise term, that can be easily restored in order to account for price
changes that are not explained by the past order flow.
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with a time subscript indicating the non-zero element and the lag operator, i.e., the operator that acts
on an element of a time series to produce the previous element, is denoted L. In this way we write
XXX t−1= L XXX t . Dimensionless quantities are signified with tildes.

3 A Simple Agent-Based Market Model

3.1 Setup of the Model

Consider a market in which agents exchange a risky asset (stock) against a safe asset (cash). The
(discounted) transaction price of the risky asset at time t is denoted by pt . Each unit of the risky asset
entitles its owner to a stochastic payoff µt in cash (dividend) at each unit of time t. The dividend
process µt is modeled as an exogenous, stationary, zero-mean Gaussian process with autocovariance
function (ACF):

Ξµτ :=E[µtµt+τ] . (2)

The portfolio of each agent comprises a combination of risky and safe assets. The position of agent
i in the risky asset at time t is given by Qi

t , whereas his trades are denoted by qi
t :=Qi

t −Qi
t−1. With

these conventions, the equations for the evolution of cash C i
t , stock-position Qi

t , and wealth W i
t for

each agent can be written down respectively as:

∆C i
t := µtQ

i
t − ptq

i
t (3)

∆Qi
t := qi

t (4)

∆W i
t := ∆C i

t +Qi
t pt −Qi

t−1pt−1. (5)

We consider an agent-based market model with asymmetric information akin to the well known
Kyle model [10], in which the agents take actions at discrete time steps t. A strategic agent possessing
privileged information about the realizations of the stochastic dividend process (informed trader, or IT)
trades with a non-strategic and non-informed trader (noise trader, or NT) that accesses the market for
exogenous reasons. Both the IT and NT are modeled as liquidity takers. A liquidity provider (market
maker, or MM) provides liquidity for both the NT and the IT and sets the transaction price pt .

At the beginning of each time interval [t, t+1] both the IT and the NT build a demand for the risky
stock qi

t (with i ∈ {IT,NT}). The IT builds his demand without exploiting equal-time information on
either pt nor on the decision of their peer. In order to maximize his wealth, the IT exploits privileged
information on realized dividends. After the excess demand qt := qIT

t +qNT
t is formed, the MM clears

the excess demand of the liquidity takers, executing a trade qMM
t := −qt and setting the transaction

price pt . The price pt arises endogenously as the result of the action of the agents, described in what
follows.

Before discussing the strategies of the different agents, let us highlight that both the IT and the MM
know the statistical properties of the exogenous processes µt and qNT

t , as well as each other’s strategy,
and that realized prices and excess demands are public information.

Noise trader The NT acts in a purely stochastic fashion. His demand process qNT
t is a zero-mean,

stationary Gaussian process with ACF given by:

ΩNT
τ :=E[qNT

t qNT
t+τ] . (6)

Informed trader The IT is a strategic, risk-neutral (expected) utility maximizer. His access to privi-
leged information about the dividend process is modeled by assuming that he observes past realizations
of the process µt and uses such information to maximize his future expected wealth. Moreover, since
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realized excess demand is public information, the IT can trivially infer the NT’s past trades. The infor-
mation accessible to the IT at time t is thus given by:

I IT
t =

�

qt−1,qNT
t−1,µµµt−1

	

. (7)

Since the IT is risk-neutral and assuming that the price is a linear function of realized excess de-
mands (we shall discuss why this is the case in a moment), his demand qIT

t at time t is a linear function
of his current information set I IT

t :

qIT
t = Rqt−1+RNTqNT

t−1+Rµµµµt−1, (8)

where we have introduced the demand kernels (R,RNT,Rµ). Let us give here a first description of these
demand kernels. Since we discuss a market with multiple trading periods, the IT strategically takes
into account past trades and past dividends in order to determine his demand. The demand kernel R
accounts for the dependence on past order flow which arises from price impact of past traded volumes.
The kernel RNT accounts for the dependence that comes from the price impact induced by expected
future trades of the NT, while the kernel Rµ accounts for the dependence arising from expected future
dividends. The demand kernels are the result of a Model Predictive Control (MPC) [17] strategy.
Indeed, as soon as a new piece of information is available to the IT (i.e. at each time-step t), he will
construct an updated long-term strategy, and he will trade accordingly. More details about the IT’s MPC
strategy are provided in Sec. 3.3, with explicit expressions of the demand kernels.

Market maker The MM is risk-neutral and competitive. He sets a pricing rule that allows him to
statistically break even on every trade, without controlling the inventory that he might accumulate
while matching the demand. The realization of the dividend process µt is unknown to the MM, and
so is the proportion of the demand due respectively to the IT and the NT. Thus, the information set
available to the MM at time t is solely given by realized aggregate excess demand:

IMM
t := {qt}. (9)

An important point is that the resulting excess demand qt conveys information to the MM about the
asset’s fundamental value, via the information set used by the IT (Eq. (7)) to construct his trading
schedule (Eq. (8)). Note also that the information set of the MM is not contained in the information
set of the IT, due to the fact that the excess demand qt is only available to the IT at time t+1.

Since the MM knows that the IT’ s trading schedule is given by Eq. (8), from the total order flow he
can infer information about past dividends, albeit this information is distorted by the presence of noise
induced by the NT. From Eq. (8), the dynamics of the excess demand at time is linear in NT’s trades up
to time t and past dividends and it is given by:

qt = (I−RL)−1 ��I+RNTL
�

qNT
t +Rµµµµt−1

�

. (10)

Due to the Gaussian nature of both µt and qNT
t and the risk-neutral nature of market participants,

the choice of considering a linear (instead of a general) equilibrium implied by Eq.(1) is not restrictive.
Thus, the market can be modeled by the MM as a Linear Gaussian State-Space Model (LG-SSM) [18].
Actually, while the state of the market, i.e. realized dividends µµµt and NT’s trades qt , are not observable
by the MM, he can infer these quantities, and in particular realized dividends, filtering them out from
his information set. This procedure in the LG-SSM literature is referred to as Kalman filtering technique.
More details about these important aspects of the model will be given in the following section.

3.2 Competitive pricing rule

As anticipated above, we assume the MM to be competitive and risk neutral. Thus, by a Bertrand
auction type of argument [10], we postulate a break even condition for the MM for each T -period
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holding strategy built as follows: buy qt units of stock by matching the demand at time t at a price pt
and sell them back at time t+T at a price E[pt+T |IMM

t ], earning the dividends in the meanwhile. Note
that even though the MM cannot choose to execute with certainty at t+ T , we can see T as the time
lag at which the MM decides to mark-to-market his position, even if he might not be actually able to
liquidate it. Imposing competitiveness of the MM, this trajectory should have zero payoff on average,
leading us to postulate a pricing-rule of the form:

pt =
t+T−1
∑

t ′=t

E[µt ′ |IMM
t ]+E[pt+T |IMM

t ]. (11)

Thus, the price at time t is given by the long-term sum of future dividends plus a boundary term which
in general is non-zero.

