
HAL Id: hal-03016397
https://hal.science/hal-03016397v1

Submitted on 4 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixing convex-optimization bounds for
maximum-entropy sampling

Zhongzhu Chen, Marcia Fampa, Amélie Lambert, Jon Lee

To cite this version:
Zhongzhu Chen, Marcia Fampa, Amélie Lambert, Jon Lee. Mixing convex-optimization bounds for
maximum-entropy sampling. Mathematical Programming, 2021, 188, pp.539-568. �10.1007/s10107-
020-01588-w�. �hal-03016397�

https://hal.science/hal-03016397v1
https://hal.archives-ouvertes.fr


Mixing convex-optimization bounds for
maximum-entropy sampling

Zhongzhu Chen · Marcia Fampa ·
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Abstract The maximum-entropy sampling problem is a fundamental and
challenging combinatorial-optimization problem, with application in spatial
statistics. It asks to find a maximum-determinant order-s principal subma-
trix of an order-n covariance matrix. Exact solution methods for this NP-hard
problem are based on a branch-and-bound framework. Many of the known
upper bounds for the optimal value are based on convex optimization. We
present a methodology for “mixing” these bounds to achieve better bounds.
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Introduction

Let C be an order-n (symmetric) positive-definite real matrix, and let s be an
integer satisfying 1 ≤ s ≤ n. Let N := {1, 2, . . . , n}. We interpret C as the co-
variance matrix for a multivariate Gaussian random vector YN . For nonempty
S ⊆ N , let C[S, S] denote the principle submatrix of C indexed by S. We
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denote log det(·) by ldet(·). Up to constants, ldetC[S, S] is the (differential)
entropy associated with the subvector YS . The maximum-entropy sampling
problem (MESP) is

z(C, s) := max {ldetC[S, S] : |S| = s, S ⊆ N}

(see [SW87]).

MESP is NP-hard (see [KLQ95]), and the main paradigm for exact solu-
tion of moderate-sized instances is branch-and-bound (see [KLQ95]). In this
context, there has been considerable work on efficiently calculating good up-
per bounds for MESP; see [KLQ95,AFLW96,AFLW99,HLW01,LW03,AL04,
BL07,Ans18b,Ans18a], the survey [Lee12], and the closely related works [LL19,
AFLW01].

A very relevant point for us is the following identity:

detC[S, S] = detC × detC−1[S̄, S̄],

where S̄ denotes the complement of S in {1, 2, . . . , n}. With this identity, we
have z(C, s) = ldetC + z(C−1, n− s), and so upper bounds for z(C−1, n− s)
yield upper bounds for z(C, s), shifting by ldetC. This idea gives something for
bounds that are not invariant under complementation (see [AFLW99,HLW01,
LW03,AL04,Ans18b]). It does not give us anything for bounds that are in-
variant under complementation (see [KLQ95,Ans18a]).

In §1, we describe a very simple general idea for “mixing” bounds. In §2,
we apply the simple idea to MESP by mixing the so-called “BQP bound” (see
[Ans18b]) with the same bound applied to the complementary problem. In
§3, we mix the so-called “NLP bound” (see [AFLW99]) with the same bound
applied to the complementary problem. Because the BQP bound and the NLP
bound are not invariant under complementation, we can get improved bounds
with these mixings. In §4, we look at tuning the so-called “linx bound” (see
[Ans18a]). In §5, we investigate mixing the NLP bound (or its complement)
with a “non-NLP bound” (e.g., the linx bound, the BQP bound, or the com-
plementary BQP bound). In §6, we make some concluding remarks.

Throughout, when we carry out computational experiments with the BQP
bound, the complementary BQP bound, and the linx bound, we use SDPT3
(see [TTT99,TTT12]) via Matlab and Yalmip (a Matlab toolbox for opti-
mization; see [Löf04]). SDPT3 has an efficient way of handling ldet, and this
functionality is exposed via Yalmip (not, at this writing, by CVX). But when
we work with the NLP bound, we employ our own tailored interior-point solver.

Further notation: We denote transpose of a vector x by x′, and likewise
for matrices. Sn(R) denotes the set of real order-n symmetric matrices. A ◦B
denotes Hadamard (element-wise) product of compatible matrices A and B,
while A • B := Trace(AB′) denotes the matrix dot-product. For X ∈ Rn×n,
Diag(X) := (X1,1, X2,2, . . . , Xn,n)′ ∈ Rn. For x ∈ Rn, diag(x) ∈ Rn×n is
defined by diag(x)i,i := xi,i and diag(x)i,j := 0 for i 6= j.
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1 General mixing

The idea is so simple that we do not dare claim that it is original. We are
however confident that it is new in the context of the MESP. In this section,
we describe the general idea.

