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Probabilistic representation of integration by parts formulae for some stochastic
volatility models with unbounded drift

JUNCHAO CHEN, NOUFEL FRIKHA, AND HOUZHI LI

Abstract. In this paper, we establish a probabilistic representation as well as some integration by parts formulae

for the marginal law at a given time maturity of some stochastic volatility model with unbounded drift. Relying
on a perturbation technique for Markov semigroups, our formulae are based on a simple Markov chain evolving on

a random time grid for which we develop a tailor-made Malliavin calculus. Among other applications, an unbiased
Monte Carlo path simulation method stems from our formulas so that it can be used in order to numerically compute

with optimal complexity option prices as well as their sensitivities with respect to the initial values or Greeks in

finance, namely the Delta and Vega, for a large class of non-smooth European payoff. Numerical results are proposed
to illustrate the efficiency of the method.

1. Introduction

In this work, we consider a two dimensional stochastic volatility model given by the solution of the following
stochastic differential equation (SDE for short) with dynamics

(1.1)

 St = s0 +
∫ t

0
rSs ds+

∫ t
0
σS(Ys)Ss dWs,

Yt = y0 +
∫ t

0
bY (Ys) ds+

∫ t
0
σY (Ys) dBs,

d〈B,W 〉s = ρ ds

where the coefficients bY , σS , σY : R→ R are smooth functions, W and B are one-dimensional standard Brownian
motions with correlation factor ρ ∈ (−1, 1) both being defined on some probability space (Ω,F ,P) .

The aim of this article is to prove a probabilistic representation formula for two integration by parts (IBP)
formulae for the marginal law of the process (S, Y ) at a given time maturity T . To be more specific, for a given
starting point (s0, y0) ∈ (0,∞) × R and a given finite time horizon T > 0, we establish two Bismut-Elworthy-Li
(BEL) type formulae for the two following quantities

(1.2) ∂s0E [h(ST , YT )] and ∂y0E [h(ST , YT )]

where h is a real-valued possibly non-smooth payoff function defined on [0,∞)× R.
Such IBP formulae have attracted a lot of interest during the last decades both from a theoretical and a practical

point of views as they can be further analyzed to derive properties related to the transition density of the underlying
process or to develop Monte Carlo simulation algorithm among other practical applications, see e.g. Nualart [12],
Malliavin and Thalmaier [11] and the references therein. They are also of major interest for computing sensitivities,
also referred as to Greeks in finance, of arbitrage price of financial derivatives which is the keystone for hedging
purpose, i.e. for protecting the value of a portfolio against some possible changes in sources of risk. The two
quantities appearing in (1.2) corresponds respectively to the Delta and Vega of the European option with payoff
h(ST , YT ). For a more detailed discussion on this topic, we refer the interested reader to Fournié and al. [6],[5]
for IBP formulae related to European, Asian options and conditional expectations, Gobet and al.[8], [4] for IBP
formulae related to some barrier or lookback options. Let us importantly point out that, from a numerical point
of view, the aforementioned IBP formulae will inevitably involve a time discretization procedure of the underlying
process and Malliavin weights, thus introducing two sources of error given by a bias and a statistical error, as it is
already the case for the computation of the price E[h(ST , YT )].

Relying on a perturbation argument for the Markov semigroup generated by the couple (X,Y ), we first establish
a probabilistic representation formula for the marginal law (ST , YT ) for a fixed prescribed maturity T > 0 based
on a simple Markov chain evolving along a random time grid given by the jump times of an independent renewal
process. Such probabilistic representation formula was first derived in Bally and Kohatsu-Higa [3] for the marginal
law of a multi-dimensional diffusion process and of some Lévy driven SDEs with bounded drift, diffusion and jump
coefficients. Still in the case of bounded coefficients, it was then further investigated in Labordère and al. [9],
Agarwal and Gobet [1] for multi-dimensional diffusion processes and in Frikha and al. [7] for one-dimensional killed
processes. The major advantage of the aforementioned probabilistic formulae lies in the fact that an unbiased Monte
Carlo simulation method directly stems from it. Thus, it may be used to numerically compute an option price with
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optimal complexity since its computation will be only affected by the statistical error. However, let us emphasize
that in general the variance of the Monte Carlo estimator tends to be large or even infinite. In order to circumvent
this issue, an importance sampling scheme based on the law of the jump times of the underlying renewal process
has been proposed in Anderson and Kohatsu-Higa [2] in the multi-dimensional diffusion framework and in [7] for
one-dimensional killed processes.

The main novelty of our approach in comparison with the aforementioned works is that we allow the drift
coefficient bY to be possibly unbounded as it is the case in most stochastic volatility models (Stein-Stein, Heston,
...). Such boundedness condition on the drift coefficient has appeared persistently in the previous contributions
and is actually essential since basically it allows to remove the drift in the choice of the approximation process in
order to derive the probabilistic representation formula. The key ingredient that we here develop in order to remove
this restriction consists in choosing adequatly the approximation process around which the original perturbation
argument of the Markov semigroup (X,Y ) is done by taking into account the transport of the initial condition by
the deterministic ordinary differential equation (ODE) having unbounded coefficient1. The approximation process,
or equivalently the underlying Markov chain on which the probabilistic representation is based, is then obtained
from the original dynamics (1.1) by freezing the coefficients bY , σS and σY along the flow of this ODE. We stress
that the previous choice is here crucial since it provides the adequate approximation process on which some good
controls can be established. To the best of our knowledge, this feature appears to be new in this context.

Having this probabilistic representation formula at hand together with the tailor-made Malliavin calculus ma-
chinery for this well-chosen underlying Markov chain, in the spirit of the BEL formula established in [7] for killed
diffusion processes with bounded drift coefficient, we rely on a propagation of the spatial derivatives forward in time
then perform local IBP formulas on each time interval of the random time grid and finally merge them in a suitable
manner in order to establish the two BEL formulae for the two quantities (1.2). Following the ideas developed in [2],
we achieve finite variance for the Monte Carlo estimators obtained from the probabilistic representation formulas
of the couple (ST , YT ) and of both IBP formulae by selecting adequatly the law of the jump times of the renewal
process. We finally provide some numerical tests illustrating our previous analysis.

The article is organized as follows. In Section 2, we introduce our assumptions on the coefficients, present the
approximation process that will be the main building block for our perturbation argument as well as the Markov
chain that will play a central role in our probabilistic representation for the marginal law of the process (X,Y )
and for our IBP formulae. In addition, we construct the taillor-made Malliavin calculus machinery related to
the underlying Markov chain upon which both IBP formulae are made. In Section 3, relying on the Markov
chain introduced in Section 2, we establish in Theorem 3.1 the probabilistic representation formula for the coupled
(ST , YT ). In Section 4, we establish the BEL formulae for the two quantities appearing in (1.2). The main result of
this section is Theorem 4.1. Some numerical results are presented in Section 5. The proofs of Theorem 3.1 and of
some other technical but important results are postponed to the appendix of Section A.

Notations: For a fixed time T and positive integer n, we will use the following notation for time and space variables
sn = (s1, · · · , sn), xn = (x1, · · · , xn), the differentials dsn = ds1 · · · dsn, dxn = dx1 · · · dxn and also introduce the
simplex ∆n(T ) := {sn ∈ [0, T ]n : 0 ≤ s1 < · · · sn ≤ T}.

In order to deal with time-degeneracy estimates, we will often use the following space-time inequality:

(1.3) ∀p, q > 0, ∀x ∈ R, |x|pe−q|x|
2

≤ (p/(2qe))p/2.

For two positive real numbers α and β, we define the Mittag-Leffler function z 7→ Eα,β(z) =
∑∞
k=0 z

k/Γ(αk + β).
For a positive integer d, we denote by C∞p (Rd) the space of real-valued functions which are infinitely differentiable

on Rd with derivatives of any order having polynomial growth.

2. Preliminaries: assumptions, definition of the underlying Markov chain and related Malliavin
calculus

2.1. Assumptions. Throughout the article, we work on a probability space (Ω,F ,P) which is assumed to be rich
enough to support all random variables that we will consider in what follows. We will work under the following
assumptions on the coefficients:

(AR) The coefficients σS and σY are bounded and smooth, in particular σS and σY belong to C∞b (R). The drift
coefficient bY belongs to C∞(R) and admits bounded derivatives of any order greater than or equal to one. In
particular, the drift coefficient bY may be unbounded.

1This dynamical system is obtained by removing the noise, that is, by setting σY ≡ 0, from the dynamics of Y in (1.1).
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(ND) There exists κ ≥ 1 such that for all x ∈ R,

κ−1 ≤ aS(x) ≤ κ, κ−1 ≤ aY (x) ≤ κ
where aS = σ2

S and aY = σ2
Y . Therefore, without loss of generality, we will assume that both σS and σY are positive

function.

Apply Itô’s Lemma to Xt = ln(St). We get

(2.1)


Xt = x0 +

∫ t
0

(
r − 1

2aS(Ys)
)
ds+

∫ t
0
σS(Ys) dWs,

Yt = y0 +
∫ t

0
bY (Ys) ds+

∫ t
0
σY (Ys) dBs,

d〈B,W 〉s = ρ ds,

with x0 = ln(s0). Without loss of generality, we will thus work with the Markov semigroup associated to the process
(X,Y ), namely Pth(x0, y0) = E[h(Xt, Yt)].

2.2. Choice of the approximation process. As already mentioned in the introduction, our strategy here is based
on a probabilistic representation of the marginal law, in the spirit of the unbiased simulation method introduced for
diffusion processes by Bally and Kohatsu-Higa [3], see also Labordère and al. [9], and investigated from a numerical
perspective by Andersson and Kohatsu-Higa [2]. We also mention the recent contribution of one the author with
Kohatsu-Higa and Li [7] for IBP formulae for the marginal law of one-dimensional killed diffusion processes.

However, at this stage, it is important to point out that our choice of approximation process significantly differs
from the four aforementioned references. Indeed, in the previous contributions, the drift is assumed to be bounded
and basically plays no role so that one usually removes it in the dynamics of the approximation process. In order
to handle the unbounded drift term bY appearing in the dynamics of the volatility process, one has to take into
account the transport of the initial condition by the ODE obtained by removing the noise in the dynamics of Y .
To be more specific, we denote by (mt(s, y))t∈[s,T ], 0 ≤ s ≤ T , the unique solution to the ODE ṁt = bY (mt) with
initial condition ms = y. Observe that by time-homogeneity of the coefficient bY , one has mt(s, y) = mt−s(0, y).
We will simplify the notation when s = 0 and write mt(y0) for mt(0, y0). When there is no ambiguity, we will often
omit the dependence with respect to the initial point y0 and we only write mt for mt(y0). We now introduce the
approximation process (X̄, Ȳ ) defined by

(2.2)

 X̄x0
t = x0 +

∫ t
0
(r − 1

2aS(ms)) ds+
∫ t

0
σS(ms) dWs,

Ȳ y0t = y0 +
∫ t

0
bY (ms) ds+

∫ t
0
σY (ms) dBs,

d〈B,W 〉s = ρ ds.

We will make intensive use of the explicit form of the Markov semigroup (P̄t)t∈[0,T ] defined for any bounded

measurable map h : R2 → R by P̄th(x0, y0) = E[h(X̄x0
t , Ȳ y0t )].

Lemma 2.1. Let (x0, y0) ∈ R2, ρ ∈ (−1, 1) and t ∈ (0,∞). Then, for any bounded and measurable map h : R2 → R,
it holds

P̄th(x0, y0) =

∫
R2

h(x, y) p̄(t, x0, y0, x, y) dxdy(2.3)

with

p̄(t, x0, y0, x, y) =
1

2πσS,tσY,t
√

1− ρ2
t

exp
(
− 1

2

(x− x0 − (rt− 1
2aS,t))

2

aS,t(1− ρ2
t )

− 1

2

(y −mt)
2

aY,t(1− ρ2
t )

)
× exp

(
ρt

(x− x0 − (rt− 1
2aS,t))(y −mt)

σS,tσY,t(1− ρ2
t )

)
where we introduced the notations

aS,t = aS,t(y0) := σ2
S,t :=

∫ t

0

aS(ms(y0)) ds,

aY,t = aY,t(y0) := σ2
Y,t :=

∫ t

0

aY (ms(y0)) ds,

σS,Y,t = σS,Y,t(y0) :=

∫ t

0

(σSσY )(ms(y0)) ds,

ρt := ρσS,Y,t/(σS,tσY,t).

Moreover, for any t ∈ (0, T ], there exists some positive constant C := C(T, ρ, a, r, κ) such that

(2.4) ∀t ∈ (0, T ], p̄(t, x0, y0, x, y) ≤ Cq̄4κ(t, x0, y0, x, y)
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where, for a positive parameter c, we introduced the density function

(2.5) (x, y) 7→ q̄c(t, x0, y0, x, y) :=
1

2πct
exp

(
− (x− x0)2

2ct
− (y −mt)

2

2ct

)
.

Proof. We write

(X̄x0
t , Ȳ y0t ) =

(
x0 + rt− 1

2
aS,t +

∫ t

0

σS(ms) dWs,mt +

∫ t

0

σY (ms)
(
ρdWs +

√
1− ρ2dW̃s

))
where W̃ is a one-dimensional standard Brownian motion independent of W . We thus deduce that (X̄x0

t , Ȳ y0t ) ∼
N (µ(t, x0, y0),Σt) with

µ(t, x0, y0) =
(
x0 + rt− 1

2
aS,t,mt

)
and Σt =

(
aS,t ρσS,Y,t

ρσS,Y,t aY,t

)
.

The expression of the transition density then readily follows. Now, from (ND), it is readily seen that aS,t, aY,t ≤
κt so that using the inequalities (a− b)2 ≥ 1

2a
2 − b2 and ρ2

t ≤ ρ2, it follows

p̄(t, x0, y0, x, y) =
1

2πσS,tσY,t
√

1− ρ2
t

exp
(
− 1

2

(x− x0 − (rt− 1
2aS,t))

2

aS,t(1− ρ2
t )

− 1

2

(y −mt)
2

aY,t(1− ρ2
t )

)
× exp

( ρt
1− ρ2

t

(x− x0 − (rt− 1
2aS,t))(y −mt)

σS,tσY,t

)
≤ C 1

2π(2κ)t
exp

(
− (4κ)−1 (x− x0)2

2t
− (4κ)−1 (y −mt)

2

2t

)
=: Cq̄4κ(t, x0, y0, x, y)

for some positive constants C := C(T, λ, ρ, a, r, κ).
�

We will also use the notation (X̄s,x
t , Ȳ s,yt )t≥s for the approximation process starting from (x, y) at time s and with

coefficients frozen along the deterministic flow {mt(s, y) = mt−s(y), t ≥ s}. Note that the corresponding Markov
semigroup satisfies P̄s,th(x, y) := E

[
h(X̄s,y

t , Ȳ s,yt )
]

= E
[
h(X̄y

t−s, Ȳ
y
t−s)

]
= P̄t−sh(x, y).

2.3. Markov chain on random time grid. The first tool that we will employ is a renewal process N that we
now introduce.

Definition 2.1. Let τ := (τn)n≥1 be a sequence of random variables such that (τn− τn−1)n≥1, with the convention

τ0 = 0, are i.i.d. with positive density function f and cumulant distribution function t 7→ F (t) =
∫ t
−∞ f(s) ds.

Then, the renewal process N := (Nt)t≥0 with jump times τ is defined by Nt :=
∑
n≥1 1{τn≤t}.

It is readily seen that, for any t > 0, {Nt = n} = {τn ≤ t < τn+1} and by an induction argument that we omit,
one may prove that the joint distribution of (τ1, · · · , τn) is given by

P(τ1 ∈ ds1, · · · , τn ∈ dsn) =

n−1∏
j=0

f(si+1 − si)1{0<s1<···<sn}

which in turn implies

E[1{Nt=n}Φ(τ1, · · · , τn)] = E[1{τn≤t<τn+1}Φ(τ1, · · · , τn)]

=

∫ ∞
t

∫
∆n(t)

Φ(s1, · · · , sn)

n∏
j=0

f(sj+1 − sj) dsn+1

with the convention s0 = 0. Hence, by Fubini’s theorem, it holds

E[1{Nt=n}Φ(τ1, · · · , τn)] =

∫
∆n(t)

Φ(s1, · · · , sn)(1− F (t− sn))

n−1∏
j=0

f(sj+1 − sj) dsn(2.6)

for any measurable map Φ : ∆n(t)→ R satisfying E[1{Nt=n}|Φ(τ1, · · · , τn)|] <∞.
Usual choices that we will consider are the followings.

Example 2.2. (1) If the density function f is given by f(t) = λe−λt1[0,∞)(t) for some positive parameter λ,
then N is a Poisson process with intensity λ.
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(2) If the density function f is given by f(t) = 1−α
τ̄1−α

1
tα1[0,τ̄ ](t) for some parameters (α, τ̄) ∈ (0, 1) × (0,∞),

then N is a renewal process with [0, τ̄ ]-valued Beta(1− α, 1) jump times.

(3) More generally, if the density function f is given by f(t) = τ̄1−α−β

B(α,β)
1

t1−α(τ̄−t)1−β 1[0,τ̄ ](t) for some parameters

(α, β, τ̄) ∈ (0, 1)2 × (0,∞), then N is a renewal process with [0, τ̄ ]-valued Beta(α, β) jump times.

Given a sequence Z = (Z1
n, Z

2
n)n≥1 of i.i.d. random vector with lawN (0, I2) and a renewal process N independent

of Z with jump times (τi)i≥0, we set ζi = τi ∧ T , with the convention ζ0 = 0, and we consider the two-dimensional
Markov chain (X̄, Ȳ ) with (X̄0, Ȳ0) = (x0, y0) at time 0 (evolving on the random time grid (ζi)i≥0) and with
dynamics for any 0 ≤ i ≤ NT

(2.7)

 X̄i+1 = X̄i +
(
r(ζi+1 − ζi)− 1

2aS,i

)
+ σS,iZ

1
i+1,

Ȳi+1 = mi + σY,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
,

where we introduced the notations

aS,i := σ2
S,i := aS,ζi+1−ζi(Ȳi) =

∫ ζi+1−ζi

0

aS(ms(Ȳi)) ds,

aY,i := σ2
Y,i := aY,ζi+1−ζi(Ȳi) =

∫ ζi+1−ζi

0

aY (ms(Ȳi)) ds,

σS,Y,i :=

∫ ζi+1−ζi

0

(σSσY )(ms(Ȳi)) ds,

ρi := ρζi+1−ζi(Ȳi) = ρ
σS,Y,i
σS,iσY,i

,

mi := mζi+1−ζi(Ȳi).