Stationary dividends with zero mean

If the boundary term in Eq. (11) evaluated at T =∞ is equal to zero, i.e., the transversality condition
holds, one obtains the standard EMH fundamental rational expectation pricing-rule:

pt =E
�

pF
t |I

MM
t

�

, where pF
t = 111>

/t µµµ/t . (12)

In case of mean-reverting dividends process with zero mean, the transversality condition is justified.
We will investigate the model with this assumption, for simplicity reasons. Under this prescription the
job of the MM is to provide the optimal forecast of discounted future cash flows from infinity to the
present time t, given his current information set.

It will be interesting to compare the result of the MM’s estimate, given by Eq. (12), with the one
constructed by the IT, which is not distorted by the the noise induced by the NT:

pIT
t =E

�

pF
t

�

�I IT
t

�

. (13)

Let us note here that the dividends have to be predictable for the market to be non trivial. In fact,
if the dividend process is not correlated, i.e., Ξµτ = Ξ

µ
0δτ, then pIT

t = 0, i.e., the IT does not have any
informational advantage over the MM. Thus, in this case, the MM would simply set the price equal to
zero.

With the pricing rule given by Eq. (12) the MM statistically breaks even for each buy or sell trade,
if he waits enough time for the income due to the dividends to restore his cash account to zero. This
local constraint is thus given by:

E[∆CMM
t ] = 0. (14)

As a consequence E[∆C IT
t ]+E[∆CNT

t ] = 0, i.e. the gain of the IT is balanced by the losses of the NT.
This is what typically happens in models where NT are uninformed and non-rational [2].

In the following we give the explicit expression of the pricing rule (12) in terms of the IT’s trading
schedule, i.e. in terms of the IT’s demand kernels introduced in Eq. (8).

Dividends regression from observed excess demand

The pricing rule given by Eq. (12) prescribes that the MM should estimate the sum of future dividends
by observing realized excess demand. This problem can be solved in two steps. First the MM estimates
realized dividends applying a filter on realized excess demand. The optimal estimator of realized div-
idends is well known in the LG-SSM literature as Kalman filter and it is linear in the measurements,
i.e., the realized excess demand in our model. Then, the MM computes the expected sum of future
dividends summing over the forecasts of future dividends. In the following we detail these two steps.

The MM’s estimate of realized dividends µ̂µµt :=E[µµµt |IMM
t ] is given by:

µ̂µµt =Kqt , (15)
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where we have implicitly defined the (steady-state) Kalman gain K. This matrix can be constructed in
a standard way [18, 19] given the dynamics of the MM’s measurements, i.e., Eq. (10). The Kalman
gain is proportional to the signal noise, i.e., Ξµ, and inversely proportional to the measurement noise,
which is the ACF of the excess demand Ωτ :=E[qtqt+τ] and it is explicitly given by:

K=Ξµ(Jµ)>Ω−1, (16)

where

Jµ= (I−RL)−1 RµL

Ω= (Jµ)>ΞµJµ+DNT.
(17)

Jµ is the matrix that multiplies the dividends in the r.h.s. of Eq. (10) and DNT is the NT’s dressed ACF,
given by:

DNT= (I−RL)−1 �I+RNTL
�

ΩNT
�

I+RNTL
�> �
(I−RL)−1�> . (18)

The noise ACF is dressed since the noise (i.e., the NT’s trade process) not only affects the excess demand
dynamics by construction (qt = qIT

t +qNT
t ), but also because the IT’s optimal trading strategy depends

upon past and future realizations of the noise (see Eq. (8)).

Using the Woodbury identity on Eq. (16), one obtains the alternative expression of the gain matrix
K:

K=
�

(Ξµ)−1+(Jµ)>
�

DNT
�−1

Jµ
�−1
(Jµ)>

�

DNT
�−1

. (19)

This alternative expression gives a complementary interpretation of the gain matrix K: in fact the
matrix inside the square bracket is the dividends posterior information matrix. This matrix is given by
the dividends prior information matrix (Ξµ)−1 summed to the information added by the measurement,
i.e., (Jµ)>

�

DNT
�−1

Jµ.

From estimated realized dividends µ̂µµt , the MM has to estimate the fundamental price pF
t , defined in

Eq. (12). To do so, he builds the forecast of future dividends as E[µµµ/t |µ̂µµt]=Fµµ̂µµt , where we introduced
the dividends forecast matrix Fµ. Since the dividends process is Gaussian with zero-mean, Fµ depends
only on the ACF of the dividends Ξµ. Finally, by summing over the estimated future dividends we
obtain the following equation for the price at time t:

pt = 111>
/t FµK qt . (20)

Notice, that Eq. (20) explicitly gives the rule for propagator, Eq. (1). In the following section we
construct the IT’s optimal trading strategy based on the maximization of his expected future wealth, as a
function of the MM’s pricing rule. This means that, as anticipated, the IT’s demand kernels (R,RNT,Rµ)
are functions of the propagator G introduced in Eq. (1), and so is the Kalman gain matrix K introduced
in Eq. (19). Because of this, Eq. (20) will turn out to be a self-consistent equation for the propagator G.

3.3 Optimal insider trading

The utility function U IT
t , whose expectation is maximized by the IT at each time step t, is defined by

the value of his wealth account at a terminal time t+ T (where T is not related to that introduced in
Sec. 3.2), given by W IT

t+T , in which his position QIT
t in the risky asset is flattened. Thus, U IT

t =W IT
t+T

subject to the constraint QIT
t ′ = 0 for t ′≥ t+T .

At each time step t, the IT optimizes his expected utility function over the whole future trajectory
qIT
/t given the information set at the current time I IT

t given by Eq. (7), and trades the first step of the
optimal strategy. The IT’s trade at time t is thus calculated as follows:

qIT
t = e>t argmax

qIT
/t

E
�

U IT
t

�

�I IT
t

�

, (21)

7



where e>t explicits the fact that only the first step of the future trajectory is executed. Notice that the
presence of a finite liquidation time does not break the assumption of the time-translational invariance
of the model, because the terminal condition is also receding as time moves on. Indeed, the IT will in
general hold a non-zero position QIT

t up to t→∞ despite the presence of the liquidation constraint.
The constraint should then be seen as a device used by the IT in order to properly mark-to-market
the value of his current stock positions at time t by taking into account the forecast of their future
liquidation value pt+T , rather than as a measure taken to prevent him from trading at large times.

In the following we analyze the case in which T =∞ with mean-reverting dividends.

Stationary demand kernels of the insider with infinite horizon

If T =∞ in Eq. (21), the IT can neglect the round-trip constraint, since liquidation costs are pushed
to the far away future and, due to the assumptions of zero-mean and mean-reverting dividends, the
expected price at infinity is zero. Because of this, the actual trading profile of the IT that we will
consider in the following is given by Eq. (21) with U IT

t = C IT
∞. In doing so, the maximization program

is given by

qIT
t = e>t argmax

qIT
/t

E
�

C IT
∞

�

�I IT
t

�

, where C IT
∞= C IT

t−1−
�

qIT
/t

�>�
p/t −pF

/t

�

. (22)

In order to keep the discussion simple we consider the dividend process with integrable auto-covariance,
such that the IT’s estimate of the fundamental price pF

t is finite. One can in fact relax this hypothesis,
with a suitable renormalization of the price and dividends process.