We start with a combinatorial maximization problem

z := max{f(S) : S ∈ F},

where F is an arbitrary subset of the power set of {1, 2, . . . , n}. We consider
m upper bounds for z based on convex relaxations in a possibly lifted space
of variables.

As is standard, for x ∈ Rn, we denote the support of x by x := {i ∈
{1, 2, . . . , n} : xi 6= 0}. Also, if x ∈ {0, 1}n, then x is the characteristic vector
of x.

For i = 1, 2, . . . ,m, the convex set Pi uses variables (x,X i). The vector
x ∈ [0, 1]n relaxes x ∈ {0, 1}n and is used to model F . Specifically, we as-
sume that if we project Pi onto Rn, we get a subset of [0, 1]n, and then if we
intersect with Zn, we get precisely the characteristic vectors of F . Next, for
i = 1, 2, . . . ,m, we have a concave function fi, taking (x,X i) ∈ Pi to R. We
assume that for (x,X i) ∈ Pi such that x ∈ Zn, we have fi(x,X i) = f(x).
In this sense, each Pi is an exact relaxation (possibly in a extended space) of
conv ({x ∈ Rn : x ∈ F}).

Now, for i = 1, 2, . . . ,m, we have the convex programs

vi := max
{
fi(x,X i) : (x,X i) ∈ Pi

}
,

yielding m upper bounds on z.
Next, for α ∈ Rm, such that α ≥ 0, e′α = 1, we define the mixing bound

v(α) := max

{
m∑
i=1

αifi(x,X i) : (x,X i) ∈ Pi , 1 = 1, 2, . . . ,m

}
.

The following is very simple to establish.

Proposition 1 The function v(α) is convex on {α ∈ Rm : α ≥ 0}, and for
all α ∈ Rm such that e′α = 1, we have v(α) ≥ z.

Owing to this, a natural goal is to minimize the convex v(α), over {α ∈ Rm :
e′α = 1, α ≥ 0}. The power of the mixing bound is that the same variable x
is appearing in each of the Pi . If it were not for this, then the minimum value
of v(α), over {α ∈ Rm : e′α = 1, α ≥ 0}, would trivially be maxmi=1 vi .

Of course each Pi can be strengthened to improve the mixing bound. But
very importantly, we note that the mixing bound can be strengthened by
introducing valid equations and inequalities across the entire variable space:
x,X1, . . . ,Xm. We exploit both of these observations in the next section.

Before continuing, we wish to mention that a slightly different formulation
for finding an optimal mixing is as the following convex program.
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max v

subject to:

v ≤ fi(x,X i), i = 1, 2, . . . ,m;

(x,X i) ∈ Pi , 1 = 1, 2, . . . ,m.

The equivalence can easily be seen by Lagrangian duality. We prefer our
formulation because by aggregating the nonlinearities into the objective, in
the style of a surrogate dual, we get a formulation that is more easily handled
by solvers and more easily optimized in terms of selecting good mixing (and
other bound) parameters. Related to this, in the context of branch-and-bound,
we can expect that child subproblems will be able to inherit good parameters
from their parents, leading to faster computations.

2 Mixing the BQP bound with the complementary BQP bound

In this section, we apply the simple mixing idea from §1, mixing the (scaled)
BQP bound for MESP (see [Ans18b]) with the same bound applied to the
complementary problem. We will see that minimizing this bound over α gives
us a bound that is sometimes stronger than the two bounds that it is based
upon — it is always at least as strong. In fact, we will see that the bound will
tend to be stronger when the two bounds being mixed have similar values.

2.1 Mixing BQP and its complement

Let

P (n, s) :={(x,X) ∈ Rn × Sn(R) :

X − xx′ � 0, Diag(X) = x, e′x = s, Xe = sx}
Q(n, n− s) : = {(y, Y ) ∈ Rn × Sn(R) :

Y − yy′′ � 0, Diag(Y ) = y, e′y = n− s, Y e = (n− s)y}.

The set P (n, s) (respectively, Q(n, n − s)) is the well-known SDP relaxation
of the binary solutions to X − xx′ = 0, e′x = s (respectively, Y − yy′ = 0,
e′y = n− s).