We will denote by σ′S,i the first derivative of y 7→ σS,i(y) taken at Ȳi and proceed similarly for the quantities

σ′Y,i, σ
′
S,Y,i, ρ

′
i and m′i. We define the filtration G = (Gi)i≥0 where Gi = σ(Z1

j , Z
2
j , 0 ≤ j ≤ i), for i ≥ 1 and G0

stands for the trivial σ-field. We assume that the filtration G satisfies the usual conditions. For an integer n, we
will use the notations ζn = (ζ0, · · · , ζn) and τn = (τ0, · · · , τn).

2.4. Tailor-made Malliavin calculus for the Markov chain (X̄, Ȳ ). In this section we introduce a tailor-
made Malliavin calculus for the underlying Markov chain (X̄, Ȳ ) defined by (2.7) which will be employed in order
to establish our IBP formulae. Instead of using an infinite dimensional calculus as it is usually done in the literature,
see e.g. Nualart [12], the approach developed below is based on a finite dimensional calculus for which the dimension
is given by the number of jumps of the underlying renewal process involved in the Markov chain (X̄, Ȳ ).

Definition 2.3. Let n ∈ N. For any i ∈ {0, · · · , n}, we define the set Si,n(X̄, Ȳ ), as the space of random variables
H such that

• H = h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1), on the set {NT = n}, where we recall ζn+1 := (ζ0, · · · , ζn+1) = (0, ζ1, · · · , ζn, T ).

• For any sn+1 ∈ ∆n+1(T ), the map h(., ., ., ., sn+1) ∈ C∞p (R4).

For a r.v. H ∈ Si,n(X̄, Ȳ ), we will often abuse the notations and write

H ≡ H(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1)

that is the same symbol H may denote the r.v. or the function in the set Si,n(X̄, Ȳ ). One can easily define the flow
derivatives for H ∈ Si,n(X̄, Ȳ ) as follows

∂X̄i+1
H = ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1),

∂Ȳi+1
H = ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1),

∂X̄iH = ∂1h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1) + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂X̄iX̄i+1,

∂ȲiH = ∂2h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1) + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂ȲiX̄i+1 + ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1)∂Ȳi Ȳi+1,
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and from the dynamics (2.7)

∂X̄iX̄i+1 = 1,

∂Ȳi Ȳi+1 = m′i + σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
+ σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

)
,(2.8)

∂ȲiX̄i+1 = −1

2
a′S,i + σ′S,iZ

1
i+1 = −1

2
a′S,i +

σ′S,i
σS,i

(
X̄i+1 − X̄i −

(
r(ζi+1 − ζi)−

1

2
aS,i

))
.(2.9)

We now define the integral and derivative operators for H ∈ Si,n(X̄, Ȳ ), as

I(1)
i+1(H) = H

[ Z1
i+1

σS,i(1− ρ2
i )
− ρi

1− ρ2
i

ρiZ
1
i+1 +

√
1− ρ2

iZ
2
i+1

σS,i

]
−D(1)

i+1H,(2.10)

I(2)
i+1(H) = H

[ρiZ1
i+1 +

√
1− ρ2

iZ
2
i+1

σY,i(1− ρ2
i )

− ρi
1− ρ2

i

Z1
i+1

σY,i

]
−D(2)

i+1H,(2.11)

D(1)
i+1H = ∂X̄i+1

H,(2.12)

D(2)
i+1H = ∂Ȳi+1

H.(2.13)

Note that due to the above definitions and assumption (H), it is readily checked that I(1)
i+1(H), I(2)

i+1(H),D(1)
i+1H

and D(2)
i+1H are elements of Si,n(X̄, Ȳ ) so that we can define iterations of the above operators. Namely, by induction,

for a multi-index α = (α1, · · · , αp) of length p with αi ∈ {1, 2} and αp+1 ∈ {1, 2}, we define

I(α,αp+1)
i+1 (H) = I(αp+1)

i+1 (I(α)
i+1(H)), D(α,αp+1)

i+1 H = D(αp+1)
i+1 (D(α)

i+1H)

with the intuitive notation (α, αp+1) = (α1, · · · , αp+1).
Throughout the article, we will use the following notation for a certain type of conditional expectation that will

be frequently employed. For any X ∈ L1(P) and any i ∈ {0, · · · , n},

Ei,n[X] = E[X|Gi, τn+1, NT = n]

where we recall that we employ the notation τn+1 = (τ0, · · · , τn+1). Having the above definitions and notations at
hand, the following duality formula is satisfied: for any non-empty multi-index α of length p, with αi ∈ {1, 2}, for
any i ∈ {1, · · · , p}, p being a positive integer, it holds

(2.14) Ei,n
[
D(α)
i+1f(X̄i+1, Ȳi+1)H

]
= Ei,n

[
f(X̄i+1, Ȳi+1)I(α)

i+1(H)
]
.

In order to obtain explicit norm estimates for random variables in Si,n(X̄, Ȳ ), it is useful to define for H ∈
Si,n(X̄, Ȳ ), i ∈ {0, · · · , n} and p ≥ 1

‖H‖pp,i,n = Ei,n[|H|p].
We will also employ a chain rule formula for the integral operators defined above.

Lemma 2.2. Let H ≡ H(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1) ∈ Si,n(X̄, Ȳ ), for some i ∈ {0, · · · , n}. The following chain rule

formulae hold for any (α1, α2) ∈ {1, 2}2

∂X̄iI
(α1)
i+1 (H) = I(α1)

i+1 (∂X̄iH), ∂X̄iI
(α1,α2)
i+1 (H) = I(α1,α2)

i+1 (∂X̄iH).(2.15)

Moreover, one has

∂ȲiI
(1)
i+1(H) = I(1)

i+1(∂ȲiH)−
σ′S,i
σS,i
I(1)
i+1(H)− ρ′i

1− ρ2
i

σY,i
σS,i
I(2)
i+1(H),(2.16)

∂ȲiI
(2)
i+1(H) = I(2)

i+1(∂ȲiH)−
(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2)
i+1(H),(2.17)

∂ȲiI
(1,1)
i+1 (H) = I(1,1)

i+1 (∂ȲiH)− 2
σ′S,i
σS,i
I(1,1)
i+1 (H)− ρ′i

1− ρ2
i

σY,i
σS,i

(
I(1,2)
i+1 (H) + I(2,1)

i+1 (H)
)
,(2.18)

∂ȲiI
(2,2)
i+1 (H) = I(2,2)

i+1 (∂ȲiH)− 2

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2,2)
i+1 (H),(2.19)

∂ȲiI
(1,2)
i+1 (H) = I(1,2)

i+1 (∂ȲiH)−
(
σ′S,i
σS,i

+
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(1,2)
i+1 (H)− ρ′i

1− ρ2
i

σY,i
σS,i
I(2,2)
i+1 (H).(2.20)
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Proof. Observe that from the very definitions (2.10) and (2.11), one directly gets

∂X̄iI
(1)
i+1(1) = ∂X̄iI

(2)
i+1(1) = 0

while, also by direct computation, we obtain

∂ȲiI
(1)
i+1(1) = −

σ′S,i
σS,i
I(1)
i+1(1)− ρ′i

1− ρ2
i

σY,i
σS,i
I(2)
i+1(1),

∂ȲiI
(2)
i+1(1) = −

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2)
i+1(1).

We thus deduce

∂X̄iI
(α1)
i+1 (H) = ∂X̄iHI

(α1)
i+1 (1) +H∂X̄iI

(α1)
i+1 (1)− ∂X̄iD

(α1)
i+1 H

= ∂X̄iHI
(α1)
i+1 (1)−D(α1)

i+1 (∂X̄iH)

= I(α1)
i+1 (∂X̄iH)

where we used the fact D(α1)
i+1 ∂X̄iH = ∂X̄iD

(α1)
i+1 H which easily follows by direct computation. As a consequence, it

is readily seen

∂X̄iI
(α1,α2)
i+1 (H) = ∂X̄iI

(α2)
i+1 (I(α1)

i+1 (H)) = I(α2)
i+1 (∂X̄iI

(α1)
i+1 (H)) = I(α2)

i+1 (I(α1)
i+1 (∂X̄iH)) = I(α1,α2)

i+1 (∂X̄iH).

This concludes the proof of (2.15). The chain rule formulae (2.16), (2.17), (2.18), (2.19) and (2.20) follow from
similar arguments. Let us prove (2.16) and (2.17). The proofs of (2.18), (2.19) and (2.20) are omitted. Observe

first that in general D(α1)
i+1 ∂ȲiH 6= ∂ȲiD

(α1)
i+1 H. Indeed, by standard computations, it holds

∂ȲiD
(1)
i+1H = ∂Ȳi∂X̄i+1

h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n)

= ∂2
2,3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n) + ∂2
3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n)∂ȲiX̄i+1 + ∂2
4,3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n)∂Ȳi Ȳi+1,

D(1)
i+1∂ȲiH = ∂X̄i+1

∂Ȳih(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n)

= ∂X̄i+1
(∂2h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n) + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n)∂ȲiX̄i+1 + ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n)∂Ȳi Ȳi+1)

= ∂2
3,2h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n) + ∂2
3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n)∂ȲiX̄i+1 + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n)∂X̄i+1

∂ȲiX̄i+1

+ ∂2
3,4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n)∂Ȳi Ȳi+1 + ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n)∂X̄i+1

∂Ȳi Ȳi+1

= ∂ȲiD
(1)
i+1H + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n)∂X̄i+1
∂ȲiX̄i+1 + ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n)∂X̄i+1
∂Ȳi Ȳi+1

= ∂ȲiD
(1)
i+1H +D(1)

i+1H∂X̄i+1
∂ȲiX̄i+1 +D(2)

i+1H∂X̄i+1
∂Ȳi Ȳi+1

= ∂ȲiD
(1)
i+1H +

σ′S,i
σS,i
D(1)
i+1H +

ρ′i
1− ρ2

i

σY,i
σS,i
D(2)
i+1H

where we used the two identities ∂X̄i+1
∂ȲiX̄i+1 =

σ′S,i
σS,i

and ∂X̄i+1
∂Ȳi Ȳi+1 =

ρ′i
1−ρ2i

σY,i
σS,i

which readily stems from (2.8),

(2.9) and the dynamics (2.7).
From (2.10) and the previous identity, we thus obtain

∂ȲiI
(1)
i+1(H) = ∂ȲiI

(1)
i+1(1)H + I(1)

i+1(1)∂ȲiH − ∂ȲiD
(1)
i+1H

= −
σ′S,i
σS,i
I(1)
i+1(1)H − ρ′i

1− ρ2
i

σY,i
σS,i
I(2)
i+1(1)H + I(1)

i+1(1)∂ȲiH −D
(1)
i+1∂ȲiH +

σ′S,i
σS,i
D(1)
i+1H

+
ρ′i

1− ρ2
i

σY,i
σS,i
D(2)
i+1H

= −
σ′S,i
σS,i

(
I(1)
i+1(1)H −D(1)

i+1H
)

+ I(1)
i+1(1)∂ȲiH −D

(1)
i+1∂ȲiH −

ρ′i
1− ρ2

i

σY,i
σS,i

(
I(2)
i+1(1)H −D(2)

i+1H
)

= I(1)
i+1(∂ȲiH)−

σ′S,i
σS,i
I(1)
i+1(H)− ρ′i

1− ρ2
i

σY,i
σS,i
I(2)
i+1(H).

Similarly, after some algebraic manipulations using (2.7) and (2.8), we get ∂Ȳi+1
∂Ȳi Ȳi+1 =

σ′Y,i
σY,i
− ρ′iρi

1−ρ2i
so that

D(2)
i+1∂ȲiH = ∂ȲiD

(2)
i+1H +D(2)

i+1H∂Ȳi+1
∂Ȳi Ȳi+1 = ∂ȲiD

(2)
i+1H +

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
D(2)
i+1H
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so that, omitting some technical details, we get

∂ȲiI
(2)
i+1(H) = I(2)

i+1(∂ȲiH)−
(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2)
i+1(1)H +

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
D(2)
i+1H

= I(2)
i+1(∂ȲiH)−

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2)
i+1(H).

The identities (2.18), (2.19) and (2.20) eventually follows from (2.16) and (2.17) using some simple algebraic
computations. �

We conclude this section by introducing the following space of random variables which satisfy some time regularity
estimates.

Definition 2.4. Let ` ∈ Z and n ∈ N. For any i ∈ {0, · · · , n}, we define the space Mi,n(X̄, Ȳ , `/2) as the set of
finite random variables H ∈ Si,n(X̄, Ȳ ) satisfying the following time regularity estimate: for any p ≥ 1, for any
c > 0, there exists some positive constants C := C(T ), c′, T 7→ C(T ) being non-decreasing and c′ being independent
of T , such that for any (xi, yi, xi+1, yi+1, sn+1) ∈ R4 ×∆n+1(T ),

|H(xi, yi, xi+1, yi+1, sn+1)|pq̄c(si+1 − si, xi, yi, xi+1, yi+1)(2.21)

≤ C(si+1 − si)p`/2q̄c′(si+1 − si, xi, yi, xi+1, yi+1)

where the density function R2 3 (xi+1, yi+1) 7→ q̄c(si+1 − si, xi, yi, xi+1, yi+1) is defined in Lemma 2.1.

We again remark that since the space Mi,n(X̄, Ȳ , `/2) is a subset of Si,n(X̄, Ȳ ), when we say that a random
variable Mi,n(X̄, Ȳ , `/2) this statement is always understood on the set {NT = n}.

Before proceeding, let us provide a simple example of some random variables that belong to the aforementioned
space. From (2.10) and the dynamics (2.7) of the Markov chain (X̄, Ȳ ), it holds

I(1)
i+1(1) =

[X̄i+1 − X̄i − (r(ζi+1 − ζi)− 1
2aS,i)

aS,i(1− ρ2
i )

− ρi
1− ρ2

i

Ȳi+1 −mi

σS,iσY,i

]
,

I(1,1)
i+1 (1) = (I(1)

i+1(1))2 −D1
i+1(I(1)

i+1(1)) = (I(1)
i+1(1))2 − 1

aS,i(1− ρ2
i )
,

so that, I(1)
i+1(1) and I(1,1)

i+1 (1) belong to Si,n(X̄, Ȳ ). Moreover, under (ND), for any p ≥ 1, it holds∣∣∣I(1)
i+1(1)(xi, yi, xi+1, yi+1, sn+1)

∣∣∣p ≤ C(1 +
|xi+1 − xi|p

(si+1 − si)p
+
|yi+1 −mi(yi)|p

(si+1 − si)p
)

and similarly,∣∣∣I(1,1)
i+1 (1)(xi, yi, xi+1, yi+1, sn+1)

∣∣∣p ≤ C(1 +
1

(si+1 − si)p
+
|xi+1 − xi|2p

(si+1 − si)2p
+
|yi+1 −mi(yi)|2p

(si+1 − si)2p

)
.

Hence, from the space-time inequality (1.3), for any c > 0 and any c′ > c, it holds∣∣∣I(1)
i+1(1)(xi, yi, xi+1, yi+1, sn+1)

∣∣∣pq̄c(si+1 − si, xi, yi, xi+1, yi+1) ≤ C(si+1 − si)−p/2q̄c′(si+1 − si, xi, yi, xi+1, yi+1)

and∣∣∣I(1,1)
i+1 (1)(xi, yi, xi+1, yi+1, sn+1)

∣∣∣pq̄c(si+1 − si, xi, yi, xi+1, yi+1) ≤ C(si+1 − si)−pq̄c′(si+1 − si, xi, yi, xi+1, yi+1)

for some positive constant C := C(T ), T 7→ C(T ) being non-decreasing. We thus conclude that I(1)
i+1(1) ∈

Mi,n(X̄, Ȳ ,−1/2) and I(1,1)
i+1 (1) ∈Mi,n(X̄, Ȳ ,−1) for any i ∈ {0, · · · , n}.

A straightforward generalization of the above example is the following property that will be frequently used in
the sequel. We omit its proof.

Lemma 2.3. Let n ∈ N and i ∈ {0, · · · , n}. Assume that H ∈ Mi,n(X̄, Ȳ , `/2) and D(α1)
i H ∈ Mi,n(X̄, Ȳ , `′/2),

for some (`, `′) ∈ Z2 and some α1 ∈ {1, 2}. Then, it holds I(α1)
i (H) ∈ Mi,n(X̄, Ȳ , ((` − 1) ∧ `′)/2). Additionally,

if D(α2)
i H ∈ Mi,n(X̄, Ȳ , `′/2) and D(α1,α2)

i H ∈ Mi,n(X̄, Ȳ , `′′/2), for some `′′ ∈ Z and α2 ∈ {1, 2}, then it holds

I(α1,α2)
i (H) ∈ Mi,n(X̄, Ȳ , ((`− 2) ∧ (`′ − 1) ∧ `′′)/2). Finally, if H1 ∈ Mi,n(X̄, Ȳ , `1/2) and H2 ∈ Mi,n(X̄, Ȳ , `2/2)

for some (`1, `2) ∈ Z2 then H1H2 ∈Mi,n(X̄, Ȳ , (`1 + `2)/2) and (ζi+1 − ζi)I(α1)
i (H1) ∈Mi,n(X̄, Ȳ , (`1 + 1)/2).
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Finally, we importantly emphasize that if H ∈ Mi,n(X̄, Ȳ , `/2) for some n ∈ N, i ∈ {0, · · · , n} and ` ∈ Z, then,
its conditional Lp(P)-moment is finite and also satisfies a time regularity estimate. More precisely, for any p ≥ 1,
it holds

(2.22) ‖H‖p,i,n ≤ C(ζi+1 − ζi)`/2

for some positive constant C := C(T ), T 7→ C(T ) being non-decreasing. Indeed, using the fact that the sequence
Z is independent of N as well as the upper-estimate (2.4) of Lemma 2.1 and finally (2.21), one directly gets

‖H‖pp,i,n = Ei,n
[
|H(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)|p
∣∣∣X̄i, Ȳi, τ

n+1, NT = n
]

=

∫
R2

|H(X̄i, Ȳi, xi+1, yi+1, ζ
n+1)|pp̄(ζi+1 − ζi, X̄i, Ȳi, xi+1, yi+1) dxi+1dyi+1

≤ C
∫
R2

|H(X̄i, Ȳi, xi+1, yi+1, ζ
n+1)|pq̄4κ(ζi+1 − ζi, X̄i, Ȳi, xi+1, yi+1) dxi+1dyi+1

≤ C(ζi+1 − ζi)p`/2

so that (2.22) directly follows. The previous conditional Lp(P)-moment estimate will be used at several places in
the sequel.