The expression for the demand kernels (R,RNT,Rµ) at equilibrium can be determined as solution
of the quadratic optimization program defined by Eq. (22). The expected gain at infinity C IT

∞ depends
on estimated future dividends (via pF

/t) and on estimated future NT’s trades (via p/t). Thus, in order to
write it down explicitly, we need the dividends forecast matrix Fµ introduced in the previous section,
and the forecast matrix of NT’s trades, FNT, defined similarly by E[qNT

/t |q
NT
t ] = FNTqNT

t .

Since E[C IT
∞|I

IT
t ] depends on past realizations and forecasts, we insert time subscripts over matrix

symbols in order to avoid ambiguities. We obtain:

E[C IT
∞|I

IT
t ] =−

1
2

�

qIT
/t

�>
G

sym
/t,/tq

IT
/t

−
�

qIT
/t

�>�
G/t,t−1qt−1+G/t,/tF

NT
/t,t−1qNT

t−1−U/t,/t Fµ
/t,t−1µµµt−1

�

,
(23)

where we dropped C IT
t−1, since it does not depend on IT’s future trades qIT

/t , and we introduced the

symmetric propagator Gsym = (G+G>) in order to write in a compact form the quadratic term in qIT
/t .

The quadratic term in qIT
/t of Eq. (23) is the cost term that the IT will face due to his own future market

impact, while the the linear term in qIT
/t is his signal term. The first term of the signal comes from price

impact due to known order flow realizations, the second one comes from the expected price impact of
future NT’s trades, while the third one comes from his private information about pF

/t .

Inserting Eq. (23) in Eq. (22), allows to obtain the expression for the IT’s demand kernels in terms
of the propagator G and the forecast matrices FNT and Fµ:

Rt = −e>t
�

G
sym
/t,/t

�−1
G/t,t−1, (24a)

RNT
t = −e>t

�

G
sym
/t,/t

�−1
G/t,/tF

NT
/t,t−1, (24b)

Rµt = e>t
�

G
sym
/t,/t

�−1
U/t,/t Fµ

/t,t−1. (24c)

Finally, we have all the ingredient to write down explicitly the functional equation for the equilibrium
pricing rule, which will be given in the following section.
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4 The linear equilibrium

4.1 Equilibrium condition and numerical solution

The linear equilibrium of the model can be found by self-consistently taking into account the compet-
itive pricing rule of the MM and the strategy of the IT, given respectively in Eqs. (20) and (24). The
self-consistent equation for the propagator, in scalar notation, reads:

Gt−s =
∞
∑

t ′=t

t
∑

t ′′=−∞
Fµt ′,t ′′Kt ′′,s[G] (25)

where we made explicit that the filter K , given in terms of IT’s demand kernel by Eq. (19), is a function
of the propagator itself, as can be seen from Eqs. (24).

The linear equilibrium equation (25) is a non-linear functional equation for the propagator Gt . As
such it is not amenable for analytical treatment in the general case of arbitrary Gaussian, zero-mean
and stationary dividends and NT’s trades process. Nevertheless, we have been able to solve Eq. (25)
iteratively, as illustrated in Appendix A. In two special cases we have been able to validate the result of
the iterative numerical solver by means of the analytical solution of Eq. (25) (see Appendix B).

Via an extensive analysis of the model based on the iterative numerical solver of Eq. (25) we found
that the market at equilibrium exhibits some robust properties, that hold in case of an integrable and
stationary ACF of the NT’s trades and dividends, regardless of the exact structure of the ACFs. These
properties are listed below.

4.2 Generic equilibrium properties

Return covariance The equilibrium is characterized by a return ACF Ξτ := E[∆pt∆pt+τ] with the
same temporal structure as that related to the IT’s price estimate pIT

t , given by Eq. (13), which will be
referred to as ΞIT

τ . In formula:
Ξτ=Ξ0Ξ̃

IT
τ , with Ξ̃IT

0 = 1. (26)

The price distortion induced by the noise injected into the system by the NT is thus completely encoded
in a scalar, the return variance Ξ0.

The left panels of Figs. 1, 2 and 3 display numerical results that do confirm Eq. (26). In particular,
in top panels, bullet points correspond to Ξτ/Ξ0 obtained by means of the numerical solver of Eq. (25)
and show a good collapse on the dashed line, which corresponds to ΞIT

τ /Ξ
IT
0 calculated semi-analytically.

In the bottom part of the panels instead we show the relative cumulative absolute error between the
two curves, defined as:

er rΞτ =

∑τ
i=0 |Ξi/Ξ0−ΞIT

i /Ξ
IT
0 |

∑τ
i=0 |Ξi/Ξ0|

. (27)

In Figs 1 and 2, where non-markovian ACFs are examined, these errors are larger than in Fig. 3,
where ACFs decay exponentially. This is due to the fact that in the former case the forecast of future
dividends suffers from finite size effects. The estimation of these effects is carried on in detail in
Appendix A.

The inset of the left-top panels shows the variogram of the price, defined by Vτ :=E
�

(pt − pt+τ)2
�

,
which, as expected, is linear at high frequencies and mean-reverting at low frequencies.

Excess demand covariance The equilibrium is characterized by an excess demand ACFΩτ :=E[qtqt+τ]
with the same temporal structure as the one related to NT’s trades, plus an extra contribution at lag 0.
In formula:

Ωτ= a(Ω̃NT
τ + b̃δτ), with Ω̃NT

0 = 1, (28)
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Figure 1: Numerical check of equilibrium properties with ACFs given by (1+ |τ|/τk)−γk where k= {µ,NT}. We arbitrarily
choose (τNT,τµ,γNT,γµ)= (30,50,3,5). The numerical solver has been implemented with Tcut =5 ·102 and Ti t =200. (Left)
In the upper panel we show the good collapse betweenΞτ/Ξ0 (bullet points) andΞIT

τ /Ξ
IT
0 (dashed line). The collapse between

these two ACFs is quantified in the bottom panel, where the relative cumulative absolute error between the two curves is
displayed. The inset in the top panel shows the collapse on the variogram. (Right) In the main top panel we show the good
collapse for positive lags between Ωτ/Ω1 (bullet points) and ΩNT

τ /Ω
NT
1 (dashed line), whereas in the inset we show that the

collapse doesn’t involve the lag 0 term. In the bottom panel the collapse between these two ACFs is quantified, calculating
the relative cumulative absolute error starting from lag 1.

where the symbol δτ denotes the discrete delta function, while a and b are scalars. The excess demand
variance is given by Ω0= a(1+ b̃).

Since IT’s information at time t does not include the current trade of the NT qNT
t (see Eq. (7)), the

best that the IT can do in order to hide his trades is to create a trading strategy such that the excess
demand ACF resembles that of the NT apart from the lag 0 term. Because of the distortion at lag 0, we
call this property quasi-camouflage strategy2. Indeed, in order to prolong his informational advantage
over the MM, the IT hides his trades in the excess demand process by creating a strategy that resembles
that of the NT alone.