We introduce the mixed BQP (mBQP) bound :

v(C, s;α, γ1, γ2) :=

max (1− α) (ldet (γ1C ◦X + I − diag(x))− slogγ1)

+ α
(
ldet

(
γ2C

−1 ◦ Y + I − diag(y)
)
− (n− s)logγ2 + ldetC

)
,

subject to:

(x,X) ∈ P (n, s), (y, Y ) ∈ Q(n, n− s), x+ y = e,
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where 0 ≤ α ≤ 1 is a “weighting” parameter, and γ1, γ2 > 0 are “scaling
parameters”. We will see that this mBQP bound is a manifestation of the idea
from §1, mixing the scaled BQP bound with its complement.

It is almost immediate that the mBQP bound is a mixing in the precise
sense of §1, but because of the way that we have formulated it with different
variables for the complementary part, there is a little checking to do.

We define an invertible linear map Φ by

Φ(x,X) = (e− x,X + ee′ − ex′ − xe′).

Notice that if (ŷ, Ŷ ) := Φ(x̂, X̂), then Ŷij = X̂ij + 1− x̂j − x̂i.
We have the following useful result.

Lemma 2 (x̂, X̂) ∈ P (n, s) if and only if Φ(x̂, X̂) ∈ Q(n, n− s).

Proof We check the constraints:

Ŷ − ŷŷ′ = X̂ + ee′ − ex̂′ − x̂e′ − (e− x̂)(e− x̂)′ = X̂ − x̂x̂ � 0′ .

Diag(Ŷ ) = Diag(X̂) + Diag(ee′)−Diag(ex̂′)−Diag(x̂e′) = x̂+ e− x̂− x̂ = ŷ .

e′ŷ = e′(e− x̂) = n− s .

Ŷ e =
(
X̂ + ee′ − ex̂′ − x̂e′

)
e = sx̂+ ne− se− nx̂ = (n− s)(e− x̂) = (n− s)ŷ .

The other direction is similar. ut

For α = 0 and α = 1, the mBQP reduces to the bounds of [Ans18b]1:

Proposition 3 v(C, s;α = 0, γ1, γ2) is equal to the scaled BQP bound

−slogγ1 + max ldet (γ1C ◦X + I − diag(x)) ,

subject to:

(x,X) ∈ P (n, s),

and v(C, s;α = 1, γ1, γ2) is equal to the scaled complementary BQP bound

ldetC − (n− s)logγ2 + max ldet
(
γ2C

−1 ◦ Y + I − diag(y)
)

subject to:

(y, Y ) ∈ Q(n, n− s).

Proof When α = 0, for any (x̂, X̂) ∈ P (n, s), Lemma 2 allows us to always be
able to choose a (ŷ, Ŷ ), which together with (x̂, X̂) is feasible for the mBQP
optimization formulation. And because α = 0, the choice of (ŷ, Ŷ ) has no
impact on the mBQP objective function. Similarly, when α = 1, for any
(ŷ, Ŷ ) ∈ Q(n, n− s), Lemma 2 allows us to always be able to choose a (x̂, X̂)
which together with (ŷ, Ŷ ) is feasible for the mBQP optimization formulation.
And because α = 1, the choice of (x̂, X̂) has no impact on the mBQP objective
function. ut

1 Helmberg suggested (essentially) the BQP bound in 1995 (see [Lee12,FL00]) to Anstre-
icher and Lee, but no one developed it at all until [Ans18b] did so extensively, drawing in
and significantly extending some techniques from [AFLW99].
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Of course we have

Proposition 4

z(C, s) ≤ v(C, s;α, γ1, γ2) .

We can see from the convexity of v that there is a good potential to improve
on the minimum of the scaled BQP bound and the scaled complementary BQP
bound precisely when these two bounds are similar. See Figure 1 where this is
illustrated the well-known “n = 63” benchmark covariance matrix. A simple
univariate search can find a good value for α. Moreover, in the context of
branch-and-bound for exact solution of the MESP, a good (starting) value of
α can be inherited from a parent.
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Fig. 1 Gap vs. α (optimized γi)

2.2 Valid equations in the extended spaces

Next, we will see that we can strengthen the mBQP bound, using equations
that link the extended variables from the two bounds that we mix, and then
even eliminate the variables (y, Y ).