3. Probabilistic representation for the couple (ST , YT ).

In this section, we establish a probabilistic representation for the marginal law (ST , YT ), or equivalently, for the
law of (XT , YT ) which is based on the Markov chain (X̄, Ȳ ) introduced in the previous section. For γ > 0, we denote
by Bγ(R2) the set of Borel measurable map h : R2 → R satisfying the following exponential growth assumption at
infinity, namely, for some positive constant C, for any (x, y) ∈ R2,

(3.1) |h(x, y)| ≤ C exp(γ(|x|2 + |y|2)).

Theorem 3.1. Let T > 0. Under assumptions (AR) and (ND), the law of the couple (XT , YT ) given by the unique
solution to the SDE (2.1) at time T starting from (x0 = ln(s0), y0) at time 0 satisfies the following probabilistic
representation: there exists a positive constant c := c(T, bY , κ) such that for any 0 ≤ γ < c−1 and any h ∈ Bγ(R2),
it holds

(3.2) E[h(XT , YT )] = E
[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
where the random variables θi ∈ Si−1,n(X̄, Ȳ ) are defined by

θi = (f(ζi − ζi−1))−1
[
I(1,1)
i (ciS)− I(1)

i (ciS) + I(2,2)
i (ciY ) + I(2)

i (biY ) + I(1,2)
i (ciY,S)

]
, 1 ≤ i ≤ NT ,(3.3)

θNT+1 = (1− F (T − ζNT ))−1,(3.4)

with

ciS :=
1

2

(
aS(Ȳi)− aS(mi−1)

)
,

ciY :=
1

2

(
aY (Ȳi)− aY (mi−1)

)
,

biY := bY (Ȳi)− bY (mi−1),

ciY,S := ρ((σSσY )(Ȳi)− (σSσY )(mi−1)).

Assume furthermore that N is a renewal process with Beta(α, 1) jump times. For any p ≥ 1 satisfying p( 1
2−α) ≤

1−α, for any γ such that 0 ≤ pγ < c−1 and any h ∈ Bγ(R2), the random variable appearing inside the expectation
in the right-hand side of (3.2) admits a finite Lp(P)-moment. In particular, if α = 1/2 then for any p ≥ 1, for any
h ∈ Bγ(R2) with 0 ≤ pγ < c−1, the Lp(P)-moment is finite.

The proof of Theorem 3.1 is postponed to Appendix A.1.
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4. Integration by parts formulae

In this section, we establish two IBP formulae for the law of the couple (ST , YT ). More precisely, we are interested
in providing a Bismut-Elworthy-Li formula for the two quantities

∂s0E[h(ST , YT )], ∂y0E[h(ST , YT )].

Our strategy is divided into two steps as follows:

Step 1: The first step was performed with the probabilistic representation established in Theorem 3.1 for the
couple (XT , YT ) involving the two-dimensional Markov chain (X̄, Ȳ ) evolving on a time grid governed by the jump
times of the renewal process N . Introducing h(x, y) = f(ex, y) and assuming that f is of polynomial growth at
infinity, it is sufficient to consider the two quantities

∂s0E
[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
, ∂y0E

[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]

for h ∈ Bγ(R2) for some γ > 0 recalling that x0 = ln(s0).

Step 2: At this stage, one might be tempted to perform a standard IBP formula as presented in Nualart [12] on
the whole time interval [0, T ]. However, such a strategy is likely to fail. The main reason is that the Skorokhod

integral of the product of weights
∏NT
i=1 θi will inevitably involve the Malliavin derivative of θi which will in turn

raise some integrability issues of the resulting Malliavin weight. The key idea that we use in order to circumvent
this issue consists in performing local IBP formulae on each of the random intervals [ζi, ζi+1], i = 0, · · · , NT , that
is, by using the noise of the Markov chain on this specific time interval and then by combining all these local IBP
formulae in a suitable way.

To implement successfully our strategy, two main ingredients are needed. Our first ingredient consists in trans-
ferring the partial derivatives ∂s0 and ∂y0 on the expectation forward in time from the first time interval [0, ζ1] to
the interval on which we perform the local IBP formula, say [ζi, ζi+1]. Our second ingredient consists in combining
these various local IBP formulae in an adequate manner. Roughly speaking, we will consider a weighted sum of
each IBP formula, the weight being precisely the length of the corresponding time interval.

4.1. The transfer of derivative formula.

Lemma 4.1. Let h ∈ C1
p(R2) and n ∈ N. The maps R2 3 (x, y) 7→ Ei,n

[
h(X̄i+1, Ȳi+1)θi+1|(X̄i, Ȳi) = (x, y)

]
,

i ∈ {0, · · · , n}, belong to C1
p(R2) a.s. Moreover, the following transfer of derivative formulae hold

∂s0E0,n

[
h(X̄1, Ȳ1)θ1

]
= E0,n

[
∂X̄1

h(X̄1, Ȳ1)
θ1

s0

]
(4.1)

while for 1 ≤ i ≤ n,

∂X̄iEi,n
[
h(X̄i+1, Ȳi+1)θi+1

]
= Ei,n

[
∂X̄i+1

h(X̄i+1, Ȳi+1)θi+1

]
.(4.2)

Similarly, the following transfer of derivative formulae hold: for any 0 ≤ i ≤ n− 1

∂ȲiEi,n
[
h(X̄i+1, Ȳi+1)θi+1

]
= Ei,n

[
∂Ȳi+1

h(X̄i+1, Ȳi+1)
−→
θ
e,Y

i+1

]
+ Ei,n

[
∂X̄i+1

h(X̄i+1, Ȳi+1)
−→
θ
e,X

i+1

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)

−→
θ ci+1

]
(4.3)
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with

−→
θ e,Yi+1 = (f(ζi+1 − ζi))−1

[
I(1,1)
i+1 (di+1

S ) + I(2,2)
i+1 (di+1

Y ) + I(1)
i+1(eY,i+1

S ) + I(2)
i+1(eY,i+1

Y ) + I(1,2)
i+1 (di+1

Y,S)
]
,

−→
θ e,Xi+1 = (f(ζi+1 − ζi))−1I(1)

i+1(eX,i+1
S ),

−→
θ ci+1 = I(1)

i+1

(
∂ȲiX̄i+1θi+1 −

−→
θ e,Xi+1

)
+ ∂Ȳiθi+1

+ I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1 +

(
σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
+ σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

))
θi+1

)
,

di+1
S = m′ic

i+1
S ,

di+1
Y = m′ic

i+1
Y ,

di+1
Y,S = m′ic

i+1
Y,S ,

eY,i+1
S = −m′ici+1

S + ∂Ȳic
i+1
Y,S ,

eY,i+1
Y = m′ib

i+1
Y + ∂Ȳic

i+1
Y ,

eX,i+1
S = ∂Ȳic

i+1
S .

For i = n, one also has

∂ȲnEn,n
[
h(X̄n+1, Ȳn+1)θn+1

]
= En,n

[
∂Ȳn+1

h(X̄n+1, Ȳn+1)
−→
θ
e,Y

n+1

]
+ En,n

[
∂X̄n+1

h(X̄n+1, Ȳn+1)
−→
θ
e,X

n+1

]
+ En,n

[
h(X̄n+1, Ȳn+1)

−→
θ cn+1

]
(4.4)

with

−→
θ
e,Y

n+1 = (1− F (T − ζn))−1
(
m′n + σ′Y,n

(
ρnZ

1
n+1 +

√
1− ρ2

nZ
2
n+1

)
+ σY,n

ρ′n√
1− ρ2

n

(√
1− ρ2

nZ
1
n+1 − ρnZ2

n+1

))
,

−→
θ
e,X

n+1 = (1− F (T − ζn))−1
(
− 1

2
a′S,n + σ′S,nZ

1
n+1

)
,

and we set
−→
θ cn+1 = 0 for notational convenience.

Finally, the weight sequences (
−→
θ e,Yi )1≤i≤n+1, (

−→
θ e,Xi )1≤i≤n+1 and (

−→
θ ci )1≤i≤n+1 defined above satisfy

f(ζi − ζi−1)
−→
θ e,Yi , f(ζi − ζi−1)

−→
θ ci ∈Mi−1,n(X̄, Ȳ ,−1/2), f(ζi − ζi−1)

−→
θ e,Xi ∈Mi−1,n(X̄, Ȳ , 0), i ∈ {1, · · · , n}

and (1− F (T − ζn))
−→
θ e,Yn+1 ∈Mn,n(X̄, Ȳ , 0), (1− F (T − ζn))

−→
θ e,Xn+1,∈Mn,n(X̄, Ȳ , 1/2).

The proof of Lemma 4.1 is postponed to Appendix A.2. The transfer of derivative procedure starts on the first
time interval [0, ζ1] according to formulae (4.1) and (4.3) (for i = 0). It expresses the fact that the flow derivatives
∂s0 and ∂y0 of the conditional expectations on the left-hand side of the equations are transferred to derivative
operators ∂X̄1

and ∂Ȳ1
on the test function h appearing on the right-hand side. Remark that the first derivatives

of h have been written ubiquitously as ∂X̄i+1
h(X̄i+1, Ȳi+1) and ∂Ȳi+1

h(X̄i+1, Ȳi+1).

Then, by the Markov property satisfied by the process (X̄, Ȳ ), the function h appearing inside the (conditional)
expectations on the right-hand side of (4.1) and (4.3) (for i = 0) will be given by the conditional expectation
appearing on the left-hand side of the same equations but for i = 1. The transfer of derivative formulae for the
following time intervals are obtained by induction using (4.2) and (4.3) up to the last time interval. Doing so,
we obtain various transfer of derivative formulae by transferring successively the derivative operators through all
intervals forward in time.
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4.2. The integration by parts formulae. We first define the weights that will be used in our IBP formulae. For
an integer n, on the set {NT = n}, for any k ∈ {1, · · · , n+ 1} and any j ∈ {1, · · · , k}, we define

−→
θ I

(1),n+1
k :=

n+1∏
i=k+1

θi × I(1)
k (θk)×

k−1∏
i=1

θi,

−→
θ C

n+1
j :=

n+1∏
i=j+1

θi ×
−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi ,

−→
θ I

(2),n+1
k :=

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi ,

−→
θ
I(1),n+1
k
j :=

n+1∏
i=k+1

θi × I(1)
k (θk)×

k−1∏
i=j+1

θi ×
−→
θ e,Xj ×

j−1∏
i=1

−→
θ e,Yi , j = 1, · · · , k − 1,

−→
θ
I(1),n+1
k

k :=

n+1∏
i=k+1

θi × I(1)
k (
−→
θ e,Xk )×

k−1∏
i=1

−→
θ e,Yi .

With the above definitions at hand, we are now able to state our IBP formulae.

Theorem 4.1. Let T > 0. Under assumptions (AR) and (ND), the law of the couple (XT , YT ), given by the
unique solution to the SDE (2.1) at time T starting from (x0 = ln(s0), y0) at time 0, satisfies the following Bismut-
Elworthy-Li IBP formulae: there exists some positive constant c := c(T, bY , κ) such that for any 0 ≤ γ < c−1 and
any h ∈ Bγ(R2), for any (s0, y0) ∈ (0,∞)× R, it holds

s0T∂s0E
[
h(XT , YT )

]
= E

[
h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
−→
θ I

(1),NT+1

k

]
(4.5)

and

T∂y0E
[
h(XT , YT )

]
= E

h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

−→
θ C

NT+1

j +
−→
θ
I(1),NT+1

k
j

) .(4.6)

Moreover, if N is a renewal process with Beta(α, 1) jump times, then, for any p ≥ 1 satisfying p( 1
2 −α) ≤ 1−α,

for any γ such that 0 ≤ pγ < c−1 and any h ∈ Bγ(R2), the random variables appearing inside the expectation in
the right-hand side of (4.5) and (4.6) admit a finite Lp(P)-moment. In particular, if α = 1/2 then for any p ≥ 1,
for any h ∈ Bγ(R2) with 0 ≤ pγ < c−1, the Lp(P)-moment is finite.

Proof. We only prove the IBP formula (4.6). The proof of (4.5) follows by completely analogous (and actually more
simple) arguments and is thus omitted.

Step 1: proof of the IBP formula (4.6) for h ∈ C1
b (R2).

Let h ∈ C1
b (R2). From Theorem 3.1 and Fubini’s theorem, we write

E[h(XT , YT )] =
∑
n≥0

E
[
E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi|τn+1
]

1{NT=n}

]
(4.7)

where we used the fact that {NT = n} = {τn+1 > T}∩ {τn ≤ T}. In most of the arguments below, we will work on
the set {NT = n}. In order to perform our induction argument forward in time through the Markov chain structure,
we define for k ∈ {0, · · · , n+ 1} the functions

Hk(X̄k, Ȳk) := Ek,n
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi

]
= E

[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi|X̄k, Ȳk, τ
n+1, NT = n

]
.

We also let Hn+1(X̄n+1, Ȳn+1) := h(X̄n+1, Ȳn+1). Note that we omit the dependence w.r.t the sequence τn+1 in
the definition of the (random) maps (Hk)0≤k≤n+1. From the above definition and using (ND), (AR), it follows
that the map Hk belongs to C1

p(R2) a.s. for any 0 ≤ k ≤ n + 1. Moreover, from the tower property of conditional
expectation the following relation is satisfied for any k ∈ {0, · · · , n}

Hk(X̄k, Ȳk) = Ek,n[Hk+1(X̄k+1, Ȳk+1)θk+1].(4.8)
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Now, using first the Lebesgue differentiation theorem and then iterating the transfer of derivative formula (4.3)
in Lemma 4.1, we obtain2 for any k ∈ {1, · · · , n},

∂y0E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣ τn+1
]

= ∂y0E
[
E0,n

[
H1(X̄1, Ȳ1)θ1

]∣∣∣τn+1
]

= E
[
∂y0E0,n

[
H1(X̄1, Ȳ1)θ1

]∣∣∣τn+1
]

= E
[
D(2)
k Hk(X̄k, Ȳk)

k∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k∑
j=1

E
[
Hj(X̄j , Ȳj)

−→
θ cj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k∑
j=1

E
[
D(1)
j Hj(X̄j , Ȳj)

−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
.(4.9)

To further simplify the first term appearing on the right-hand side of (4.9), we use the tower property of
conditional expectation (w.r.t Ek−1,n[.]) and the integration by parts formula (2.14). For any k ∈ {1, · · · , n}, we
obtain

E
[
D(2)
k Hk(X̄k, Ȳk)

−→
θ e,Yk

∣∣∣Gk−1, τ
n+1
]

= E
[
Hk(X̄k, Ȳk)I(2)

k (
−→
θ e,Yk )

∣∣∣Gk−1, τ
n+1
]
.

We also simplify the third term appearing on the right-hand side of (4.9), by using the transfer of derivatives
formula (4.2) up to the time interval [ζk−1, ζk]. For any j ∈ {1, · · · , k}, it holds

E
[
D(1)
j Hj(X̄j , Ȳj)

−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
D(1)
k Hk(X̄k, Ȳk)

k∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
,

so that, if j ∈ {1, · · · , k − 1}, taking conditional expectation (using again Ek−1,n[.]) and then performing an IBP
formula on the last time interval [ζk−1, ζk] yield

E
[
D(1)
k Hk(X̄k, Ȳk)

k∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
Hk(X̄k, Ȳk)I(1)

k (θk)

k−1∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
,

while if j = k, we obtain

E
[
D(1)
k Hk(X̄k, Ȳk)

k∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
Hk(X̄k, Ȳk)I(1)

k (
−→
θ e,Xk )

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
.

2As before, we use the convention
∑
∅ · · · = 0,

∏
∅ · · · = 1.
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Coming back to (4.9) and using the definition of the maps (Hk)0≤k≤n+1, we thus deduce

∂y0E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣ τn+1
]

= E
[
Hk(X̄k, Ȳk)I(2)

k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k∑
j=1

E
[
Hj(X̄j , Ȳj)

−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k−1∑
j=1

E
[
Hk(X̄k, Ȳk)I(1)

k (θk)×
k−1∏
i=j+1

θi ×
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+ E
[
Hk(X̄k, Ȳk)I(1)

k (
−→
θ e,Xk )

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=j+1

θi ×
−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k−1∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(1)
k (θk)×

k−1∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+ E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(1)
k (
−→
θ e,Xk )

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
.(4.10)

In the case k = n+ 1, using the transfer of derivative formula (4.4) of Lemma 4.1 on the last time interval and
then performing the IBP formula (2.14), we obtain the representation

∂y0E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣ τn+1
]

= E
[
D(2)
n+1h(X̄n+1, Ȳn+1)

n+1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
Hj(X̄j , Ȳj)

−→
θ cj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
D(1)
j Hj(X̄j , Ȳj)

−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
h(X̄n+1, Ȳn+1)I(2)

n+1(
−→
θ e,Yn+1)

n∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
Hj(X̄j , Ȳj)

−→
θ cj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
D(1)
n+1h(X̄n+1, Ȳn+1)

n+1∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
h(X̄n+1, Ȳn+1)I(2)

n+1(
−→
θ e,Yn+1)×

n∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=j+1

θi ×
−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n∑
j=1

E
[
h(X̄n+1, Ȳn+1)I(1)

n+1(θn+1)×
n∏

i=j+1

θi ×
−→
θ e,Xj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+ E
[
h(X̄n+1, Ȳn+1)I(1)

n+1(
−→
θ e,Xn+1)×

n∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

(4.11)

where, for the last term appearing in the right-hand side of the above identities, we employed the transfer of
derivative formula (4.2) up to the last time interval and then performed an IBP formula.