Right panels of Figs. 1, 2 and 3 display numerical results that confirm the quasi-camouflage prop-
erty. In top panels bullet points correspond to Ωτ/Ω1 obtained by means of the numerical solver
of Eq. (25) which show a good collapse for positive lags on the dashed line, which corresponds to
ΩNT
τ /Ω

NT
1 . It is clear, from the insets of the plots on the left, that the collapse is not reached at lag 0. As

it will be shown in the next section, this extra contribution at lag 0 depends in a non trivial way on the
ACFs of the dividends and NT’s trades. On the bottom, the relative cumulative absolute error between
the two curves is presented. In this case, it starts from lag 1, so:

er rΩτ =

∑τ
i=1 |Ωi/Ω1−ΩNT

i /Ω
NT
1 |

∑τ
i=1 |Ωi/Ω1|

. (29)

Again, these errors are larger in the case where non-markovian ACFs are examined.

From the properties given by Eqs. (26) and (28), together with the MM’s break even condition, one
is in principle able to find the propagator. In fact, introducing the price ACF Στ :=E[pt pt+τ], from the
definition of the propagator (1) follows that:

Στ=
t+τ
∑

t ′=−∞

t
∑

t ′′=−∞
Gt+τ−t ′Gt−t ′′Ω|t ′−t ′′|, with τ> 0, (30)

where the price ACFΣτ can be computed from Eq. (26) and the excess demand ACF is given by Eq. (28).
This program can be accomplished in the case of a Markovian system and it is described in full detail

2Camouflage is also called inconspicuous strategy in the economics literature [16, 20, 21]
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Figure 2: Numerical check of equilibrium properties with ACFs given by exp−τ/τ1,k sin(x/τ2,k+π/2) where k= {µ,NT}. We
arbitrarily choose (τ1,NT,τ1,µ,τ2,NT,τ2,µ) = (40,40,20,10). The numerical solver has been implemented with Tcut = 103

and Ti t = 500. (Left) In the upper panel we show the good collapse between Ξτ/Ξ0 (bullet points) and ΞIT
τ /Ξ

IT
0 (dashed

line). The collapse between these two ACFs is quantified in the bottom panel, where the relative cumulative absolute error
between the two curves is displayed. The inset in the top panel shows the collapse on the variogram. (Right) In the main
top panel we show the good collapse for positive lags between Ωτ/Ω1 (bullet points) and ΩNT

τ /Ω
NT
1 (dashed line), whereas

in the inset we show that the collapse doesn’t involve the lag 0 term. In the bottom panel the collapse betweeen these two
ACFs is quantified, calculating the relative cumulative absolute error starting from lag 1.
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Figure 3: Numerical check of equilibrium properties for ACFs given by e−τ/τk where k = {µ,NT}. We arbitrarily fixed
(τNT,τµ)= (10,20). The numerical solver has been implemented with Tcut = 5 ·102 and Ti t = 200. (Left) In the upper panel
we show the good collapse between Ξτ/Ξ0 (bullet points) and ΞIT

τ /Ξ
IT
0 (dashed line). The collapse between these two ACFs

is quantified in the bottom panel, where the relative cumulative absolute error between the two curves is displayed. The
inset in the top panel shows the collapse on the variogram. (Right) In the main top panel we show the good collapse for
positive lags between Ωτ/Ω1 (bullet points) and ΩNT

τ /Ω
NT
1 (dashed line), whereas in the inset we show that the collapse

doesn’t involve the lag 0 term. In the bottom panel the collapse between these two ACFs is quantified, calculating the relative
cumulative absolute error starting from lag 1.
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in Sec. 6. There, we shall provide semi-analytical results for all of the parameters introduced in the
equations listed above, which do share qualitative features with the general non-Markovian case. An
interesting finding of this analysis is given by the fact that as the predictability of the NT’s trades process
increase, the IT’s camouflage becomes exact, allowing him to reduce the cost due to price impact of his
trading schedule.

But before discussing the Markovian case, let us highlight similarities and differences with respect
to existing models.

5 Relation with existing models

5.1 Kyle model

While strongly inspired by the one-period Kyle model, our model is quite different on several grounds.
First, instead of exogenously postulating the presence of a fundamental price, in our setting it is the
integrated-dividend process that plays the role of the fundamental price, mechanically relating it to
the payoff of the asset. Second, we do not have explicit fundamental price revelation, thus allowing
to consider a stationary setting in the model. Such a stationary regime is relevant in practice because
in order to analyze the behavior of the market at short time scales (minutes, hours) one would like
to abstract away the non-stationary effects potentially induced by the dynamics of the fundamental
information (e.g, dividends, earning announcements, scheduled news) at slower time scales. Third,
we introduced (integrable) serial correlations both in the dividends – equivalently, in the fundamental
price – and in the order flow.

Let us also point out how we can recover the Kyle model in our setting. Assuming that (i) the NT’s
trades are uncorrelated, (ii) the sum of future dividends pF

t follows a random walk process, (iii) the
IT knows the value of pF

t at the beginning of each period and (iv) pF
t becomes public information once

the MM has set the price, we recover exactly an iterated version of the single period Kyle model.

5.2 Propagator model

Equation (30) is the cornerstone equation when dealing with propagator models. It is used in the
literature in order to extract a propagator Gt from empirical data. Hence, our framework allows us to
recover the propagator model in an economically orthodox setting, with two important caveats:

• The excess demand ACF Ωτ function observed in real markets is typically non-integrable, due to
the strongly persistent nature of the order flow [11, 22].

• The price process empirically observed in many markets is close to be diffusive at high and
medium frequency.

The non-integrability of the excess demand ACF can be retrieved in our framework because of the
camouflage condition, assuming that the NT’s trades ACF is not integrable.

Price diffusivity also can be recovered in our model as the limiting regime in which dividends are
much slower than the other time scales in the model. In order to prove this, note that the variogram
of the price can be written in terms of the price ACF Στ as follows:

Vτ= V∞(1− Σ̃τ), where Σ̃0= 1, (31)

where the first equality holds in stationary conditions, as the one described by the model introduced
here. Thus, in our model we do recover price diffusivity at high frequency if Σ̃τ−1∝τ/τ∗ in the high
frequency limit of the model, i.e., τ� τ∗, where τ∗ is some typical timescale. Instead in the opposite
low frequency limit τ� τ∗, because of the assumption of mean-reverting dividends, which translates
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into having a mean-reverting fundamental price, the price ACF decays to zero, i.e., Στ ∼ 0, and we
recover a flat variogram. For example, in the Markovian case described below, where the dividends
ACF is an exponential decay function with timescale τµ, one has τ∗=τµ.

To wrap up, if the hypothesis of linear price ACF Στ in the high frequency limit holds, the price
in our model interpolates between two very different situations: when the model is probed in its high
frequency limit it describes a market with diffusive price, while in the low frequency limit the price
is mean-reverting. This is very satisfactory since it is obtained with a single propagator, which is the
solution of Eq. (25). The Markovian case, which we discuss at length in the next section, is enlightening
in this respect since it is analytically tractable and the price is diffusive at small enough time-lags.

It is interesting to notice that in order to observe any impact at all in the model, one is forced
to introduce a non-trivial3 dividend process: the introduction of fundamental information that gives
to the IT an informational advantage over the MM is enough in order to induce non-trivial dynamics
into the price, and to typically induce a diffusive behavior into prices at high frequency. Hence, the
price payed in order to micro-found the propagator model is the introduction of an auxiliary dividend
process, whose detailed shape is inessential at high enough frequency, but whose magnitude sets the
scale of the price response.