Proposition 5

v(C, s;α, γ1, γ2) ≥ v̌(C, s;α, γ1, γ2) :=

max (1− α) (ldet (γ1C ◦X + I − diag(x))− slogγ1)

+ α
(
ldet

(
γ2C

−1 ◦ (X + ee′ − ex′ − xe′) + I − diag(e− x)
)

−(n− s)logγ2 + ldetC
)
,

subject to:

(x,X) ∈ P (n, s).
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The result follows from Lemma 2 and the following simple lemma.

Lemma 6 For the solutions of x + y = e, X = xx′, Y = yy′, the equations
Y = X + ee′ − ex′ − xe′ are valid.

Proof Under x+ y = e, we have that

0 = Y − yy′ = Y − (e− x)(e− x)′ = Y − ee′ + ex′ + xe′ − xx′ .

Subtracting 0 = X − xx′, we obtain the desired equations. ut

We experimented further with the “n = 63” covariance matrix. Considering
now Figure 2, the unmixed bounds are indicated by the lines for “α = 0”
and “α = 1”. We optimized the γi for these bounds (see §2.3). We chose an
interesting range of s, where the unmixed bounds transition between which
is stronger (i.e., the lines cross). The line indicated by “α∗” is the optimal
mixing of the BQP bound and its complement. Note that we only optimized
v(C, s;α, γ1, γ2) on α, keeping the optimal γi from the unmixed bounds. A
(probably small) further improvement could be obtained by iterating between
optimizing on α and the γi. The line indicated by “α∗ strengthened” is the
optimal mixing of the BQP bound and its complement, but now with the
valid equations in the extended space. Note that again we only optimized
v̌(C, s;α, γ1, γ2) on α, keeping the optimal γi from the unmixed bounds.

We can seek to improve the mBQP bound by adding RLT, triangle and
other inequalities, valid for the BQP, for both (x,X) and (y, Y ). We could
do it directly (like [Ans18b]), but the conic-bundle method (see [FGRS06])
seems more promising, due to the large number of inequalities to be potentially
exploited. So we dynamically include triangle inequalities via a bundle method;
specifically we use the solver SDPT3 (see [TTT99]) together with the Conic
Bundle Library (see [Hel19]) for solving the associated semidefinite programs,
as described in [BELW17]. In the figure, the line “α∗ strengthened + triangles”
indicates the bound obtained.

We repeated this experiment for a the well-known larger “n = 124” bench-
mark covariance matrix. The results, exhibiting a similar behavior, are indi-
cated in Figure 3. Note that in this figure, gaps are to a lower bound generated
by a heuristic.

2.3 Choosing good parameters (α, γ1, γ2)

Toward designing a reasonable algorithm for minimizing v̌(C, s;α, γ1, γ2), over
α ∈ [0, 1] and γ1, γ2 > 0, we establish convexity properties.

2.3.1 Convexity properties

Theorem 7 For fixed γ1, γ2 > 0, the function v̌(C, s;α, γ1, γ2) is convex in
α ∈ [0, 1]. For fixed α ∈ [0, 1], the function v̌(C, s;α, exp(ψ1), exp(ψ2)) is jointly
convex in (ψ1, ψ2) ∈ R2.
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Proof We already know from general principles that our mixing bounds are
convex in α. So in this section, we begin by establishing joint convexity in the
logarithms of the scaling parameters γ1, γ2.

Let

F1(C, s; γ1, (x,X)) := (γ1C − I) ◦X + I = γ1C ◦X + I − diag(x), (1)

F2(C, s; γ2, (x,X)) := γ2C
−1 ◦ (X + ee′ − ex′ − xe′) + diag(x), (2)

f1(C, s; γ1, (x,X)) := ldetF1(C, s; γ1, (x,X))− s log γ1,

f2(C, s; γ2, (x,X)) := ldetF2(C, s; γ2, (x,X))− (n− s) log γ2 + ldetC,

f(C, s;α, γ1, γ2, (x,X)) := (1− α)f1(C, s; γ1, (x,X)) + αf2(C, s; γ2, (x,X)).

So, with this notation,

v̌(C, s;α, γ1, γ2) = max
(x,X)∈P (n,s)

(1−α)f1(C, s; γ1, (x,X))+αf2(C, s; γ2, (x,X)).