Now, the key point in order to establish the IBP formula (4.6) is to combine in a suitable way the identities
(4.10) and (4.11). For each k ∈ {0, · · · , n}, we multiply the above formulae by the length of the interval on which
the local IBP formula is performed, namely we multiply by ζk − ζk−1 both sides of (4.10), k = 1, · · · , n− 1, and we

multiply by T −ζn both sides of (4.11). We then sum them over all k. Recalling that
∑n+1
k=1 ζk−ζk−1 = T −ζ0 = T ,



Probabilistic representation of IBP formulae for some stochastic volatility models with unbounded drift 15

we deduce

T∂y0E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣ τn+1
]

=

n+1∑
k=1

(ζk − ζk−1)E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
k=1

(ζk − ζk−1)

k∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=j+1

θi ×
−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
k=1

(ζk − ζk−1)
( k−1∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(1)
k (θk)×

k−1∏
i=j+1

θi ×
−→
θ e,Xj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+ E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(1)
k (
−→
θ e,Xk )×

n∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
])

= E
[
h(X̄n+1, Ȳn+1)

n+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),n+1
k +

k∑
j=1

−→
θ C

n+1
j +

−→
θ
I(1),n+1
k
j

)∣∣∣τn+1
]
.

We now provide a sharp upper-estimate for the above quantity. From Lemma B.2 and Lemma 4.1, it follows that

f(ζi− ζi−1)θi, f(ζi− ζi−1)
−→
θ e,Yi , f(ζi− ζi−1)

−→
θ ci ∈Mi−1,n(X̄, Ȳ ,−1/2) and f(ζi− ζi−1)

−→
θ e,Xi ∈Mi−1,n(X̄, Ȳ , 0) for

any i ∈ {1, · · · , n}. Moreover, from the very definition of the weights θi,
−→
θ e,Xi and

−→
θ e,Yi , after some simple but cum-

bersome computations that we omit, one has f(ζi − ζi−1)D(1)
i (θi), f(ζi − ζi−1)D(2)

i (
−→
θ e,Yi ) ∈Mi−1,n(X̄, Ȳ ,−1) and

f(ζi− ζi−1)D(1)
i (
−→
θ e,Xi ) ∈Mi−1,n(X̄, Ȳ ,−1/2) so that from Lemma 2.3 we conclude f(ζi− ζi−1)(ζi− ζi−1)I(1)

i (θi) ∈
Mi−1,n(X̄, Ȳ , 0), f(ζi − ζi−1)(ζi − ζi−1)I(2)

i (
−→
θ e,Yi ) ∈ Mi−1,n(X̄, Ȳ , 0) and f(ζi − ζi−1)(ζi − ζi−1)I(1)

i (
−→
θ e,Xi ) ∈

Mi−1,n(X̄, Ȳ , 1/2). Hence, from the boundedness of h, the tower property of conditional expectation and (2.22), it
holds∣∣∣(ζk − ζk−1)E

[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]∣∣∣

≤ Cn+1(1− F (T − ζn))−1
n∏

i=k+1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 (f(ζk − ζk−1))−1

k−1∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2

so that using the identity (2.6)

∑
n≥0

E
[ n+1∑
k=1

∣∣∣(ζk − ζk−1)E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]∣∣∣1{NT=n}

]

≤
∑
n≥0

Cn+1
n+1∑
k=1

E
[
(1− F (T − ζn))−1(f(ζk − ζk−1))−1

n∏
i=1,i6=k

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 1{NT=n}

]

≤
∑
n≥0

Cn+1
n+1∑
k=1

∫
∆n(T )

n∏
i=1,i6=k

(si − si−1)−1/2 dsn

≤
∑
n≥0

(n+ 1)Cn+1T (n+1)/2 Γn(1/2)

Γ(1 + n/2)
<∞.

From similar arguments that we omit, it follows∣∣∣(ζk − ζk−1)

k∑
j=1

E
[
h(X̄n+1, Ȳn+1)

(−→
θ C

n+1
j +

−→
θ
I(1),n+1
k
j

)∣∣∣ τn+1
]∣∣∣

≤ Cn+1(ζk − ζk−1)

k∑
j=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2[1 + 1{i=k}(ζi − ζi−1)−1/2].
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so that using again the identity (2.6)

∑
n≥0

E
[ n+1∑
k=1

∣∣∣(ζk − ζk−1)

k∑
j=1

E
[
h(X̄n+1, Ȳn+1)

(−→
θ C

n+1
j +

−→
θ
I(1),n+1
k
j

)∣∣∣ τn+1
]∣∣∣1{NT=n}

]

≤
∑
n≥0

Cn+1
n+1∑
k=1

E
[
(ζk − ζk−1)

k∑
j=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2[1 + 1{i=k}(ζi − ζi−1)−1/2]1{NT=n}
]

≤
∑
n≥0

Cn+1(n+ 1)(n+ 2)T (n+1)/2 Γn(1/2)

Γ(1 + n/2)
<∞.

The preceding estimates combined with (4.7) and the Lebesgue dominated convergence theorem allows to con-
clude that y0 7→ E[h(XT , YT )] is continuously differentiable with

T∂y0E[h(XT , YT )] = T∂y0E
[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
=
∑
n≥0

E
[
T∂y0E

[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣τn+1
]

1{NT=n}

]

=
∑
n≥0

E
[
E
[
h(X̄n+1, Ȳn+1)

n+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),n+1
k +

k∑
j=1

−→
θ C

n+1
j +

−→
θ
I(1),n+1
k
j

)∣∣∣τn+1
]

1{NT=n}

]

= E
[
h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

−→
θ C

n+1
j +

−→
θ
I(1),NT+1

k
j

)]

where we used Fubini’s theorem for the last equality. This completes the proof of the IBP formula (4.6) for
h ∈ C1

b (R2).

Step 2: Extension to h ∈ Bγ(R2) for some positive γ.

We now extend the two IBP formulae that we have established in the previous step to the case of a test function
h ∈ Bγ(R2) for some sufficiently small γ > 0. Let us note that under assumption (H), from Kusuoka and Stroock
[10], Corollary (3.25) and the upper-estimate (3.27) therein, the process (Xt, Yt)t≥0 admits a smooth transition
density (t, x0, y0, x, y) 7→ p(t, x0, y0, x, y) ∈ C∞((0,∞)× R2 × R2) and for any h ∈ C1

b (R2), it holds

∂αs0∂
β
y0E[h(XT , YT )] =

∫
R2

h(x, y) ∂αs0∂
β
y0p(T, x0, y0, x, y) dxdy

for any T > 0 and any integers α and β.
We then proceed as in step 2 of the proof of Theorem 3.1. Namely, we prove that

T∂y0E[h(XT , YT )]

= E
[
h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

−→
θ C

n+1
j +

−→
θ
I(1),NT+1

k
j

)]

=

∫
R2

h(x, y)E
[
p̄(T − ζNT , X̄NT , ȲNT , x, y)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

−→
θ C

n+1
j +

−→
θ
I(1),NT+1

k
j

)]
dxdy(4.12)

for any h ∈ C1
b (R2).
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Indeed, since f(ζi − ζi−1)θi ∈ Mi−1,n(X̄, Ȳ ,−1/2) and f(ζk − ζk−1)I(2)
k (
−→
θ e,Yk ) ∈ Mk−1,n(X̄, Ȳ ,−1), for some

c := c(T, bY , κ) > 4κ, it holds

E
[
p̄(T − ζn, X̄n, Ȳn, x, y)

n+1∑
k=1

(ζk − ζk−1)
∣∣∣−→θ I(2),n+1

k

∣∣∣∣∣∣τn+1
]

≤ Cn+1

∫
(R2)n

q̄4κ(T − ζn, xn, yn, x, y)

n+1∑
k=1

(ζk − ζk−1)(1− F (T − ζn))−1
n∏

i=k+1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2

× (f(ζk − ζk−1))−1(ζk − ζk−1)−1
k−1∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2
n∏
i=1

q̄4κ(ζi − ζi−1, xi−1, yi−1, xi, yi) dxndyn

≤ Cn+1q̄c(T, x0, y0, x, y)

n+1∑
k=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1
n∏

i=1,i6=k

(ζi − ζi−1)−1/2

(4.13)

where, for the first inequality we used the upper-estimate (2.4) and for the last inequality we used Lemma B.3.
From similar arguments, one gets

E
[
p̄(T − ζn, X̄n, Ȳn, x, y)

n+1∑
k=1

(ζk − ζk−1)

k∑
j=1

∣∣∣−→θ Cn+1
j

∣∣∣+
∣∣∣−→θ I(1),NT+1

k
j

∣∣∣∣∣∣τn+1
]

≤ Cn+1q̄c(T, x0, y0, x, y)

n+1∑
k=1

(ζk − ζk−1)

k∑
j=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2[1 + 1{i=k}(ζi − ζi−1)−1/2].

(4.14)

Now, from the upper-bounds (4.13) and (4.14) as well as the identity (2.6), we conclude∑
n≥0

E
[
E
[
p̄(T − ζn, X̄n, Ȳn, x, y)

n+1∑
k=1

(ζk − ζk−1)
(∣∣∣−→θ I(2),n+1

k

∣∣∣+

k∑
j=1

∣∣∣−→θ Cn+1
j

∣∣∣+
∣∣∣−→θ I(1),n+1

k
j

∣∣∣)∣∣∣τn+1
]
1{NT=n}

]

≤ q̄c(T, x0, y0, x, y)
∑
n≥0

Cn+1E
[ n+1∑
k=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1
n∏

i=1,i6=k

(ζi − ζi−1)−1/2

+

n+1∑
k=1

(ζk − ζk−1)

k∑
j=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2[1 + 1{i=k}(ζi − ζi−1)−1/2]
]

≤ q̄c(T, x0, y0, x, y)
∑
n≥0

Cn+1[(n+ 1) + (n+ 1)(n+ 2)/2]T (n+1)/2 Γn(1/2)

Γ(1 + n/2)

= CT 1/2q̄c(T, x0, y0, x, y).(4.15)

From the preceding inequality and Fubini’s theorem, we thus get∣∣∣E[p̄(T − ζNT , X̄NT , ȲNT , x, y)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

−→
θ C

NT+1

j +
−→
θ
I(1),NT+1

k
j

)]∣∣∣
≤ CT 1/2q̄c(T, x0, y0, x, y)(4.16)

for some positive constant C := C(T ) such that T 7→ C(T ) is non-decreasing. Applying again Fubini’s theorem
allows to complete the proof of (4.12). Hence,

T∂y0E[h(XT , YT )]

=

∫
R2

h(x, y) ∂y0p(T, x0, y0, x, y) dxdy

=

∫
R2

h(x, y)E
[
p̄(T − ζNT , X̄NT , ȲNT , x, y)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

−→
θ C

NT+1

j +
−→
θ
I(1),NT+1

k
j

)]
dxdy

for any h ∈ C1
b (R2). A monotone class argument allows to conclude that the preceding identity is still valid for any

bounded and measurable map h defined over R2 and a standard approximation argument allows to extend it to
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h ∈ Bγ(R2) for any 0 ≤ γ < c−1, c being the positive constant appearing in (4.16). We eventually conclude from
the preceding identity, (4.15) combined with Fubini’s theorem that

T∂y0E[h(XT , YT )] = E
[
h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

−→
θ C

NT+1

j +
−→
θ
I(1),NT+1

k
j

)]
for any h ∈ Bγ(R2) such that 0 ≤ γ < c−1.

Step 3: Lp(P)-moments for a renewal process with Beta jump times.

From the above formula, the proof of the Lp(P)-moment estimate when N is a renewal process with Beta jump
times follows by similar arguments as those employed at step 3 of the proof of Theorem 3.1. We omit the remaining
technical details.

�

5. Numerical Results

In this section, we provide some numerical results for the unbiased Monte Carlo algorithm that stems from the
probabilistic representation formula established in Theorem 3.1 and the Bismut-Elworthy-Li formulae of Theorem
4.1 for the couple (ST , YT ) that allows to compute the Delta and the Vega related to the option price of the vanilla
option with payoff h(ST ). We here consider the unique strong solution associated to the SDE (1.1) for three
different models corresponding to three different diffusion coefficient function σS and two different options, namely
Call and digital Call options with maturity T and strike K, with payoff functions h(x, y) = (exp(x) − K)+ and
h(x, y) = 1{exp(x)≥K} respectively. For these three models, the drift function of the volatility process is defined by
bY (x) = λY (µ− x) and we fix the parameters as follows: T = 0.5, r = 0.03, K = 1.5, x0 = ln(s0) = 0.4, Y0 = 0.2,
σY (.) ≡ σY = 0.2, λY = 0.5, µ = 0.3 and ρ = 0.6. We also consider two type of renewal process N : a Poisson
process with intensity parameter λ = 0.5 and a renewal process with Beta(1 − α, 1) jump times with parameters
α = 0.1 and τ̄ = 2.

5.1. Black-Scholes Model. We first consider the simple (toy) example corresponding to the Black-Scholes dy-
namics

dSt = rSt dt+ σSSt dWt, dYt = bY (Yt) dt+ σY (Yt)dBt, d〈B,W 〉t = ρdt, ρ ∈ (−1, 1).

with constant diffusion coefficient function σS(.) ≡ σS > 0. The law of (ST , YT ) can be computed explicitly so that
analytical formulas are available for the price, Delta and Vega. Note that the discount factor e−rT has been added
in our probabilistic representation formula for comparison purposes. In this example, we importantly remark that
the dynamics of the Euler scheme writes

(5.1)

 X̄i+1 = X̄i +
(
r − 1

2aS

)
(ζi+1 − ζi) + σS

√
ζi+1 − ζiZ1

i+1,

Ȳi+1 = mi + σY
√
ζi+1 − ζi

(
ρZ1

i+1 +
√

1− ρ2Z2
i+1

)
,

with mi = mζi+1−ζi(Ȳi) = µ+(Ȳi−µ)e−λ(ζi+1−ζi). Also, the weights (θi)1≤i≤NT+1 in the probabilistic representation
(3.2) of Theorem 3.1 greatly simplifies, namely

θi = (f(ζi − ζi−1))−1I(2)
i (biY ), 1 ≤ i ≤ NT , and θNT+1 = (1− F (T − ζNT ))−1.

We perform M1 = 107 Monte Carlo path simulations to approximate the price as well as the two Greeks and
compare them with the corresponding values obtained using the standard Monte Carlo method combined with an
Euler-Maruyama approximation scheme for the dynamics (1.1) with M2 = 160000 Monte Carlo simulations paths
and mesh size δ = T/n where n = 200. The Delta and Vega are obtained using the Monte Carlo finite difference
approach combined with the Euler-Maruyama discretization scheme, that is, denoting by EnM2

(s0, y0) the Monte
Carlo estimator with Euler-Maruyama scheme, we compute (EnM2

(s0 +ε, y0)−EnM2
(s0, y0))/ε and (EnM2

(s0, y0 +ε)−
EnM2

(s0, y0))/ε respectively with ε = 10−2. The numerical results for the three different quantities are summarized
in Table 1, Table 2, Table 3 respectively. The first column provides the value of the parameter σS . The second
column stands for the value of the price, Delta or Vega obtained by the corresponding Black-Scholes formula. The
third and fourth columns correspond to the value obtained by the Euler-Maruyama discretization scheme together
with its 95% confidence interval. The fifth and sixth (resp. seventh and eighth ) columns provide the estimated
value with its 95% confidence interval by our method in the case of Exponential sampling (resp. Beta sampling). We
observe a good behaviour of the unbiased estimators for all three quantities and for all the values of the parameter
σS .
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σS
B-S

formula
Euler Scheme Exponential sampling Beta sampling

Price 95% CI Price 95% CI Price 95% CI
0.25 0.111804 0.111467 [0.110699, 0.112235] 0.112285 [0.111781, 0.112789] 0.112159 [0.111734, 0.112584]
0.3 0.132621 0.13293 [0.132337, 0.133524] 0.133054 [0.132394, 0.133713] 0.132954 [0.132482, 0.133425]
0.4 0.174152 0.17392 [0.173103, 0.174737] 0.175346 [0.174557, 0.176135] 0.174584 [0.173912, 0.175255]
0.6 0.256572 0.258063 [0.256727, 0.259399] 0.255934 [0.254592, 0.257277] 0.256514 [0.255419, 0.257608]

Table 1. Comparison between the unbiased Monte Carlo estimation and the Monte Carlo Euler-
Maruyama scheme for the price of a Call option in the Black-Scholes model for different values of
σS .

σS
B-S

formula
Euler Scheme Exponential sampling Beta sampling

Delta 95% CI Delta 95% CI Delta 95% CI
0.25 0.556589 0.555686 [0.553178, 0.558194] 0.554613 [0.551336, 0.557891] 0.556314 [0.553141, 0.559488]
0.3 0.560018 0.561099 [0.559455, 0.562742] 0.557398 [0.553517, 0.56128] 0.557561 [0.554848, 0.560274]
0.4 0.569512 0.570293 [0.568533, 0.572053] 0.569098 [0.565706, 0.572489] 0.56731 [0.564279, 0.570341]
0.6 0.592743 0.594988 [0.592957, 0.59702] 0.586245 [0.582428, 0.590062] 0.588015 [0.584572, 0.591457]

Table 2. Comparison between the unbiased Monte Carlo estimation and the Monte Carlo Euler-
Maruyama scheme for the Delta of a Call option in the Black-Scholes model for different values of
σS .

σS
B-S

formula
Exponential sampling Beta sampling

Vega 95% CI Vega 95% CI
0.25 0 0.000745386 [-0.00102979, 0.00252057] -0.000438032 [-0.00211468, 0.00123862]
0.3 0 -0.0013932 [-0.0036299, 0.000843502] -0.000491083 [-0.00249688, 0.00151471]
0.4 0 0.00331309 [0.000258292, 0.00636788] -0.00117019 [-0.00393975, 0.00159938]
0.6 0 -0.00286877 [-0.00777679, 0.00203925] -0.0027807 [-0.00718374, 0.00162235]

Table 3. Comparison between the unbiased Monte Carlo estimation for the Vega of a Call option
in the Black-Scholes model for different values of σS .