6 Markovian case

Significant simplifications of the equilibrium condition (25) are possible in the case in which both the
dividend and the NT flow are Markovian processes, where their ACFs are given by:

Ξµτ = Ξ
µ
0α
τ
µ, (32a)

ΩNT
τ = ΩNT

0 α
τ
NT. (32b)

One of these simplifications comes from the fact that the price estimate pIT
t given by Eq. (13) is pro-

portional to the current dividend realization, i.e. pIT
t = µt−1αµ/(1−αµ). Thus, the price efficiency

property given in Eq. (26) becomes:

Ξτ=Ξ0Ξ̃
F
τ, with Ξ̃F

0= 1, (33)

where ΞF is the return ACF of the fundamental price pF
t . From Eq. (33) follows that the ACF of the

price process Στ is a decaying exponential with timescale given by τµ := −1/ log(αµ). As a result,
the price process in the Markovian case is a discrete Ornstein-Uhlenbeck process with timescale τµ :=
−1/ log(αµ).

We validated the result of the iterative numerical solution exposed in the previous section by solving
explicitly the equilibrium condition in two peculiar Markovian cases: the case of non-correlated NT
trades, obtained by replacing the equation for the NT’s trades ACF by ΩNT

τ =Ω
NT
0 δτ, and the case in

which the ACF timescale of NT’s trades is the same as the dividends’ one, i.e., the case given by Eq. (32)
with αµ=αNT. These findings are reported in Appendix B.

Furthermore, we found the explicit solution of the equilibrium condition by imposing the generic
equilibrium properties listed in the previous section, together with the MM’s break even condition given
by Eq. (14). Details about the outcome of this procedure are given in the following sections.

Let us point out that even though the choice of Markovian dividends and NT’s trades processes is
made in order to obtain analytical results and build an intuition about the system in a simple case, the
main qualitative conclusions found in this section do extrapolate to generic stationary, mean reverting
processes with integrable ACFs.

3See the brief discussion under Eq. (13)
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Figure 4: (Left) Endogenously generated timescale τρ as a function of τµ and τNT. τρ is never larger than ∼ 2 time-step.
(Right) Amplitude of the lag 0 contribution to Στ, i.e., b̃ introduced in Eq. (28), as a function of τµ and τNT. As one can see
in the inset, b̃ attains its maximum value for small timescale, while it decrease to zero as τµ and τNT increase, thus recovering
exact camouflage for the IT strategy.

6.1 Propagator

Non-correlated NT trades This case is particularly simple since the quasi-camouflage property given
by Eq. (28) becomes exact. Eq. (30) is solved by an exponential decay propagator with the same
timescale as the dividends ACF, i.e., τµ. The amplitude of the propagator is derived in App. B.1.

Correlated NT trades The solution of Eq. (25) is obtained in two steps. First, we build an ansatz
based on the quasi-camouflage strategy property, i.e. Eq. (28) and the property about return ACF given
by Eq. (26). Details about this are given in Appendix C.1. Then we fix the ansatz by imposing the MM’s
break even condition (see Appendix C.2). The results of this procedure, described below, do match
with the results of the iterative numerical solver of Eq. (25).

The propagator we find reads:

Gτ= G0

�

αµ−αNT

αµ−ρ
ατµ+

�

1−
αµ−αNT

αµ−ρ

�

ρτ
�

, (34)

where a new timescale τρ :=−1/ log(ρ) appears. This new timescale is given, in the general Markovian
case, by a non-linear combination of the two fundamental timescales τµ and τNT :=−1/ log(αNT) (the
implicit expression for ρ and G0 is obtained as illustrated in Appendix C.2). From the left panel of
Fig. 4, it is clear that in the regime in which τµ,τNT� 1, τρ approaches a value close to the time-step,
i.e. τρ ∼ 1, thus being much smaller than the two fundamental timescales.

As we shall see below, the large timescales behavior of τρ is related to the behavior of the excess
demand ACF distortion at lag 0, i.e. b̃, introduced in Eq. (28). In fact, in the derivation of Eq. (34)
(see Appendix C.1) one finds:

b̃=
ρ(1−α2

NT)

αNT(1+ρ2)−ρ(1+α2
NT)

. (35)

In the right panel of Fig. 4 we display b̃ as function of τµ and τNT. This amplitude is close to 1 in
the limit of small dividends and NT’s trades timescales and decreases to zero as these increase. Thus,
the excess demand ACF temporal structure resembles more and more the NT’s one as soon as the NT’s
trades or dividends are strongly correlated.

The interpretation of this finding is the following: the IT wants to hide his own trades in the excess
demand process, by shaping the ACF to resemble the NT’s trades one. However the IT knows only
up to time t−1 the realization of the NT’s trades process (see Eq. (7)). If this process is only weakly
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Figure 5: (Left) Ratio between variance of the excess demand and variance of the NT’s order flow as a function of τµ and
τNT. When the timescale τµ and τNT are small (inset), the excess demand is higher than the one of the NT’s trades alone.
Conversely, when the timescales τµ and τNT are large, the excess demand variance is lower than the one of the NT’s alone.
(Right) Ratio between the variance of the price and the variance of the IT’s fundamental price estimate as a function of τµ
and τNT. The variance ratio in this case is very small when τµ is close to zero, while it increase as τµ increases.

correlated, the IT’s information about it does not allow a good prediction of NT’s trade at time t.
Therefore, the IT is not able to hide his current trade. Instead, if the NT’s trades are strongly correlated,
the IT’s information about NT’s past trades allows him to accurately predict the current NT’s trade, and
thus the IT is able to hide his current trade. Briefly, we find that:

Ωτ→Ω0Ω̃
NT
τ as αNT→ 1, (36)

thus recovering an exact camouflage trading strategy of the IT, exhibited by many Kyle-like models
[16, 21, 23, 24].

The limit αNT→ 1 and αµ→ 1 can be interpreted as the continuum limit of our discrete model. In
this case, using Ωτ=Ω0Ω̃

NT
τ , and Eq. (33) in continuous-time one can solve the continuous-time analog

of Eq. (30), finding:

Gτ= G0

�

δτ+
τµ−τNT

τµτNT
e−τ/τµ

�

. (37)

From this equation we can see that the term in the propagator that depends on the endogenously
generated timescale (see Eq. (34)) approaches a Dirac delta function in the continuum limit of the
model, as a result of the IT’s exact camouflage strategy.

6.2 Excess demand variance

The result for the ratio Ω0/Ω
NT
0 as a function of τµ and τNT is presented in the left panel of Fig. 5. The

variance ratio is bounded between 2, for small timescales, and 0.5, for large timescales. The increase
of the ratio of variances, Ω0/Ω

NT
0 , for small τNT can be understood as follows. In this regime, the NT’s

current trade is almost unpredictable, thus the IT’s current trade is independent of the current trade of
the NT. As a consequence, the excess demand variance increases with respect to the NT’s variance. As
soon as the NT component of the order flow is predictable, the IT uses this information.

In particular, the IT’s current trade is on average anti-correlated with the current NT trade. This
enable the IT to move less the price, founding liquidity in the NT’s trade and reducing the typical
aggregate volume demanded to the MM. When the predictability of the NT’s trades and dividends
process increase, the current IT’s trade is more anti-correlated with the current NT’s trade, thus enabling
him to loose less money due to price impact. The current IT’s trade is instead positively correlated with
the current dividend. Fig. 6 shows these findings.
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Figure 6: (Left) Ratio of the covariance between equal-time IT’s and NT’s trades, and the variance of NT’s trades as a function
of τµ and τNT. The IT’s trades are anti-correlated with the equal time NT’s trades. (Right) Properly rescaled covariance of
current IT’s trade and dividend as a function of τµ and τNT. The IT’s trades are on average positively correlated with the
equal time dividend. When the predictability of the NT’s trades and dividends process increase, the current IT’s trade is more
positively (negatively) correlated with the current dividend (NT’s trade), thus enabling him to gain more (loose less).

6.3 Price variance

In our model price variance is directly linked to price efficiency, as argued below Eq. (26). As already
noted by Shiller, in a Rational Expectation Model where the price is the expected fundamental price,
using the principle from elementary statistics that the variance of the sum of two uncorrelated vari-
ables is the sum of their variances, one then has Σ0/Σ

IT
0 ≤Σ0/Σ

F
0 ≤ 1, where ΣF

0 is the variance of the
fundamental price.

We display the results for the ratio Σ0/Σ
IT
0 in the right panel of Fig. 5, as a function of the dividends

and NT’s timescales, that confirm the fundamental constraint exposed before. Moreover, we find that
the ratio of variances strongly depends on τµ. In particular, if the dividends are weakly correlated the
price variance poorly reflects the IT’s price estimate variance ΣIT

0 . Instead, in the limit of large dividend
timescales with respect to the one of the NT’s trades, the price variance better reflects the IT’s price
estimate pIT

t . In the regime of small τNT and large τµ the price variance accounts for all the variance of
the IT’s price estimate, ΣIT

0 , as indeed found analytically from the calculations reported in Appendix B.1.

6.4 Payoffs and market-making risk

As explained around Eq. (14), the payoff of the different agents is, on average, the following: the MM
breaks even, the NT loses and the IT gains what the NT loses.

If the dividend process is completely unpredictable (but still stationary with zero-mean), then the
price is set to zero by the MM; thus the IT won’t trade anymore and the NT’s losses are reduced to zero.
When the τµ becomes large with respect to τNT (bottom right corner of main left panel of Fig. 7), the
price is more and more efficient as we have seen in the previous section. In this case, the IT’s gains are
lowered, as well as the NT’s losses. These findings are reported in the left panel of Fig. 7, where we
plot the ratio −E[δqNT

t CNT
t ]/(Ξ

µ
0Ω

NT
0 )

1/2, with δqNT
t CNT

t =−qNT
t

�

pt −
∑

t ′≥t µt ′
�

.

Another interesting quantity is the risk per trade experienced by the MM, i.e. rMM
t =E[(δqt CMM

t )2],
where δqt CMM

t = qt

�

pt −
∑

t ′≥t µt ′
�

. We find:

rMM
t =E[q2

t ] E
�

�

pt − pIT
t

�2�
, (38)

where we used the break even condition (Eq. (14)) together with Wick’s theorem to calculate higher
order correlations of a Gaussian process. The analytical solution is given in the right panel of Fig. 7.
As we can see, the risk experienced by the MM is high when both the timescales of the two funda-
mental processes are small, while it decreases when both the dividends and the NT’s trades becomes
predictable.
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Figure 7: (Left) Properly rescaled loss per trade of the NT (or gain per trade of the IT) as a function of τµ and τNT. When τµ
is close to zero (inset) the loss per trade of the NT are close to zero, while these increase as the predictability of the dividends
and NT’s trades increase. (Right) Properly rescaled MM’s risk per trade as a function of τµ and τNT. From the inset we can
see that the risk is higher when the NT’s trades and dividends are close to be unpredictable, whereas the risk is lower as the
predictability increase.

7 Conclusion

The aim of this paper is to provide an economically orthodox micro-foundation for linear price impact
models, customarily used in the econophysics literature. To do so, we presented a multi-period Infor-
mation Based Model and we analyzed its equilibrium. The model is built by generalizing the seminal
Kyle model, which constitutes a theoretical cornerstone of market microstructure. First, we removed
the assumption of fundamental price revelation, assuming that a stock pays dividends to the owner
but only the insider collects and exploits information about past dividends. Then, we modeled the
dividends process and the noise trader trading schedule as stationary stochastic processes. In order to
regularise the model we assumed that the dividend ACF was integrable, to ensure a bounded funda-
mental price of the traded stock. The model appeared to exhibit a stationary equilibrium, which we
have investigated in detail. A self-consistent equation for the pricing-rule set by the market-maker has
been derived and solved numerically. Two robust properties have been found: the price ACF retains the
same temporal structure as the insider’s fundamental price estimate and the insider strategy respects
a quasi-camouflage condition, i.e., the ACF of the excess demand retains the temporal structure of the
noise trader’s one apart from the lag 0 term.

The assumption of stationary dividends with integrable ACF translates into having a mean-reverting
price process. Since price diffusivity can be retrieved in the high frequency limit, the model is able to
provide a stylized picture of what happens in real markets at high and low frequency. The model alludes
also to a relation between the diffusion constant of the price process and the timescale over which the
fundamental price mean reverts. We leave the empirical check of this finding as an interesting follow-up
of the present investigation.
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A Numerical solver

The iterative numerical scheme is as follows:

1. Choose a maximum time Tcut−1 which is the maximum time-lag at which the propagator can be
evaluated. In doing so the propagator is a vector of Tcut elements.

2. Choose a “seed” propagator.

3. Plug this seed in the r.h.s. of Eq. (25).

4. Insert the result obtained with this procedure in the r.h.s. for a number of iterations equal to Ti t ,
checking for convergence.

The only issue of this procedure is the following: as one can see from the first of Eqs. (24), in order
to compute Rt one has to evaluate the block matrix given by G/t,t . This matrix has entries that cannot
be calculated, due to the truncation constraint of our numerical procedure. Nevertheless, because of
the mean reverting assumption of the dividends, we know that the propagator should decay to zero at
large times, so the large lags terms in G/t,t can be simply set to zero.

Convergence

In this section we give further details about the convergence of the results of the iterative numerical
solution of Eq. (12).

In Fig. 8 we show results about the relative cumulative absolute error for the price ACF Στ and the
excess demand ACF Ωτ. The first one is calculated as in Eq. (27), while the second one is given by
(29).

We choose Ti t = 100, power law ACFs for dividends and NT’s trades. We plot the result for Tcut,i =
∆t× i, for different i. The plots on the left are obtained with a power law ACF that decays faster than
the one used to obtain the plots on the right. We can see, as expected, that the slower is the decay of
the power law, the slower is the convergence.