5.2. A Stein-Stein type model. In this second example, we consider a Stein-Stein type model where the diffusion
coefficient function for the spot price is an affine function, namely σS(x) = σ1x+σ2 where σ1 and σ2 are two positive
constants. Note carefully that σS is not uniformly elliptic and bounded so that (AR) and (ND) are not satisfied.
However, we heuristically choose σ1 and σ2 so that σS(Yt) is bounded and strictly positive with high probability.
Also, analytical expressions for the coefficients are available, namely

aS,i =

∫ ζi+1−ζi

0

[
σ1

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]2
ds,

= (σ1µ+ σ2)2(ζi+1 − ζi) + σ2
1(Ȳi − µ)2 1− e−2λY (ζi+1−ζi)

2λY
+ 2σ1(σ1µ+ σ2)(Ȳi − µ)

1− e−λY (ζi+1−ζi)

λY
,

a′S,i = σ2
1(Ȳi − µ)

1− e−2λY (ζi+1−ζi)

λY
+ 2σ1(σ1µ+ σ2)

1− e−λY (ζi+1−ζi)

λY
,

ρi = ρ

∫ ζi+1−ζi
0

[
α
(
µ+ (Ȳi − µ)e−λs

)
+ C

]
ds

σS,i
√
ζi+1 − ζi

= ρ
α(Ȳi − µ)(1− e−λ(ζi+1−ζi))/λ+ (σ1µ+ σ2)(ζi+1 − ζi)

σS,i
√
ζi+1 − ζi

,

ρ′i = ρ
σS,i

(
σ1(1− e−λY (ζi+1−ζi))/λY

)
− σ′S,i

(
σ1(Ȳi − µ)(1− e−λY (ζi+1−ζi))/λY + (σ1µ+ σ2)(ζi+1 − ζi)

)
aS,i
√
ζi+1 − ζi

.



20 JUNCHAO CHEN, NOUFEL FRIKHA, AND HOUZHI LI

The parameters for the unbiased Monte Carlo method and the Monte Carlo method combined with an Euler-
Maruyama approximation scheme are chosen as in the first example. The numerical results related to the price,
Delta and Vega are provided in Table 4, Table 5, Table 6 respectively for the Call option and in Table 7, Table 8,
Table 9 for the digital Call option. In spite of the fact that the main assumptions are not satisfied, we again observe
a good performance of the unbiased estimators for all three quantities and for all the values of the parameters σ1,
σ2, except for the computation of the Vega of a Call option for large values of σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Price 95% CI Price 95% CI Price 95% CI
0.1 0.15 0.0790885 [0.0784919, 0.0796851] 0.0794717 [0.0785927, 0.0803508] 0.0791559 [0.0786344, 0.0796774]
0.2 0.25 0.129665 [0.128602, 0.130728] 0.129818 [0.128292, 0.131345] 0.129055 [0.126215, 0.131895]
0.3 0.4 0.202324 [0.200507, 0.20414] 0.200155 [0.199442, 0.200868] 0.200371 [0.199675, 0.201066]
0.4 0.5 0.249249 [0.246866, 0.251632] 0.249114 [0.248217, 0.250012] 0.249279 [0.248237, 0.250322]

Table 4. Comparison between the unbiased Monte Carlo estimation for the price of a Call option
in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Delta 95% CI Delta 95% CI Delta 95% CI
0.1 0.15 0.545257 [0.542601, 0.547914] 0.542838 [0.534227, 0.551448] 0.540304 [0.535519, 0.545088]
0.2 0.25 0.548642 [0.54574, 0.551544] 0.541611 [0.533812, 0.549409] 0.535165 [0.51798, 0.552351]
0.3 0.4 0.566919 [0.563629, 0.570208] 0.555688 [0.548827, 0.56255] 0.558808 [0.553545, 0.56407]
0.4 0.5 0.579445 [0.575861, 0.583028] 0.569003 [0.559972, 0.578034] 0.568666 [0.561328, 0.576004]

Table 5. Comparison between the unbiased Monte Carlo estimation for the Delta of a Call option
in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Vega 95% CI Vega 95% CI Vega 95% CI
0.1 0.15 0.0370801 [0.0367679, 0.0373923] 0.0340152 [0.0317984, 0.036232] 0.0350342 [0.0333134, 0.036755]
0.2 0.25 0.0738723 [0.0731769, 0.0745676] 0.0704958 [0.0662385, 0.074753] 0.0652897 [0.0612527, 0.0693267]
0.3 0.4 0.11114 [0.109907, 0.112373] 0.0899367 [0.0830599, 0.0968136] 0.10303 [0.0912086, 0.114851]
0.4 0.5 0.14385 [0.142055, 0.145645] 0.122496 [0.109106, 0.135885] 0.133235 [0.125356, 0.141114]

Table 6. Comparison between the unbiased Monte Carlo estimation for the Vega of a Call option
in the Stein-Stein type model for different values of the parameters σ1 and σ2.
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σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Price 95% CI Price 95% CI Price 95% CI
0 0.3 0.469652 [0.467241, 0.472063] 0.469251 [0.468668, 0.469834] 0.468994 [0.468439, 0.469548]

0.1 0.15 0.491121 [0.488708, 0.493535] 0.489251 [0.488158, 0.490344] 0.489883 [0.489044, 0.490723]
0.2 0.25 0.459518 [0.45711, 0.461926] 0.458577 [0.457324, 0.459829] 0.458555 [0.457574, 0.459535]
0.3 0.4 0.430451 [0.428057, 0.432845] 0.428559 [0.42734, 0.429779] 0.428941 [0.428074, 0.429807
0.4 0.5 0.408908 [0.406529, 0.411286] 0.40788 [0.404907, 0.410852] 0.409511 [0.408526, 0.410496]

Table 7. Comparison between the unbiased Monte Carlo estimation for the price of a digital Call
option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Delta 95% CI Delta 95% CI Delta 95% CI
0 0.3 1.22307 [1.19252, 1.25363] 1.24579 [1.24326, 1.24833] 1.24408 [1.24165, 1.24651]

0.1 0.15 2.17706 [2.13691, 2.21721] 2.17577 [2.16695, 2.18459] 2.18049 [2.17398, 2.18701]
0.2 0.25 1.29839 [1.26695, 1.32984] 1.26832 [1.26267, 1.27397] 1.26854 [1.26428, 1.27279]
0.3 0.4 0.776519 [0.752002, 0.801036] 0.792788 [0.789598, 0.795978] 0.793139 [0.790702, 0.795577]
0.4 0.5 0.606688 [0.58496, 0.628416] 0.618031 [0.610424, 0.625638] 0.621753 [0.619061, 0.624446]

Table 8. Comparison between the unbiased Monte Carlo estimation for the Delta of a digital Call
option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Vega 95% CI Vega 95% CI Vega 95% CI
0 0.3 0 [0, 0] 0.000481062 [-0.00499082, 0.00595295] -0.000755278 [-0.00588091, 0.00437035]

0.1 0.15 -0.0200101 [-0.0308873, -0.00913292] -0.0249364 [-0.0346885, -0.0151842] -0.0286496 [-0.0358769, -0.0214223]
0.2 0.25 -0.0246278 [-0.0366948, -0.0125608] -0.032211 [-0.0436935, -0.0207285] -0.0311689 [-0.0392428, -0.023095]
0.3 0.4 -0.0354025 [-0.04987, -0.0209349] -0.0422004 [-0.0518535, -0.0325472] -0.0413018 [-0.0489346, -0.0336691]
0.4 0.5 -0.0492556 [-0.0663201, -0.0321911] -0.0512594 [-0.0638074, -0.0387114] -0.0517876 [-0.0597881, -0.0437871]

Table 9. Comparison between the unbiased Monte Carlo estimation for the Vega of a digital Call
option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

5.3. A model with a periodic diffusion coefficient function. In our last example, the volatility of spot price
takes the following form σS(x) = σ1 cos(x) + σ2 where σ1 and σ2 are two positive constants such that σ2 − σ1 > 0
in order to ensure that (ND) is satisfied. Here, the coefficients appearing in the dynamics (2.7) write

aS,i =

∫ ζi+1−ζi

0

[
σ1 cos

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]2
ds,

a′S,i = −2α

∫ ζi+1−ζi

0

e−λY s sin
(
µ+ (Ȳi − µ)e−λY s

)[
σ1 cos

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]
ds,

ρi = ρ

∫ ζi+1−ζi
0

[
σ1 cos

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]
ds

σS,i
√
ζi+1 − ζi

,

ρ′i = −ρ
σ1σS,i

∫ ζi+1−ζi
0

e−λY s sin
(
µ+ (Ȳi − µ)e−λY s

)
ds+ σ′S,i

∫ ζi+1−ζi
0

[
σ1 cos

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]
ds

aS,i
√
ζi+1 − ζi
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and no analytical expressions are available. However, a simple numerical integration method can be employed for
the computation of the above integrals. We here use Simpson’s 3/8 rule which for a real-valued C4([0, T ]) function
g writes as follows

∀t ∈ [0, T ],

∫ t

0

g(s)ds ≈ t

8

(
g(0) + 3g

(
t

3

)
+ 3g

(
2t

3

)
+ g(t)

)
with an error given by g(4)(t′)T 5/6480 for some t′ ∈ [0, T ].

The parameters of the unbiased Monte Carlo method and the Monte Carlo Euler-Maruyama scheme remain
unchanged. The numerical results related to the price, Delta and Vega are provided in Table 10, Table 11, Table
12 respectively for the Call option and in Table 13, Table 14, Table 15 for the digital Call option. Here again, the
unbiased estimators perform very well for all range of values of the parameters.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Price 95% CI Price 95% CI Price 95% CI
0.1 0.15 0.110649 [0.109801, 0.111497] 0.111245 [0.110746, 0.111745] 0.111163 [0.11071, 0.111617]
0.2 0.25 0.193525 [0.191897, 0.195154] 0.19476 [0.19378, 0.19574] 0.193705 [0.192939, 0.19447]
0.3 0.4 0.294275 [0.291444, 0.297106] 0.294418 [0.292502, 0.296333] 0.294724 [0.293178, 0.296269]
0.4 0.5 0.371509 [0.367579, 0.375439] 0.3739 [0.371509, 0.376292] 0.373974 [0.372141, 0.375806]

Table 10. Comparison between the unbiased Monte Carlo estimation for the price of a Call option
in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Delta 95% CI Delta 95% CI Delta 95% CI
0.1 0.15 0.556917 [0.554118, 0.559717] 0.560077 [0.556733, 0.563422] 0.555364 [0.552636, 0.558092]
0.2 0.25 0.577937 [0.574727, 0.581148] 0.579704 [0.575622, 0.583785] 0.577287 [0.574331, 0.580243]
0.3 0.4 0.605788 [0.601947, 0.60963] 0.604575 [0.602771, 0.606379] 0.601188 [0.599354, 0.603021]
0.4 0.5 0.62865 [0.624204, 0.633096] 0.623698 [0.618519, 0.628878] 0.626259 [0.622246, 0.630271]

Table 11. Comparison between the unbiased Monte Carlo estimation for the Delta of a Call option
in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Vega 95% CI Vega 95% CI Vega 95% CI
0.1 0.15 -0.00773549 [-0.00782648, -0.00764449] -0.00805159 [-0.00985368, -0.0062495] -0.00846248 [-0.0101504, -0.00677453]
0.2 0.25 -0.0156691 [-0.0158849, -0.0154532] -0.0161045 [-0.0194751, -0.0127339] -0.0137565 [-0.0169305, -0.0105825]
0.3 0.4 -0.0235822 [-0.0240098, -0.0231547] -0.0177797 [-0.0236385, -0.0119209] -0.0232616 [-0.0288379, -0.0176852]
0.4 0.5 -0.030774 [-0.0314484, -0.0300996] -0.031729 [-0.0405267, -0.0229313] -0.0327252 [-0.0402293, -0.0252211]

Table 12. Comparison between the unbiased Monte Carlo estimation for the Vega of a Call option
in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and σ2.
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σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Price 95% CI Price 95% CI Price 95% CI
0 0.3 0.470206 [0.467795, 0.472617] 0.468756 [0.468174, 0.469338] 0.46883 [0.468273, 0.469387]

0.1 0.15 0.481972 [0.479559, 0.484385] 0.481373 [0.480778, 0.481968] 0.481499 [0.480937, 0.482061]
0.2 0.25 0.446163 [0.443761, 0.448566] 0.445241 [0.444661, 0.445821] 0.445228 [0.444679, 0.445778]
0.3 0.4 0.407307 [0.40493, 0.409684] 0.407842 [0.407286, 0.408398] 0.407422 [0.40689, 0.407954]
0.4 0.5 0.379459 [0.37711, 0.381808] 0.380161 [0.379604, 0.380717] 0.379669 [0.379146, 0.380193]

Table 13. Comparison between the unbiased Monte Carlo estimation for the price of a digital
Call option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and
σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Delta 95% CI Delta 95% CI Delta 95% CI
0 0.3 1.24454 [1.21372, 1.27535] 1.24282 [1.24031, 1.24533] 1.24579 [1.24335, 1.24822]

0.1 0.15 1.5064 [1.47264, 1.54016] 1.51062 [1.50751, 1.51373] 1.51253 [1.50958, 1.51549]
0.2 0.25 0.846474 [0.820904, 0.872044] 0.835956 [0.834251, 0.83766] 0.834907 [0.833284, 0.836531]
0.3 0.4 0.512589 [0.492588, 0.53259] 0.528498 [0.527433, 0.529563] 0.527844 [0.526825, 0.528863]
0.4 0.5 0.399506 [0.381818, 0.417194] 0.40319 [0.402367, 0.404012] 0.402428 [0.401642, 0.403214]

Table 14. Comparison between the unbiased Monte Carlo estimation for the Delta of a digital
Call option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and
σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Vega 95% CI Vega 95% CI Vega 95% CI
0 0.3 0 [0, 0] 0.00122669 [-0.00426466, 0.00671804] -0.00228675 [-0.00742253, 0.00284903]

0.1 0.15 0.00769619 [-0.000285705, 0.0156781] 0.00900717 [0.00339831, 0.014616] 0.00730275 [0.0021288, 0.0124767]
0.2 0.25 0.0138531 [0.00480268, 0.0229036] 0.0146584 [0.00906018, 0.0202566] 0.0131819 [0.00819735, 0.0181665]
0.3 0.4 0.0107747 [0.00279286, 0.0187565] 0.00807909 [0.00292412, 0.0132341] 0.0116897 [0.00689717, 0.0164823]
0.4 0.5 0.0153924 [0.00585238, 0.0249324] 0.0152859 [0.0102097, 0.0203621] 0.0164134 [0.0117414, 0.0210853]

Table 15. Comparison between the unbiased Monte Carlo estimation for the Vega of a digital
Call option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and
σ2.
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Appendix A. Proof of Theorem 3.1 and Lemma 4.1

A.1. Proof of Theorem 3.1. The proof is divided into three steps. In the first part, we establish the probabilistic
representation for a bounded and continuous function h. We then provide the extension to measurable maps
satisfying the growth condition 3.1. We eventually conclude by establishing the Lp-moments when the jump times
are distributed according to the Beta law.

Denote by L and (L̄t)t≥0 the infinitesimal generators of (Pt)t≥0 and (P̄t)t≥0 respectively given by

Lf(x, y) = (r − 1

2
aS(y))∂xf(x, y) +

1

2
aS(y)∂2

xf(x, y) + bY (y)∂yf(x, y) +
1

2
aY (y)∂2

yf(x, y) + ρ(σSσY )(y)∂2
x,yf(x, y),

L̄tf(x, y) = (r − 1

2
aS(mt(y0)))∂xf(x, y) +

1

2
aS(mt(y0))∂2

xf(x, y) + bY (mt(y0))∂yf(x, y) +
1

2
aY (mt(y0))∂2

yf(x, y)

+ ρ(σSσY )(mt(y0))∂2
x,yf(x, y)

for any f ∈ C2
b (R2).

Step 1: Probabilistic representation for a bounded and continuous map h

We establish a first order expansion of the Markov semigroup (Pt)t≥0 around (P̄t)t≥0. We apply Itô’s rule to

the map [0, t] × R2 3 (s, x, y) 7→ Pt−sh(x, y) ∈ C1,2
b ([0, t] × R2) for h ∈ C∞b (R2), observing that ∂sPt−sh(x, y) =

−LPt−sh(x, y). We obtain

h(X̄t, Ȳt) = Pth(x0, y0) +

∫ t

0

(
∂sPt−sh(X̄s, Ȳs) + L̄sPt−sh(X̄s, Ȳs)

)
ds+ Mt

= Pth(x0, y0) +

∫ t

0

(L̄s − L)Pt−sh(X̄s, Ȳs) ds+Mt

where M := (Mt)t≥0 is a square integrable martingale. We then take expectation in the previous expression, make
use of Fubini’s theorem and finally let t ↑ T by dominated convergence theorem so that

PTh(x0, y0) = P̄Th(x0, y0) +

∫ T

0

E[(L − L̄s)PT−sh(X̄s, Ȳs)] ds

= E[h(X̄x0

T , Ȳ y0T )] +

∫ T

0

E
[1

2
(aS(Ȳ y0s )− aS(ms(y0))[∂2

xPT−sh(X̄x0
s , Ȳ y0s )− ∂xPT−sh(X̄x0

s , Ȳ y0s ))]
]
ds

+

∫ T

0

E
[1

2
(aY (Ȳ y0s )− aY (ms(y0)))∂2

yPT−sh(X̄x0
s , Ȳ y0s ) + (bY (Ȳ y0s )− bY (ms(y0)))∂yPT−sh(X̄x0

s , Ȳ y0s )
]
ds

+

∫ T

0

E
[
ρ((σSσY )(Ȳ x0

s )− (σSσY )(ms(y0)))∂2
x,yPT−sh(X̄x0

s , Ȳ y0s )
]
ds.(A.1)
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We now rewrite the previous first order expansion using the Markov chain (X̄i, Ȳi)0≤i≤NT+1 and the renewal
process N . From the previous identity, the definition of θNT+1 in (3.4) and the identity (2.6), we directly obtain

PTh(x0, y0) = E[h(X̄NT+1, ȲNT+1)θNT+11{NT=0}]

(A.2)

+ E
[
((1− F (T − ζ1))f(ζ1))−11{NT=1}

[
1

2
(aS(Ȳ1)− aS(m0))D(1,1)

1 PT−ζ1h(X̄1, Ȳ1)

−1

2
(aS(Ȳ1)− aS(m0))D(1)

1 PT−ζ1h(X̄1, Ȳ1) +
1

2
(aY (Ȳ1)− aY (m0))D(2,2)

1 PT−ζ1h(X̄1, Ȳ1)

+(bY (Ȳ1)− bY (m0))D(2)
1 PT−ζ1h(X̄1, Ȳ1) + ρ((σSσY )(Ȳ1)− (σSσY )(m0))D(1,2)

1 PT−ζ1h(X̄1, Ȳ1)
]]

= E[h(X̄NT+1, ȲNT+1)θNT+11{NT=0}] + E
[
((1− F (T − ζ1))f(ζ1))−11{NT=1}

[
c1SD

(1,1)
1 PT−ζ1h(X̄1, Ȳ1)

− c1SD
(1)
1 PT−ζ1h(X̄1, Ȳ1) + c1YD

(2,2)
1 PT−ζ1h(X̄1, Ȳ1) + b1YD

(2)
1 PT−ζ1h(X̄1, Ȳ1) + c1S,YD

(1,2)
1 PT−ζ1h(X̄1, Ȳ1)

]]
.

(A.3)

Next, we apply the IBP formula (2.14) with respect to the random vector (X̄1, Ȳ1) in the above expression. In
order to do that rigorously, one first has to take the conditional expectation E0,1[.] in the second term of the above
equality. We thus obtain

E0,1

[
c1SD

(1,1)
1 PT−ζ1h(X̄1, Ȳ1)− c1SD

(1)
1 PT−ζ1h(X̄1, Ȳ1) + c1YD

(2,2)
1 PT−ζ1h(X̄1, Ȳ1) + b1YD

(2)
1 PT−ζ1h(X̄1, Ȳ1)

+ c1S,YD
(1,2)
1 PT−ζ1h(X̄1, Ȳ1)

]
= E0,1

[[
I(1,1)

1 (c1S)− I(1)
1 (c1S) + I(2,2)

1 (c1Y ) + I(2)
1 (b1Y ) + I(1,2)

1 (c1S,Y )
]
PT−ζ1h(X̄1, Ȳ1)

]
.

From Lemma B.2 and the estimate (2.22), we get

(A.4) E0,1

[∣∣∣[I(1,1)
1 (c1S)− I(1)

1 (c1S) + I(2,2)
1 (c1Y ) + I(2)

1 (b1Y ) + I(1,2)
1 (c1S,Y )

]∣∣∣∣∣∣PT−ζ1h(X̄1, Ȳ1)
∣∣∣] ≤ CT |h|∞ζ−1/2

1

for some positive constant CT such that T 7→ CT is non-decreasing. The previous estimate yields an integrable
time singularity. Indeed, from the previous estimate and (2.6), one directly gets

E
[
((1− F (T − ζ1))f(ζ1))−11{NT=1}

∣∣∣E0,1

[[
I(1,1)

1 (c1S)− I(1)
1 (c1S) + I(2,2)

1 (c1Y ) + I(2)
1 (b1Y ) + I(1,2)

1 (c1S,Y )
]
PT−ζ1h(X̄1, Ȳ1)

]∣∣∣]
≤ CE[((1− F (T − ζ1))f(ζ1))−1ζ

−1/2
1 1{NT=1}]

≤ C
∫ T

0

s
−1/2
1 ds1 <∞.

Coming back to (A.3), we thus derive

PTh(x0, y0) = E[h(X̄NT+1, ȲNT+1)θNT+11{NT=0}]

+ E
[
((1− F (T − ζ1))f(ζ1))−11{NT=1}

×
[
I(1,1)

1 (c1S)− I(1)
1 (c1S) + I(2,2)

1 (c1Y ) + I(2)
1 (b1Y ) + I(1,2)

1 (c1S,Y )
]
PT−ζ1h(X̄1, Ȳ1)

]
= E[h(X̄NT+1, ȲNT+1)θNT+11{NT=0}] + E

[
PT−ζ1h(X̄1, Ȳ1)θ2θ11{NT=1}

]
.(A.5)

Our aim now is to iterate the above first order expansion. We prove by induction the following formula: for any
positive integer n, one has

PTh(x0, y0) =

n−1∑
j=0

E

[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi1{NT=j}

]
+ E

[
PT−ζnh(X̄n, Ȳn)

n+1∏
i=1

θi1{NT=n}

]
.(A.6)

The case n = 1 corresponds to (A.5). We thus assume that (A.6) holds at step n. We expand the last term
appearing in the right-hand side of the previous equality using again (A.1), by then applying Lemma B.1 and by
finally performing IBPs as before.
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To be more specific, using the notations introduced in Subsection 2.2, from (A.1) and a change of variable, for
any ζ ∈ [0, T ], one has

PT−ζh(x, y) = E[h(X̄ζ,x
T , Ȳ ζ,xT )]

+

∫ T

ζ

E
[1

2
(aS(Ȳ ζ,ys )− aS(ms−ζ(y))[∂2

xPT−sh(X̄ζ,x
s , Ȳ ζ,ys )− ∂xPT−sh(X̄ζ,x

s , Ȳ ζ,ys ))]
]
ds

+

∫ T

ζ

E
[1

2
(aY (Ȳ ζ,ys )− aY (ms−ζ(y)))∂2

yPT−sh(X̄ζ,x
s , Ȳ ζ,ys ) + (bY (Ȳ ζ,ys )− bY (ms−ζ(y)))∂yPT−sh(X̄ζ,x

s , Ȳ ζ,ys )
]
ds

+

∫ T

ζ

E
[
ρ((σSσY )(Ȳ ζ,xs )− (σSσY )(ms−ζ(y)))∂2

x,yPT−sh(X̄ζ,x
s , Ȳ ζ,ys )

]
ds.

We take ζ = ζn, (x, y) = (X̄NT , ȲNT ) in the previous equality, then multiply it by
∏n+1
i=1 θi1{NT=n} and finally

take expectation. We obtain

E
[
PT−ζnh(X̄n, Ȳn)

n+1∏
i=1

θi1{NT=n}

]
= E

[
h(X̄ζn,X̄n

T , Ȳ ζn,ȲnT )

n+1∏
i=1

θi1{NT=n}

]
+ E

[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

1

2
(aS(Ȳ ζn,Ȳns )− aS(ms−ζn(Ȳn))[∂2

xPT−sh(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )− ∂xPT−sh(X̄ζn,X̄n

s , Ȳ ζn,Ȳns ))]ds
]

+ E
[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

1

2
(aY (Ȳ ζn,Ȳns )− aY (ms−ζn(Ȳn)))∂2

yPT−sh(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )ds

]
+ E

[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

(bY (Ȳ ζn,Ȳns )− bY (ms−ζn(Ȳn)))∂yPT−sh(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )ds

]

+ E
[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

ρ((σSσY )(Ȳ ζn,Ȳns )− (σSσY )(ms−ζn(Ȳn)))∂2
x,yPT−sh(X̄ζn,X̄n

s , Ȳ ζn,Ȳns ) ds
]
.

(A.7)

Now, from the very definition of the Markov chain (X̄i, Ȳi)0≤i≤NT+1 and of the weight sequence (θi)1≤i≤NT+1 of
Theorem 3.1, the first term of the above equality can be written as

(A.8) E
[
h(X̄ζn,X̄n

T , Ȳ ζn,ȲnT )

n+1∏
i=1

θi1{NT=n}

]
= E

[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi1{NT=n}

]
.

We now look at the second, third, fourth and fifth terms. Let us deal with the third and fourth terms. The others
are treated in a similar manner and we will omit some technical details. We first take its conditional expectation
w.r.t {ζ1 = t1, · · · , ζn = tn, NT = n} and introduce the measurable function

G(t1, · · · , tn, s, T ) := E
[ n+1∏
i=1

θi

∫ T

ζn

[1

2
(aY (Ȳ ζn,Ȳns )− aY (ms−ζn(Ȳn)))∂2

yPT−sh(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )

+ (bY (Ȳ ζn,Ȳns )− bY (ms−ζn(Ȳn)))∂yPT−sh(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )

]
ds
∣∣∣ζ1 = t1, · · · , ζn = tn, NT = n

]
which satisfies

|G(t1, · · · , tn, s, T )| ≤ CE
[ n+1∏
i=1

|θi|
(

1 + |Ws −Wζn |+ |W̃s − W̃ζn |
)∣∣∣ζ1 = t1, · · · , ζn = tn, NT = n

]
≤ CE

[ n+1∏
i=1

|θi||ζ1 = t1, · · · , ζn = tn, NT = n
]

where we used the boundedness of aY , the Lipschitz regularity of bY , the inequalities sup0≤t≤T |∂`yPth|∞ ≤ C
for ` = 1, 2 and, for the last inequality the fact that, conditionally on {ζ1 = t1, · · · , ζn = tn, NT = n}, the random

variables (Ws−Wζn , W̃s−W̃ζn) are independent of the sigma-field Gn. Recall now that P(NT = n, ζ1 ∈ dt1, · · · , ζn ∈
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dtn) = (1− F (T − tn))
∏n−1
j=0 f(tj+1 − tj)dt1, · · · , dtn on the set ∆n(T ) so that from Lemma B.2 and the estimate

(2.22), we obtain

E
[ ∫ T

ζn

|G(ζ1, · · · , ζn, s, T )|1{NT=n}ds
]
≤ C

∫ T

tn

∫
∆n(T )

n∏
i=1

(ti − ti−1)−1/2dt1 · · · dtndtn+1 <∞.

Hence, by Lemma B.1, it holds

E
[
1{NT=n}

n+1∏
i=1

θi

∫ T

ζn

[1

2
(aY (Ȳ ζn,Ȳns )− aY (ms−ζn(Ȳn)))∂2

yPT−sh(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )

+ (bY (Ȳ ζn,Ȳns )− bY (ms−ζn(Ȳn)))∂yPT−sh(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )

]
ds
]

= E
[
1{NT=n}

∫ T

ζn

G(ζ1, · · · , ζn, s, T ) ds
]

= E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1
[1

2
(aY (Ȳn+1)− aY (mn))D(2,2)

n+1 PT−ζn+1h(X̄n+1, Ȳn+1)

+ (bY (Ȳn+1)− bY (mn))D(2)
n+1PT−sh(X̄n+1, Ȳn+1)

]
1{NT=n+1}

]
.

Finally, we take the conditional expectation En,n+1[.] inside the above expectation and then employ the IBP
formula (2.14), two times w.r.t. the diffusion coefficient and one time w.r.t the drift coefficient as done before. We
obtain

E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1
[1

2
(aY (Ȳn+1)− aY (mn))D(2,2)

n+1 PT−ζn+1
h(X̄n+1, Ȳn+1)

+ (bY (Ȳn+1)− bY (mn))D(2)
n+1PT−ζn+1

h(X̄n+1, Ȳn+1)
]
1{NT=n+1}

]
= E

[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1[I(2,2)
n+1 (cn+1

Y ) + I(2)
n+1(bn+1

Y )]PT−ζn+1
h(X̄n+1, Ȳn+1)1{NT=n+1}

]
.

In a completely analogous manner, we derive

E
[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

1

2
(aS(Ȳ ζn,Ȳns )− aS(ms−ζn(Ȳn))[∂2

xPT−sh(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )− ∂xPT−sh(X̄ζn,X̄n

s , Ȳ ζn,Ȳns ))]ds
]

= E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1[I(1,1)
n+1 (cn+1

S )− I(1)
n+1(cn+1

S )]PT−ζn+1
h(X̄n+1, Ȳn+1)1{NT=n+1}

]
and

E
[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

ρ((σSσY )(Ȳ ζn,Ȳns )− (σSσY )(ms−ζn(Ȳn)))∂2
x,yPT−sh(X̄ζn,X̄n

s , Ȳ ζn,Ȳns ) ds
]

= E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1I(1,2)
n+1 (cn+1

Y,S )PT−ζn+1h(X̄n+1, Ȳn+1)1{NT=n+1}

]
.

Summing the three previous identities, we obtain that the sum of the second, third, fourth and fifth term in the
right-hand side of (A.7) is equal to

E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1

×
[
I(1,1)
i+1 (an+1

S )− I(1)
n+1(an+1

S ) + I(2,2)
n+1 (an+1

Y ) + I(2)
n+1(bn+1

Y ) + I(1,2)
n+1 (an+1

Y,S )
]
PT−ζn+1

h(X̄n+1, Ȳn+1)1{NT=n+1}

]
= E

[ n+2∏
i=1

θiPT−ζn+1
h(X̄n+1, Ȳn+1)1{NT=n+1}

]
where we used the very definitions (3.3) and (3.4) of the weights (θi)1≤i≤NT+1 on the set {NT = n+ 1}. This
concludes the proof of (A.6) at step n+ 1.
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To conclude it remains to prove the absolute convergence of the first sum and the convergence to zero of the
last term in (A.6). These two results follow directly from the boundedness of h and the general estimates on the
product of weights established in Lemma B.2.

Indeed, from Lemma B.2, the estimate (2.22), the tower property of conditional expectation and the identity
(2.6), we obtain

E
[ ∣∣h(X̄NT+1, ȲNT+1)

∣∣NT+1∏
i=1

|θi|1{NT=j}

]∣∣∣ ≤ Cj |h|∞E
[
(1− F (T − ζj))−1

j∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 1{NT=j}

]
= Cj |h|∞

∫
∆j(T )

j∏
i=1

(si − si−1)−
1
2 dsj

= Cj |h|∞T
j
2

Γj(1/2)

Γ(1 + j/2)

which in turn yields

n−1∑
j=0

E
[ ∣∣h(X̄NT+1, ȲNT+1)

∣∣NT+1∏
i=1

|θi|1{NT=j}

]∣∣∣ ≤ |h|∞∑
n≥0

(CT 1/2)n

Γ(1 + n/2)
= |h|∞E1/2,1(CT 1/2)

so that the series converge absolutely. Similarly,∣∣∣E[PT−ζnh(X̄n, Ȳn)

n+1∏
i=1

θi1{NT=n}

]∣∣∣ ≤ Cn|h|∞T n
2

Γn(1/2)

Γ(1 + n/2)

so that the remainder indeed vanishes as n goes to infinity. We thus conclude

(A.9) PTh(x0, y0) =
∑
n≥0

E
[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi1{NT=n}

]
= E

[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
for any h ∈ C2

b (R2). We eventually extend the above representation formula to any bounded and continuous function
h using a standard approximation argument. The remaining technical details are omitted.

Step 2: Extension to measurable map h satisfying the growth assumption (3.1)

We first extend the previous result to any bounded and measurable h. This follows from a monotone class
argument that we now detail.

Let us first consider h ∈ Cb(R2). From Fubini’s theorem, it holds

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣NT = n, ζn
]

=

∫
R2

h(x, y)E
[
p̄(T − ζn, X̄n, Ȳn, x, y)

n+1∏
i=1

θi(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ
n)
∣∣∣NT = n, ζn

]
dxdy

which can be justified as follows. From Lemma B.2, Lemma B.3 and the upper-bound estimate (2.4), it holds∣∣∣E[p̄(T − ζn, X̄n, Ȳn, x, y)

n+1∏
i=1

θi(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ
n)
∣∣∣NT = n, ζn

]∣∣∣
≤
∫

(R2)n
p̄(T − ζn, xn, yn, x, y)

n∏
i=1

|θi(xi−1, yi−1, xi, yi, ζ
n)|p̄(ζi − ζi−1, xi−1, yi−1, xi, yi) dxndyn

≤ (CT )n
∫

(R2)n
q̄4κ(T − ζn, xn, yn, x, y)

n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 q̄4κ(ζi − ζi−1, xi−1, yi−1, xi, yi) dxndyn

≤ (CT )n
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 q̄c(T, x0, y0, x, y)

for some c := c(T, bY , κ) ≥ 4κ. Hence, from (A.9) and again Fubini’s theorem, justified by the previous estimate

and the fact that E
[
(CT )NT

∏NT
i=1(f(ζi − ζi−1))−1(ζi − ζi−1)−

1
2

]
<∞, one has

PTh(x0, y0) =

∫
R2

h(x, y)E
[
p̄(T − ζNT , X̄NT , ȲNT , x, y)

NT+1∏
i=1

θi

]
dxdy(A.10)
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for any h ∈ Cb(R2). Moreover, from the previous computations, the following upper-bound holds∣∣∣E[p̄(T − ζNT , X̄NT , ȲNT , x, y)

NT+1∏
i=1

θi

]∣∣∣
=
∣∣∣∑
n≥0

∫
∆n(T )

E
[
p̄(T − sn, X̄n, Ȳn, x, y)

n+1∏
i=1

θi

∣∣∣NT = n, ζn = (s1, · · · , sn)
]

(1− F (T − sn))

n∏
i=1

f(si − si−1) dsn

∣∣∣
≤
(∑
n≥0

∫
∆n(T )

(CT )n
n∏
i=1

(si − si−1)−
1
2 dsn

)
q̄c(T, x0, y0, x, y)

= E1/2,1(CT 1/2)q̄c(T, x0, y0, x, y).

(A.11)

It now follows from (A.10) and a monotone class argument that the probabilistic representation formula (3.2) is
valid for any real-valued bounded and measurable map h defined over R2. The extension to any measurable map h
satisfying the growth assumption: |h(x, y)| ≤ C exp(γ(|x|2 + |y|2)) for any 0 ≤ γ < (2κ)−1, follows from the integral
representation (A.10), the upper-bound (A.11) combined with a standard approximation argument. Remaining
technical details are omitted.

Step 3: Finite Lp(P)-moment for the probabilistic representation

If N is a renewal process with Beta(α, 1) jump times then f(si − si−1) = 1−α
τ̄1−α

1
(si−si−1)α1[0,τ̄ ](si − si−1) and

1− F (T − sn) = 1−
(
T−sn
τ̄

)1−α
≥ 1− (Tτ̄ )1−α, similarly to step 2, by Fubini’s theorem, we get

E
[
|h(X̄n+1, Ȳn+1)|p

n+1∏
i=1

|θi|p
∣∣∣NT = n, ζn

]
=

∫
R2

|h(x, y)|p E
[
p̄(T − ζn, X̄n, Ȳn, x, y)

n+1∏
i=1

|θi(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ
n)|p

∣∣∣NT = n, ζn
]
dxdy.