We have investigated the behavior of the error for higher Ti t , but we didn’t find quantitative differ-
ences.
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Figure 8: Numerical check of equilibrium properties with ACFs given by (1+ |τ|/τk)−γk where k= {µ,NT}. We arbitrarily
choose τNT =τµ = 10. (Left panels) γNT = γµ = 5 and ∆t = 200. (Right panels) γNT = γµ = 3 and ∆t = 500.
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B Particular solutions of equilibrium condition in the Markovian case

B.1 The case of non-correlated Noise

In the case of non correlated NT’s trades, the IT’s forecast of future NT’s trades is zero, and so the
demand kernel RNT, explicitly given in Eqs. (24), is zero. Since we are dealing with a Markovian
dividend process, the IT’s forecast at time t of future dividends relies only on the last known dividend,
i.e., µt−1 and so Rµ= RµI, where Rµ is a scalar.

The self-consistent equilibrium condition given by Eq. (25) for the dimensionless propagator is
given by:

G̃t−t ′ =
1

1−αµ
e>t Γ̃(I−RL), (39)

where
Γ̃=

�

(Ξ̃µ)−1+(R̃µL)>R̃µL
�−1
(R̃µL)>. (40)

The solution of Eq. (39) is constructed in three steps. i) First we analyze the vector e>t Γ̃ and we
show that it is related to the inverse of a tri-diagonal matrix with modified corner elements, for which
the explicit expression is known [25]. Then, ii) we prove that a single exponential propagator solves
Eq. (39) and we identify the amplitude and the timescale of the propagator in terms of αµ and Rµ.
iii) Finally, we can calculate the expression of Rµ in terms of αµ from its general expression given in
Eqs. (24). In this way we fix completely the shape of the propagator only in terms of αµ.

i) Since in the Markovian case Rµ is proportional to the idenitity matrix, from Eq. (40) we obtain:

e>t Γ̃= (at ,bt−1)(R̃
µL)>= R̃µbt−1, (41)

where the vector bt−1 can be found by means of the block matrix inverse formula applied to the matrix
inside the square brackets of Eq. (40), given by:

M = (Ξ̃µ)−1+(R̃µL)>R̃µL=

�

at Bt−1

B>t−1 C

�

. (42)

In particular, using the block inverse formula, the vector bt−1 is given by

bt−1=−a−1
t B>t−1(M/at)

−1=αµe>t−1(M/at)
−1, (43)

where the last equality has been obtained with the following property (checked by direct inspection of
Eq. (42)) B>t−1∝ e>t−1 and (M/at) is the Schur’s complement of M with respect to at , which is given
by

(M/at) =C−B>t−1a−1
t Bt−1= (Ξ̃µ)

−1+(R̃µ)2I. (44)

This matrix is a tri-diagonal matrix with modified corner elements. Thus, the inverse of the Schur’s
complement of M with respect to at can be calculated explicitly (see Ref.[25]). The explicit expression
of Eq. (43) is given by a single decaying exponential:

bt−1= b0{γτ}∞τ=0, (45)

where

b0=αµ
(R̃µ)2− g

(R̃µ)4
, γ=

gαµ
(R̃µ)2

(46)

and g is given by:

g =
β−

p

β2−4

2(R̃µ)−2αµ
, β =

(R̃µ)−2+1+(R̃µ)−2α2
µ−α

2
µ

(R̃µ)−2αµ
, (47)

so that bt−1 is completely specified by αµ and R̃µ.
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ii) We are going to proof that an ansatz for the propagator given by a decaying exponential towards
zero actually solves Eq. (39). The ansatz for the propagator reads:

Gt−t ′ = G0ρ
t−t ′ . (48)

As a preliminary result, from this ansatz, one can compute the elements of the vector Rt , which appear
in Eq. (39), by means of the first equation in Eqs. (24) . This is given by:

Rt−t ′ =−R0ρ
t−t ′ , (49)

where

R0= 1− gs, gs =
1−

p

1−ρ2

ρ2
. (50)

Equipped with this result, together with (45) one can easily show that Eq. (39) is solved with the
ansatz given by Eq. (48). The ansatz is constraint to satisfy the following equations:

G̃0=
b0

1−αµ
, ρ=

γ

(1−R0)
. (51)

iii) Since we proved that G is of the exponential form we are now able to compute the explicit form
of Rµ, starting from its definition in Eq. (24). The explicit expression for R̃µ, which completely specifies
Rµ, is given by:

Rµ=
1

(1−α)G0

�

αµgs−
α2
µ

ρ

1−(2−ρ2)gs

1− gsραµ

�

(52)

Now, we can use insert in the above equation the expression for g , gs, G0, ρ given respectively by
Eqs. (47), (50) and (51) and solve for R̃µ. In doing so we find

R̃µ= 1. (53)

Finally, reintroducing the variance terms, i.e., using ΩNT
τ =Ω

NT
0 δτ and Ξµτ=Ξ

µ
0α
τ
µ, then the solution

to Eq. (39) is given by

Gτ=

�

Ξ
µ
0

ΩNT
0

�1/2
αµ

1−αµ

 

1−
1−

q

1−α2
µ

α2
µ

!

ατµ. (54)

B.2 The case of Noise and Signal with equal autocovariance timescales

In this section we deal with the Markovian case specified by Eqs. (32) with αµ=αNT. A difference with
the previous case is given by the fact that now RNT=RNTI, where RNT is a nonzero scalar. The solution
of the self-consistent equilibrium condition (25) is akin to the one exposed in the previous section, due
to a simplification induced by the assumption given by αµ =αNT. In order to show this we define ENT

as:
ENT

t =
�

I+RNTL
�

ΩNT
�

I+RNTL
�>

. (55)

The simplification is the following:
¦

�

(Ξµ)−1+(RµL)>(ENT)−1RµL
�−1
(RµL)>(ENT)−1

©

t,t ′
=αµRµL

¦

�

ENT(Ξµ)−1+(Rµ)2I
�−1©

t,t ′
, (56)

where the matrix inside the square bracket on the r.h.s. is a tri-diagonal matrix with modified corner
elements, for which analytical results are available (see again Ref. [25]). Thus, akin to the previous
case, a propagator given by a single exponential decay is a solution. The result of the calculation that
we do not report here is given by

RNT : (RNT)4−3(RNT)2α2
µ+RNT

�

2α3
µ+2αµ

�

−α2
µ= 0, (57)
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where one has to retain the only positive real solution. Then,

Rµ=

√

√

√
ΩNT

0

Ξ
µ
0

q

1+(RNT)2+2RNTαµ, (58)

ρ=
RNT

1+(RNT)2+RNTαµ
(59)

and

G0=

√

√

√
Ξ
µ
0

ΩNT
0

αµ
Æ

(RNT)2−2αµRNT+1

(1−αµ)RNT






−3αµ+RNT






2− 1

((RNT)2−αµRNT+1)
�

√

√

1− (RNT)2

((RNT)2−αµRNT+1)2
+1

�






+ 2

RNT







. (60)

C Solution of the Markovian case

C.1 Construction of the Ansatz

In this section we prove the results presented in Sec. 6.1, in particular Eqs. (34) and (35). i) First,
we rewrite the property exposed in Eq. (33) in expectation form. ii) Then we inject in this form the
quasi-camouflage property and we find a simple finite-difference equation for the propagator whose
solution gives the formulas presented in Eqs. (34) and (35).

i) If the price ACF is exponentially decaying with the dividends timescale, as found by means of the
numerical solver, then the following relation holds:

E[pt+1|IMM
t ] =αµpt . (61)

Equation (61) gives us a relation between the excess demand ACF and the propagator. In fact using
the equation that defines the propagator model, i.e., pt =

∑

t ′≤t Gt−t ′qt ′ , it can be rewritten as:

G0E[qt+1|IMM
t ] =αµ

t
∑

t ′=−∞
Gt−t ′qt ′−

t
∑

t ′=−∞
Gt+1−t ′qt ′ . (62)

This equation is particularly interesting and it holds regardless the structure of the NT’s trades auto-
covariance.