The above formula is justified by Lemma B.2 and Lemma B.3 which yield

E
[
p̄(T − ζn, X̄n, Ȳn, x, y)

n+1∏
i=1

|θi(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ
n)|p

∣∣∣NT = n, ζn
]

≤
∫

(R2)n
p̄(T − ζn, xn, yn, x, y)

n∏
i=1

|θi(xi−1, yi−1, xi, yi, ζ
n)|pp̄(ζi − ζi−1, xi−1, yi−1, xi, yi) dxndyn

≤ Cn
∫

(R2)n
q̄4κ(T − ζn, xn, yn, x, y)

n∏
i=1

(f(ζi − ζi−1))−p(ζi − ζi−1)−
p
2 q̄4κ(ζi − ζi−1, xi−1, yi−1, xi, yi) dxndyn

≤ Cn
n∏
i=1

(ζi − ζi−1)αp(ζi − ζi−1)−
p
2 q̄c(T, x0, y0, x, y)

for some c := c(T, bY , κ) ≥ 4κ. Now, using the fact that E
[
Cn
∏NT
i=1(ζi − ζi−1)αp(ζi − ζi−1)−

p
2

]
< ∞ as soon as

p( 1
2 − α) < 1− α and that h ∈ Bγ(R2), from the previous computation, we obtain

E[|h(X̄NT+1, ȲNT+1)|p
NT+1∏
i=1

|θi|p]

= E
[
E
[
|h(X̄n+1, Ȳn+1)|p

n+1∏
i=1

|θi|p
∣∣∣NT , ζn]]

≤ E
[
Cn

NT∏
i=1

(ζi − ζi−1)αp(ζi − ζi−1)−
p
2

] ∫
R2

eγp(|x|
2+|y|2)q̄c(T, x0, y0, x, y) dxdy.

To conclude the proof, it suffices to note that the above space integral is finite as soon as 0 ≤ γp < c−1.



30 JUNCHAO CHEN, NOUFEL FRIKHA, AND HOUZHI LI

A.2. Proof of Lemma 4.1. Since h ∈ C1
p(R2) and Ei,n

[
|X̄i+1|q+|Ȳi+1|q

]
<∞ a.s., for any q ≥ 1, under (AR), one

may differentiate under the (conditional) expectation and deduce that (x, y) 7→ Ei,n
[
h(X̄i+1, Ȳi+1)θi+1|(X̄i, Ȳi) =

(x, y)
]
∈ C1

p(R2) for any i ∈ {0, · · · , n}. The rest of the proof is divided into three parts.

Step 1: proofs of (4.1) and (4.2)

The transfer of derivatives formulae (4.1) and (4.2) are easily obtained by differentiating under expectation
(which is allowed by the polynomial growth at infinity of h) noting from the definition of the Markov chain X̄ that
∂s0X̄1 = ∂s0 ln(s0) = 1

s0
and ∂X̄ih(X̄i+1, Ȳi+1) = ∂X̄i+1

h(X̄i+1, Ȳi+1)∂X̄iX̄i+1 = ∂X̄i+1
h(X̄i+1, Ȳi+1). Observe as

well that from (2.15), the fact that ∂X̄ic
i+1
S = ∂X̄ic

i+1
Y = ∂X̄ib

i+1
Y = ∂X̄ic

i+1
Y,S = ∂X̄iI

(1)
i+1(1) = ∂X̄iI

(2)
i+1(1) = 0 and

the very definition of the random variables (θi)1≤i≤n+1, one has ∂X̄iθi+1 = 0. This gives the identities (4.1) and
(4.2).

Step 2: proofs of (4.3) and (4.4)

The proofs of (4.3) and (4.4) are more involved. Let us prove (4.3). We proceed by considering the difference
between the term appearing on the left-hand side and the first two terms appearing on the right-hand side of (4.3).
On the one hand, using the IBP formula (2.14) and (2.8), we get

∂ȲiEi,n
[
h(X̄i+1, Ȳi+1)θi+1

]
= Ei,n

[
∂X̄i+1

h(X̄i+1, Ȳi+1)∂ȲiX̄i+1θi+1

]
+ Ei,n

[
∂Ȳi+1

h(X̄i+1, Ȳi+1)∂Ȳi Ȳi+1θi+1

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)∂Ȳiθi+1

]
= Ei,n

[
h(X̄i+1, Ȳi+1)

[
I(1)
i+1(∂ȲiX̄i+1θi+1) + I(2)

i+1(m′iθi+1)
]]

+ Ei,n
[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
θi+1

)]
+ Ei,n

[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
σY,i

ρ′i
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

)
θi+1

)]
+ Ei,n

[
h(X̄i+1, Ȳi+1)∂Ȳiθi+1

]
.

On the other hand, again from the IBP formula (2.14), we obtain

Ei,n
[
∂X̄i+1

h(X̄i+1, Ȳi+1)
−→
θ e,Xi+1

]
+ Ei,n

[
∂Ȳi+1

h(X̄i+1, Ȳi+1)
−→
θ e,Yi+1

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)

−→
θ ci+1

]
= Ei,n

[
h(X̄i+1, Ȳi+1)

[
I(1)
i+1(
−→
θ e,Xi+1) + I(2)

i+1(
−→
θ e,Yi+1) +

−→
θ ci+1

]]
.

Combining the two previous identities, we see that the difference

∂ȲiEi,n
[
h(X̄i+1, Ȳi+1)θi+1

]
−
(
Ei,n

[
∂X̄i+1

h(X̄i+1, Ȳi+1)
−→
θ e,Xi+1

]
+Ei,n

[
∂Ȳi+1

h(X̄i+1, Ȳi+1)
−→
θ e,Yi+1

]
+Ei,n

[
h(X̄i+1, Ȳi+1)

−→
θ ci+1

])
can be written as

E
[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)]
+ E

[
h(X̄i+1, Ȳi+1)∂Ȳiθi+1

]
− Ei,n

[
h(X̄i+1, Ȳi+1)I(1)

i+1(
−→
θ e,Xi+1)

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)I(1)

i+1(∂ȲiX̄i+1θi+1)
]

+ E
[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
θi+1

)]
+ E

[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

)
θi+1

)]
(A.12)

− E
[
h(X̄i+1, Ȳi+1)

−→
θ ci+1

]
.

Before proceeding, we provide the explicit expression for the quantity ∂Ȳiθi+1. Using the chain rule formula of
Lemma 2.2, after some standard but cumbersome computations, we obtain
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∂Ȳiθi+1 = (f(ζi+1 − ζi))−1
[
I(1,1)
i+1 (∂Ȳic

i+1
S )− I(1)

i+1(∂Ȳic
i+1
S ) + I(2,2)

i+1 (∂Ȳic
i+1
Y ) + I(2)

i+1(∂Ȳib
i+1
Y ) + I(1,2)

i+1 (∂Ȳic
i+1
Y,S)

−
(σ′S,i
σS,i

(
2I(1,1)
i+1 (ci+1

S )− I(1)
i+1(ci+1

S ) + I(1,2)
i+1 (ci+1

Y,S)
)

+
(σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)(
2I(2,2)
i+1 (ci+1

Y ) + I(2)
i+1(bi+1

Y ) + I(1,2)
i+1 (ci+1

Y,S)
))

+
ρ′i

1− ρ2
i

σY,i
σS,i

(
I(1,2)
i+1 (ci+1

S ) + I(2,1)
i+1 (ci+1

S )− I(2)
i+1(ci+1

S )
)]
.

Also, after some simple algebraic simplifications using the definitions of
−→
θ e,Yi+1 and

−→
θ e,Xi+1 in (4.3), one obtains

I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)
= −(f(ζi+1 − ζi))−1

[
I(2,2)
i+1

(
∂Ȳic

i+1
Y

)
+ I(1,2)

i+1

(
∂Ȳic

i+1
Y,S

)]
and

I(1)
i+1(
−→
θ e,Xi+1) = (f(ζi+1 − ζi))−1I(1,1)

i+1

(
∂Ȳic

i+1
S

)
.

Combining the three previous identities and gathering similar terms, we obtain

I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)
+ ∂Ȳiθi+1 − I(1)

i+1(
−→
θ e,Xi+1) = (f(ζi+1 − ζi))−1

[
− I(1)

i+1(∂Ȳic
i+1
S ) + I(2)

i+1(∂Ȳib
i+1
Y )

−
(σ′S,i
σS,i

(
2I(1,1)
i+1 (ci+1

S )− I(1)
i+1(ci+1

S ) + I(1,2)
i+1 (ci+1

Y,S)
)

+
(σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)(
2I(2,2)
i+1 (ci+1

Y ) + I(2)
i+1(bi+1

Y ) + I(1,2)
i+1 (ci+1

Y,S)
))(A.13)

+
ρ′i

1− ρ2
i

σY,i
σS,i

(
I(1,2)
i+1 (ci+1

S ) + I(2,1)
i+1 (ci+1

S )− I(2)
i+1(ci+1

S )
)]
.

The previous identity will be used in the next step of the proof. Coming back to (A.12) and using the definition

of the weight
−→
θ ci+1 allows to conclude the proof of the identity (4.3).

Step 3: The weight sequences (
−→
θ e,Yi )1≤i≤n+1, (

−→
θ e,Xi )1≤i≤n+1 and (

−→
θ ci )1≤i≤n+1 and the related spaces Mi,n(X̄, Ȳ , `/2),

` ∈ Z.

In this last step, we prove the last statement of Lemma 4.1 concerning the weight sequences (
−→
θ e,Yi )1≤i≤n+1,

(
−→
θ e,Xi )1≤i≤n+1 and (

−→
θ ci )1≤i≤n+1.

Following similar lines of reasonings as those used in the proof of Lemma B.2, namely using the fact that

di+1
S , di+1

Y , di+1
Y,S ∈Mi,n(X̄, Ȳ , 1/2) and D(1)

i+1d
i+1
S , D(1,1)

i+1 d
i+1
S , D(2)

i+1d
i+1
Y , D(2,2)

i+1 d
i+1
Y , D(1)

i+1d
i+1
Y , D(2)

i+1d
i+1
Y , D(1,2)

i+1 d
i+1
Y ,

eY,i+1
S , D(1)

i+1e
Y,i+1
S , eY,i+1

Y , D(2)
i+1e

Y,i+1
Y , D(1)

i+1e
Y,i+1
S ∈Mi,n(X̄, Ȳ , 0) as well as Lemma 2.3, we conclude

f(ζi+1 − ζi)
−→
θ e,Yi+1 ∈Mi,n(X̄, Ȳ ,−1/2), i ∈ {0, · · · , n− 1} .

Note also that

eX,i+1
S = ∂Ȳic

i+1
S

=
1

2
(a′S(Ȳi+1)∂Ȳi Ȳi+1 − a′S(mi)m

′
i)

=
1

2
(a′S(Ȳi+1)− a′S(mi))∂Ȳi Ȳi+1 +

1

2
a′S(mi)(∂Ȳi Ȳi+1 −m′i)

so that, using on the one hand the Lipschitz regularity of a′S and on the other hand (2.8), from similar arguments
as those used in the proof of Lemma B.2, we conclude that

1

2
a′S(Ȳi+1)− a′S(mi))∂Ȳi Ȳi+1,

1

2
a′S(mi)(∂Ȳi Ȳi+1 −m′i) ∈Mi,n(X̄, Ȳ , 1/2)

which in turn implies that eX,i+1
S ∈ Mi,n(X̄, Ȳ , 1/2). Moreover, standard computations that we omit show that

D(1)
i+1e

X,i+1
S ∈Mi,n(X̄, Ȳ , 0) so that by Lemma 2.3 we deduce

f(ζi+1 − ζi)
−→
θ e,Xi+1 ∈Mi,n(X̄, Ȳ , 0).
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We now prove that f(ζi+1 − ζi)
−→
θ ci+1 ∈Mi,n(X̄, Ȳ ,−1/2) for any i ∈ {0, · · · , n− 1}. We use the decomposition

f(ζi+1 − ζi)
−→
θ ci+1 = f(ζi+1 − ζi)

(
I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)
+ ∂Ȳiθi+1 − I(1)

i+1(
−→
θ e,Xi+1)

)
+ I(1)

i+1

(
∂ȲiX̄i+1f(ζi+1 − ζi)θi+1

)
+ I(2)

i+1

((
σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
+ σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

))
f(ζi+1 − ζi)θi+1

)
.

We first prove that f(ζi+1−ζi)
(
I(2)
i+1

(
m′iθi+1−

−→
θ e,Yi+1

)
+∂Ȳiθi+1−I(1)

i+1(
−→
θ e,Xi+1)

)
∈Mi,n(X̄, Ȳ ,−1/2). We investigate

each term appearing on the right-hand side of (A.13).
In particular, we first use the fact that ci+1

S , ci+1
Y , bi+1

Y , ci+1
Y,S ∈ Mi,n(X̄, Ȳ , 1/2), ∂Ȳic

i+1
S , ∂Ȳib

i+1
Y ∈ Mi,n(X̄, Ȳ , 0)

and the fact that when one applies the differential operators D(α1)
i+1 , D

(α1,α2)
i+1 to these elements the resulting ran-

dom variables belong to Mi,n(X̄, Ȳ , 0) for any (α1, α2) ∈ {1, 2}2. From Lemma 2.3, we thus conclude that the

elements I(1)
i+1(∂Ȳic

i+1
S ), I(1,1)

i+1 (ci+1
S ), I(1,2)

i+1 (ci+1
S ), I(2,1)

i+1 (ci+1
S ), I(2)

i+1(∂Ȳib
i+1
Y ), I(2,2)

i+1 (ci+1
Y ), I(1,2)

i+1 (ci+1
Y,S) belong to

Mi,n(X̄, Ȳ ,−1/2) and that I(1)
i+1(ci+1

S ), I(2)
i+1(bi+1

Y ) belong to Mi,n(X̄, Ȳ , 0). Moreover, using (ND), one gets that

there exists C > 0 such that for any i ∈ {0, · · · , n− 1}, |σ′S,i/σS,i|+|σ′Y,i/σY,i|+|σY,i/σS,i|+|ρ′i/(1−ρ2
i )|+|ρ′iρi/(1−

ρ2
i )| ≤ C. We thus conclude that f(ζi+1− ζi)

(
I(2)
i+1

(
m′iθi+1−

−→
θ e,Yi+1

)
+ ∂Ȳiθi+1−I(1)

i+1(
−→
θ e,Xi+1)

)
∈Mi,n(X̄, Ȳ ,−1/2).

It thus suffices to prove I(1)
i+1

(
∂ȲiX̄i+1f(ζi+1 − ζi)θi+1

)
, I(2)

i+1

(
σ′Y,i(ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1)f(ζi+1 − ζi)θi+1

)
and

I(2)
i+1

(
σY,i

ρ′i√
1−ρ2i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

))
f(ζi+1 − ζi)θi+1

)
belong to Mi,n(X̄, Ȳ ,−1/2). In order to do this, we

remark that

∂ȲiX̄i+1 = −1

2
a′S,i + σ′S,iZ

1
i+1 ∈Mi,n(X̄, Ȳ , 1/2),

D(1)
i+1(∂ȲiX̄i+1) =

σ′S,i
σS,i

∈Mi,n(X̄, Ȳ , 0),

σ′Y,i(ρiZ
1
i+1 +

√
1− ρ2

iZ
2
i+1) ∈Mi,n(X̄, Ȳ , 1/2),

D(2)
i+1

(
σ′Y,i(ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
=
σ′Y,i
σY,i

∈Mi,n(X̄, Ȳ , 0),

σY,i
ρ′i√

1− ρ2
i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

)
∈Mi,n(X̄, Ȳ , 1/2),

D(2)
i+1

(
σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

))
= − ρiρ

′
i

1− ρ2
i

∈Mi,n(X̄, Ȳ , 0)

and from Lemma B.2, f(ζi+1−ζi)θi+1 ∈Mi,n(X̄, Ȳ ,−1/2). From Lemma 2.3, it follows that f(ζi+1−ζi)θi+1∂ȲiX̄i+1 ∈
Mi,n(X̄, Ȳ , 0) and f(ζi+1−ζi)θi+1σ

′
Y (mi)m

′
i(ρ(Wζi+1

−Wζi)+
√

1− ρ2(W̃ζi+1
−W̃ζi)) ∈Mi,n(X̄, Ȳ , 0). Now follow-

ing similar computations as those employed in the proof of Lemma B.2 and omitting some technical details we obtain

D(α)
i+1(f(ζi+1− ζi)θi+1) ∈Mi,n(X̄, Ȳ ,−1) so that from the chain rule formula and Lemma 2.3, the random variables

D(α)
i+1(f(ζi+1−ζi)θi+1∂ȲiX̄i+1), D(α)

i+1(σ′Y,i(ρiZ
1
i+1+

√
1− ρ2

iZ
2
i+1)f(ζi+1−ζi)θi+1) andD(α)

i+1(σY,i
ρ′i√
1−ρ2i

(
√

1− ρ2
iZ

1
i+1−

ρiZ
2
i+1)f(ζi+1−ζi)θi+1) belong to Mi,n(X̄, Ȳ ,−1/2). From Lemma 2.3, we thus conclude that I(1)

i+1

(
∂ȲiX̄i+1f(ζi+1−

ζi)θi+1

)
, I(2)

i+1

(
σ′Y,i(ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1)f(ζi+1 − ζi)θi+1

)
and I(2)

i+1

(
σY,i

ρ′i√
1−ρ2i

(
√

1− ρ2
iZ

1
i+1 − ρiZ2

i+1)f(ζi+1 −

ζi)θi+1

)
belong to Mi,n(X̄, Ȳ ,−1/2). From the preceding arguments, we eventually deduce that f(ζi+1−ζi)

−→
θ ci+1 ∈

Mi,n(X̄, Ȳ ,−1/2) for any i ∈ {0, · · · , n− 1}.
Finally, from the very definition of the weights on the last time interval

−→
θ e,Yn+1 and

−→
θ e,Xn+1 one directly gets that

(1− F (T − ζn))
−→
θ e,Yn+1 = m′n + σ′Y,n

(
ρnZ

1
n+1 +

√
1− ρ2

nZ
2
n+1

)
+ σY,n

ρ′n√
1− ρ2

n

(√
1− ρ2

nZ
1
n+1 − ρnZ2

n+1

)
belongs to Mn,n(X̄, Ȳ , 0) and that

(1− F (T − ζn))
−→
θ e,Xn+1 = −1

2
a′S,n + σ′S,nZ

1
n+1

belongs to Mn,n(X̄, Ȳ , 1/2). The proof is now complete.
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Appendix B. Some technical results

B.1. Emergence of jumps in the renewal process N . The first result is used in the proof of the probabilistic
representation in Theorem 3.1 and is used to express that time integrals add jumps to the renewal process N . In
what follows, N is a renewal process in the sense of Definition 2.1.

Lemma B.1. Let n ∈ N and G : {(t1, . . . , tn+2) : 0 < t1 < · · · < tn+1 < tn+2 := T} → R be a measurable function

such that E
[ ∫ T

ζn
|G(ζ1, . . . , ζn, s, T )|1{NT=n}ds

]
<∞. Then, it holds

E
[ ∫ T

ζn

G(ζ1, . . . , ζn, s, T )1{NT=n}ds
]

= E
[
G(ζ1, . . . , ζn, ζn+1, T )(1− F (T − ζn+1))−1(1− F (T − ζn))(f(ζn+1 − ζn))−11{NT=n+1}

]
.

Proof. The proof follows by rewriting the above expectations using (2.6). We rewrite the expectation on the
right-hand side in integral form. By Fubini’s theorem, we obtain

E
[
G(ζ1, . . . , ζn, ζn+1, T )(1− F (T − ζn+1))−1(1− F (T − ζn))(f(ζn+1 − ζn))−11{NT=n+1}

]
=

∫
∆n+1(T )

G(s1, · · · , sn+1, T )(1− F (T − sn+1))−1(1− F (T − sn))(f(sn+1 − sn))−1

× (1− F (T − sn+1))

n∏
j=0

f(sj+1 − sj) dsn+1

=

∫
∆n(T )

∫ T

sn

G(s1, · · · , sn+1, T ) dsn+1 (1− F (T − sn))

n−1∏
j=0

f(sj+1 − sj) dsn.

This completes the proof. �

Lemma B.2. Let n ∈ N. On the set {NT = n}, the sequence of weights (θi)1≤i≤n+1 defined by (3.3) and (3.4)
satisfy:

∀i ∈ {1, · · · , n} , f(ζi − ζi−1)θi ∈Mi−1,n(X̄, Ȳ ,−1/2), (1− F (T − ζn))θn+1 ∈Mn,n(X̄, Ȳ , 0).(B.1)

Proof. We investigate each term appearing in the definition of θi ∈ Si−1,n(X̄, Ȳ ) and seek to apply Lemma 2.3.
From the Lipschitz property of aS and the space-time inequality (1.3), for any c > 0 and any c′ > c, the map
(xi−1, yi−1, xi, yi, sn+1) 7→ ciS(xi−1, yi−1, xi, yi, sn+1) satisfies

|ciS(xi−1, yi−1, xi, yi, sn+1)|pq̄c(si − si−1, xi−1, yi−1, xi, yi) ≤ C|yi −mi−1(yi−1)|pq̄c(si − si−1, xi−1, yi−1, xi, yi)

≤ C(si − si−1)p/2q̄c′(si − si−1, xi−1, yi−1, xi, yi)

so that, the random variables ciS ∈Mi−1,n(X̄, Ȳ , 1/2), for any i ∈ {1, · · · , n+ 1}. Moreover, from the boundedness
of the first and second derivatives of aS , it follows

D(1)
i ciS = ∂Ȳic

i
S(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ

n+1) = ∂4c
i
S(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ

n+1) =
1

2
a′S(Ȳi) ∈Mi−1,n(X̄, Ȳ , 0)

and

D(1,1)
i ciS = ∂2

Ȳi
ciS(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ

n+1) = ∂2
4c
i
S(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ

n+1) =
1

2
a′′S(Ȳi) ∈Mi−1,n(X̄, Ȳ , 0).

From Lemma 2.3, we thus conclude

I(1)
i (ciS) ∈Mi,n(X̄, Ȳ , 0) and I(1,1)

i (ciS) ∈Mi,n(X̄, Ȳ ,−1/2), i ∈ {1, · · · , n} .

In a completely analogous manner, omitting some technical details, we derive

I(2)
i (biY ) ∈Mi,n(X̄, Ȳ , 0), and I(1,2)

i (ciY,S), I(2,2)
i (ciY ) ∈Mi,n(X̄, Ȳ ,−1/2).

Hence, we obtain f(ζi−ζi−1)θi ∈Mi−1,n(X̄, Ȳ ,−1/2), for any i ∈ {1, · · · , n}. We finally observe that (1−F (T −
ζn))θn+1 = 1 ∈Mn,n(X̄, Ȳ , 0). The proof is now complete. �
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Lemma B.3. Let T > 0 and n a positive integer. For any sn = (s1, · · · , sn) ∈ ∆n(T ), for any (x, y) ∈ R2, for
any positive constant c there exist two positive constants C and c′ > c such that the transition density (t, x, y) 7→
q̄c(t, x0, y0, x, y) defined by (2.5) satisfies the following semigroup property:∫

(R2)n
q̄c(T−sn, xn, yn, x, y)×q̄c(sn−sn−1, xn−1, yn−1, xn, yn)×· · ·×q̄c(s1, x0, y0, x1, y1) dxndyn ≤ Cnq̄c′(T, x0, y0, x, y).

Proof. The dx1 · · · dxn integrals are treated using the standard semigroup property of Gaussian kernels so that from
the very definition of q̄c, it directly follows∫

(R2)n
q̄c(T − sn, xn, yn, x, y)× q̄c(sn − sn−1, xn−1, yn−1, xn, yn)× · · · × q̄c(s1, x0, y0, x1, y1) dxndyn

≤ 1√
2πcT

e−
(x−x0)2

2cT

∫
Rn

1√
2πc(T − sn)

e−
(y−mT−sn (yn))2

2c(T−sn) × · · · × 1√
2πcs1

e−
(y1−ms1 (y0))2

2cs1 dyn

We now perform the change of variables y1 = ms1(z1), y2 = ms2(z2), · · · , yn = msn(zn). Observe that since
bY admits a bounded first derivative the determinants of the Jacobians Js1(z1) := ∂xms1(z1), · · · , JT−sn(zn) =
∂xmT−sn(zn) are (locally) uniformly bounded for any (s1, · · · , sn) ∈ ∆n(T ). Remark also that from the semigroup
property msi+1−si(msi(zi)) = msi+1

(zi), for 1 ≤ i ≤ n with the convention sn+1 = T . Hence, for some positive
constants C and c′ > c that may change from line to line, we get

1√
2πcT

e−
(x−x0)2

2cT

∫
Rn

1√
2πc(T − sn)

e−
(y−mT−sn (yn))2

2c(T−sn) × · · · × 1√
2πcs1

e−
(y1−ms1 (y0))2

2cs1 dyn

≤ Cn 1√
2πcT

e−
(x−x0)2

2cT

∫
Rn

1√
2πc(T − sn)

e−
(y−mT (zn))2

2c(T−sn) × · · · × 1√
2πcs1

e−
(ms1 (z1)−ms1 (y0))2

2cs1 dzn

≤ Cn 1√
2πcT

e−
(x−x0)2

2cT

∫
Rn

1√
2πc(T − sn)

e−C
−1 (m

−1
T

(y)−zn)2

2c(T−sn) × · · · × 1√
2πcs1

e−C
−1 (z1−y0)2

2cs1 dzn

≤ Cn 1

2πcCT
e−

(x−x0)2

2cT e−
(m
−1
T

(y)−y0)2

2cCt

≤ Cnq̄c′(Tx0, y0, x1, y1)

where we first used the bi-Lipschitz property of the flow (s, x) 7→ ms(x) which yields

∀t ∈ [0, T ], C−1|x− z|2 ≤ |mt(x)−mt(z)|2 ≤ C|x− z|2

for some positive constant C ≥ 1 and then the semigroup property satisfied by Gaussian kernels. This completes
the proof. �

Appendix C. Some useful formulas

We here provide some useful formulas in order to device the unbiased Monte Carlo algorithms based on Theorem
3.1 and Theorem 4.1. Their proofs follow from standard computations as those used in subsection 2.4 and are
omitted.

The following formulae are required in order to compute the weights (θi)1≤i≤NT appearing in the identity (3.2).
Note that in our examples since aY (.) is constant, one has ciY (.) ≡ 0 for i ∈ {1, · · · , NT }. Hence, for i ∈ {1, · · · , NT },
one has:

I(1)
i (ciS) = ciSI

(1)
i (1),

I(1,1)
i (ciS) = ciS((I(1)

i (1))2 −D(1)
i I

(1)
i (1)),

I(2)
i (biY ) = biY I

(2)
i (1)− b′Y (Ȳi),

I(1,2)
i (ciY,S) = I(2)

i (ciY,SI
(1)
i (1)) = ciY,SI

(1)
i (1)I(2)

i (1)− I(1)
i (1)D(2)

i (ciY,S)− ciY,SD
(2)
i I

(1)
i (1).

The following formulae are needed in order to compute the weights for the Delta appearing in the identity (4.5),
for i ∈ {1, · · · , NT } one has:

D(1)
i (I(1,1)

i (ciS)) = 2ciSI
(1)
i (1)D(1)

i I
(1)
i (1),

D(1)
i (I(1)

i (ciS)) = ciSD
(1)
i I

(1)
i (1),

D(1)
i (I(2)

i (biY )) = biYD
(1)
i I

(2)
i (1),

D(1)
i (I(1,2)

i (ciY,S)) = ciY,SD
(1)
i I

(1)
i (1)I(2)

i (1) + ciY,SD
(1)
i I

(2)
i (1)I(1)

i (1)−D(1)
i I

(1)
i (1)D(2)

i (ciY,S).
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D(1)
i θi = (f(ζi − ζi−1))−1

[
D(1)
i I

(1,1)
i (ciS)−D(1)

i I
(1)
i (ciS) +D(1)

i I
(2)
i (biY ) +D(1)

i I
(1,2)
i (ciY,S)

]
,

I(1)
k (θk) = I(1)

k (1)θk −D(1)
k θk, k ≤ NT ,

I(1)
NT+1(θNT+1) = θNT+1I(1)

NT+1(1)−D(1)
NT+1θNT+1 = θNT+1I(1)

NT+1(1).

The following formulae are required for the computation of the weights for the Vega appearing in the identity (4.6),
for i ∈ {1, · · · , NT } it holds:

I(1,1)
i+1 (di+1

S ) = m′iI
(1,1)
i+1 (ci+1

S ),

I(1)
i+1(eY,i+1

S ) = −m′iI
(1)
i+1(ci+1

S ) +D(2)
i (ci+1

Y,S)I(1)
i+1(1)−D(1)

i+1D
(2)
i (ci+1

Y,S),

I(2)
i+1(eY,i+1

Y ) = m′iI
(2)
i+1(bi+1

Y ),

I(1,2)
i+1 (di+1

Y,S) = m′iI
(1,2)
i+1 (ci+1

Y,S),

I(1)
i+1(eX,i+1

S ) = eX,i+1
S I(1)

i+1(1)−D(1)
i+1e

X,i+1
S = D(2)

i (ci+1
S )I(1)

i+1(1)−D(1)
i+1D

(2)
i (ci+1

S ),

D(2)
i (I(1,1)

i (ciS)) = D(2)
i (ciS)(I(1)

i (1))2 + 2ciSI
(1)
i (1)D(2)

i I
(1)
i (1)−D(2)

i (ciS)D(1)
i I

(1)
i (1),

D(2)
i (I(1)

i (ciS)) = D(2)
i (ciS)I(1)

i (1) + ciSD
(2)
i I

(1)
i (1),

D(2)
i (I(2)

i (biY )) = D(2)
i biY I

(2)
i (1) + biYD

(2)
i I

(2)
i (1)− b′′Y (Ȳi),

D(2)
i (I(1,2)

i (ciY,S)) = D(2)
i (ciY,S)I(1)

i (1)I(2)
i (1) + ciY,SD

(2)
i I

(2)
i (1)I(1)

i (1) + ciY,SI
(2)
i (1)D(2)

i I
(1)
i (1)

− I(1)
i (1)D(2,2)

i (ciY,S)− 2D(2)
i (ciY,S)D(2)

i I
(1)
i (1),

D(2)
i−1(I(1,1)

i (ciS)) = D(2)
i−1(ciS)(I(1)

i (1))2 + 2ciSI
(1)
i (1)D(2)

i−1I
(1)
i (1)

−D(2)
i−1(ciS)D(1)

i I
(1)
i (1)− ciSD

(2)
i−1(D(1)

i I
(1)
i (1)),

D(2)
i−1(I(1)

i (ciS)) = D(2)
i−1(ciS)I(1)

i (1) + ciSD
(2)
i−1I

(1)
i (1),

D(2)
i−1(I(2)

i (biY )) = biYD
(2)
i−1I

(2)
i (1) + I(2)

i (1)(b′Y (Ȳi)∂Ȳi−1
Ȳi − b′Y (mi−1)m′i−1)− b′′Y (Ȳi)∂Ȳi−1

Ȳi,

D(2)
i−1(I(1,2)

i (ciY,S)) = D(2)
i−1(ciY,S)I(1)

i (1)I(2)
i (1) + ciY,S(I(2)

i (1)D(2)
i−1I

(1)
i (1) + I(1)

i (1)D(2)
i−1I

(2)
i (1))

− I(1)
i (1)D(2)

i−1(D(2)
i (ciY,S))−D(2)

i−1(I(1)
i (1))D(2)

i (ciY,S)− ciY,SD
(2)
i−1D

(2)
i I

(1)
i (1)

−D(2)
i−1(ciY,S)D(2)

i I
(1)
i (1).

D(2)
i θi =(f(ζi − ζi−1))−1

[
D(2)
i (I(1,1)

i (ciS))−D(2)
i (I(1)

i (ciS)) +D(2)
i (I(2)

i (biY )) +D(2)
i (I(1,2)

i (ciY,S))
]
,

D(2)
i−1θi =(f(ζi − ζi−1))−1

[
D(2)
i−1(I(1,1)

i (ciS))−D(2)
i−1(I(1)

i (ciS)) +D(2)
i−1(I(2)

i (biY )) +D(2)
i−1(I(1,2)

i (ciY,S))
]
,

−→
θ e,Yi = m′i−1θi + (f(ζi − ζi−1))−1(I(1)

i (1)D(2)
i−1(ciY,S)−D(1)

i D
(2)
i−1(ciY,S)),

D(2)
i

−→
θ e,Yi = m′i−1D

(2)
i θi + (f(ζi − ζi−1))−1

[
D(2)
i (D(2)

i−1(ciY,S))I(1)
i (1)

+D(2)
i−1(ciY,S)D(2)

i I
(1)
i (1)−D(2)

i D
(1)
i D

(2)
i−1(ciY,S)

]
,

I(2)
i (
−→
θ e,Yi ) =

−→
θ e,Yi I

(2)
i (1)−D(2)

i

−→
θ e,Yi ,

I(2)
i (m′i−1θi −

−→
θ e,Yi ) = −(f(ζi − ζi−1))−1I(1,2)

i (D(2)
i−1(ciY,S))

= −(f(ζi − ζi−1))−1
(
D(2)
i−1(ciY,S)I(1)

i (1)I(2)
i (1)− I(1)

i (1)D(2)
i D

(2)
i−1(ciY,S)

−D(2)
i−1(ciY,S)D(1)

i I
(2)
i (1)−D(1)

i D
(2)
i−1(ciY,S)I(2)

i (1) +D(2)
i D

(1)
i D

(2)
i−1(ciY,S)

)
,
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−→
θ e,Xi = (f(ζi − ζi−1))−1I(1)

i (eX,iS ) = (f(ζi − ζi−1))−1(I(1)
i (1)D(2)

i−1(ciS)−D(1)
i D

(2)
i−1(ciS)),

D(1)
i

−→
θ e,Xi = (f(ζi − ζi−1))−1eX,iS D

(1)
i I

(1)
i (1),

I(1)
i (
−→
θ e,Xi ) =

−→
θ e,Xi I

(1)
i (1)−D(1)

i

−→
θ e,Xi ,

I(1)
i (θiD(2)

i−1X̄i) = (θiI(1)
i (1)−D(1)

i θi)D(2)
i−1X̄i −D

(1)
i (D(2)

i−1X̄i)θi,

I(2)
i

(
(
√

1− ρ2
i−1Z

1
i−ρi−1Z

2
i )θi

)
=
(√

1− ρ2
i−1Z

1
i − ρi−1Z

2
i

)
(I(2)
i (1)θi −D(2)

i θi) +
ρi−1θi

σY,i−1

√
1− ρ2

i−1

,

−→
θ ci =I(2)

i (m′i−1θi −
−→
θ e,Yi ) + σY,i−1

ρ′i−1√
1− ρ2

i−1

I(2)
i

(
(
√

1− ρ2
i−1Z

1
i − ρi−1Z

2
i )θi

)
+ I(1)

i (θiD(2)
i−1X̄i)− I

(1)
i (
−→
θ e,Xi ) +D(2)

i−1θi,

−→
θ e,YNT+1 =θNT+1

(
m′NT + σY,NT

ρ′NT√
1− ρ2

NT

(
√

1− ρ2
NT
Z1
NT+1 − ρNTZ

2
NT+1)

)
,

−→
θ e,XNT+1 =θNT+1

(
− 1

2
a′S,NT + σ′S,NTZ

1
NT+1

)
,

−→
θ cNT+1 =0,

I(2)
NT+1(

−→
θ e,YNT+1) =

−→
θ e,YNT+1I

(2)
NT+1(1)−D(2)

NT+1

−→
θ e,YNT+1 =

−→
θ e,YNT+1I

(2)
NT+1(1) + θNT+1

ρ′NT ρNT
1− ρ2

NT

,

I(2)
NT+1(

−→
θ e,XNT+1) =

−→
θ e,XNT+1I

(2)
NT+1(1)−D(2)

NT+1

−→
θ e,XNT+1 =

−→
θ e,XNT+1I

(2)
NT+1(1)− θNT+1

σ′S,NT
σS,NT

.
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