Let us give a first example of how the above equation can be used in order to derive the result about
non correlated NT’s trades. The camouflage is exact in this case, so the excess demands are uncorre-
lated, i.e., the l.h.s. of the above equation is zero, then we can see that G decays itself exponentially
with the dividends time-scale. This is precisely what happens if the NT are not correlated, where the
propagator is given by Eq. (54).

ii) In the following we deal with the case of arbitrary Markovian NT’s trades process. Using the
expression of the general forecast matrix of a Gaussian process with zero mean, we can rewrite Eq. (62),
as

�

(Ω̃)−1
0

�−1
(Ω̃)−1

t+1−t ′ = G̃t+1−t ′−αµG̃t−t ′ , G̃τ= Gτ/G0. (63)

Since we found that in generic situations an approximate camouflage relation holds, we know that
the structure of the excess demand ACF matrix is given by Eq. (28). The inverse of the excess demand
ACF can be computed, and it is given by:

(Ω̃)−1
0 =

ω−
p
ω2−4

2b̃αNT

, ω=
b̃+1+ b̃α2

NT−α
2
NT

b̃αNT

, (64)
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and

(Ω̃)−1
t+1−t ′ =−

1

αNT b̃

�

1−(1+ b̃−α2
NT)(Ω̃)

−1
0

��

(Ω̃)−1
0 αNT b̃

�t−t ′
. (65)

Then, we can rewrite Eq. (63) as

G̃t+1−t ′ =αµG̃t−t ′+ Pρ t−t ′ , (66)

where we defined

P =−
1

αNT b̃

�

1−(1+ b̃−α2
NT)(Ω̃)

−1
0

��

(Ω̃)−1
0

�−1
, ρ= (Ω̃)−1

0 αNT b̃. (67)

The solution of Eq. (66) is Eq. (34) introduced in the main text. Moreover the second equation in
Eqs. (67) gives Eq. (35).

C.2 Solving the ansatz

In this appendix we present the calculations which allowed us to obtain the results presented in the
figures of Secs. 6.2, 6.3 and 6.4.

From the expression of the propagator given by Eq. (34), one is able to derive the inverse of the
symmetrized propagator, which is given by

(G̃sym)−1
t,t ′ = Γ1γ

t−t ′
1 +Γ2γ

t−t ′
2 +δ(t− t ′), (68)

where Γ1 and Γ2 are the solution of the following set of equations:

Γ1
αµ

αµ−γ1
+Γ2

αµ

αµ−γ2
+1= 0,

Γ1
ρ

ρ−γ1
+Γ2

ρ

ρ−γ2
+1= 0,

(69)

whereas γ1 and γ2 are the two real positive solution of the equation below:

αµ−αNT

αµ−ρ

�

1
1−αµγ1

−
αµ

αµ−γ1

�

+

�

1−
αµ−αNT

αµ−ρ

�

�

1
1−ργ1

−
ρ

ρ−γ1

�

+1= 0. (70)

With the explicit expression of Gs ym given above one is able to calculate the IT’s demand Kernels
given by Eqs. (24). These are given by

Rt−t ′ =−αt−t ′
αµ−αNT

αµ−ρ

�

Γ1
1−γ1αµ

+
Γ2

1−γ2αµ
+1

�

−ρ t−t ′
�

1−
αµ−αNT

αµ−ρ

��

Γ1
1−γ1αµ

+
Γ2

1−γ2αµ
+1

�

RNT
t−t ′ =δt ′−tR

NT

Rµt−t ′ =δt ′−tR
µ

(71)

where

RNT=−αNT

�

αµ−αNT

αµ−ρ

�

Γ1
(1−αµγ1)(1−αNTγ1)

+
Γ2

(1−αµγ2)(1−αNTγ2)

�

+(1−
αµ−αNT

αµ−ρ
)
�

Γ1
(1−αNTγ1)(1−ργ1)

+
Γ2

(1−αNTγ2)(1−ργ2)

�

+1

�

,

Rµ=
αµ

G0(1−αµ)

�

Γ1
1−γ1αµ

+
Γ2

1−γ2αµ
+1

�

.

(72)
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Moreover, by a careful inspection of previous formulas and numerical solver results of Eq. (25) in the
markovian case, one realize that the following property holds:

Rµ=

√

√

√
ΩNT

0

Ξ
µ
0

Æ

(RNT)2+2αNTRNT+1. (73)

From the equation above one is able to deduce the expression of G0, by inverting the previous equation
for Rµ.

Finally, imposing the break even condition per trade of the MM given by Eq. (14), one is able to
derive the following identity:

Ω0=Ξ
µ
0(R

µ)2
αµρ

γ1γ2

�

b̃+
αµ−αNT

αµ−ρ
1

1−αµαNT
+

�

1−
αµ−αNT

αµ−ρ

�

1
1−αNTρ

�

. (74)

In order to close the ansatz on itself we have to compute the total order flow auto-covariance. To do
this, we need to calculate the first row of the inverse (I−RL)−1 which appear in Eq. (10). This is given
by

{(I−RL)−1}t−t ′ =
{(Gs ym)−1}t,t ′
{(Gs ym)−1}t,t

=
αµρ

γ1γ2
{G̃s ym}t−t ′ . (75)

The explicit expression of the excess demand at time t is given by

qt =
αµρ

γ1γ2

¨�

qNT
t +

t
∑

t ′=−∞

�

Γ1γ
t−t ′
1 +Γ2γ

t−t ′
2

�

qNT
t ′

�

+RNT

�

qNT
t−1+

t−1
∑

t ′=−∞

�

Γ1γ
t−t ′−1
1 +Γ2γ

t−t ′−1
2

�

qNT
t ′

�

+ Rµ

�

µt−1+
t−1
∑

t ′=−∞

�

Γ1γ
t−t ′−1
1 +Γ2γ

t−t ′−1
2

�

µt ′

�«

.

(76)

With this equation one is able to compute explicitly the excess demand auto-correlation. In particu-
lar, by comparing the lag-0 term of it with the functional form given in Eq. (28) and using Eqs. (35) and
(74) one is able to compute an implicit very complicated equation for ρ, fixing completely the ansatz
given by Eq. (34).

The figures presented in Sec. 6 have been obtained by fitting the result of the numerical solver with
Eq. (34), obtaining numerical values for ρ which have been cross-validated using the aformentioned
analytical implicit equation for ρ, and then using the equations exposed in this section to compute the
other quantities of interest.
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