Mixing convex-optimization bounds for maximum-entropy sampling 9

35

36

37

38

39

40

41

42

43

44

72 73 74 75 76 77 78

ga
p

s

n=124

α=0

α=1

α*

α* strengthened

α* strengthened + 
triangles

Fig. 3 Gap vs. s (optimized α and γi)

The function v̌(C, s;α, exp(ψ1), exp(ψ2)) is the point-wise maximum of
f(C, s;α , exp(ψ1), exp(ψ2), (x,X)), over (x,X) ∈ P (n, s). So it suffices to
show that f(C, s;α, exp(ψ1), exp(ψ2), (x,X)) is itself convex for each fixed
(x,X) ∈ P (n, s).

In what follows, for i = 1, 2, we use fi as a short form for fi(C, s; γi, (x,X)),
and we use Fi(γi, (x,X)) as a short form for Fi(C, s; γi, (x,X)). We have

∂f1

∂γ1
=

∂

∂γ1
(ldetF1(γ1, (x,X))− s log γ1)

=
∂

∂γ1
(ldet(γ1C ◦X + I − diag(x))− s log γ1)

= F1(γ1, (x,X))−1 • (C ◦X)− s

γ1

=
1

γ1

(
F1(γ1, (x,X))−1 • (γ1C ◦X)− s

)
=

1

γ1

(
F1(γ1, (x,X))−1 • F1(γ1, (x,X))− F1(γ1, (x,X))−1 • (I − diag(x))− s

)
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=
1

γ1

(
n− s− F1(γ1, (x,X))−1 • (I − diag(x))

)
.

Letting ψ1 := log γ1, by the chain rule we have

∂f1

∂γ1
=
∂f1

∂ψ1

dψ1

dγ1
=
∂f1

∂ψ1

1

γ1
.

So we have

∂f1

∂ψ1
= γ1

∂f1

∂γ1
= n− s− F1(exp(ψ1), (x,X))−1 • (I − diag(x)) =: g1(γ1) .

Next, we calculate

∂2f1

∂γ2
1

=
∂

∂γ1

(
1

γ1

(
n− s− F1(γ1, (x,X))−1 • (I − diag(x))

))
= − 1

γ2
1

(
n− s− F1(γ1, (x,X))−1 • (I − diag(x))

)
+

1

γ1
(e− x)′ diag(F1(γ1, (x,X))−1(C ◦X)F1(γ1, (x,X))−1) .

So we have

γ2
1

∂2f1

∂γ2
1

= −n+ s+ F1(γ1, (x,X))−1 • (I − diag(x))

+ γ1(e− x)′ diag(F1(γ1, (x,X))−1(C ◦X)F1(γ1, (x,X))−1) .

Finally, again taking ψ1 := log γ1, using the chain rule we have

∂2f1

∂ψ2
1

=
∂g1

∂ψ1
= γ1

∂g1

∂γ1
= γ1

(
∂f1

∂γ1
+ γ1

∂2f1

∂γ2
1

)
= γ1

∂f1

∂γ1
+ γ2

1

∂2f1

∂γ2
1

= n− s− F1(exp(ψ1), (x,X))−1 • (I − diag(x))

− n+ s+ F1(exp(ψ1), (x,X))−1 • (I − diag(x))

+ exp(ψ1)(e− x)′ diag(F1(exp(ψ1), (x,X))−1(C ◦X)F1(exp(ψ1), (x,X))−1)

= exp(ψ1)(e− x)′ diag(F1(exp(ψ1), (x,X))−1(C ◦X)F1(exp(ψ1), (x,X))−1) .

It remains to demonstrate that this last expression is nonnegative. We have
C � 0 and X � 0, and therefore C ◦X � 0 (see [Zha05, page 175]). Then, it
is also clear from (1) that F1(exp(ψ1, (x,X)) � 0. Therefore

F1(exp(ψ1), (x,X))−1(C ◦X)F1(exp(ψ1), (x,X))−1 � 0.

So we have
∂2f1

∂ψ2
1

≥ 0,

and we can conclude that f1(exp(ψ1), (x,X)) is convex in ψ1.
Similarly, f2(exp(ψ2), (x,X)) is convex in ψ2. Finally, for fixed α and

(x,X), F (α, exp(ψ1), exp(ψ2), (x,X)) is jointly convex in ψ1 and ψ2 because
it is a weighted sum of f1(exp(ψ1), (x,X)) and f2(exp(ψ1), (x,X)). ut
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Remark 8 By working with the ψi := log(γi) and establishing convexity, we
are able to rigorously find the best values of the γi. [Ans18b] does not work that
way. Working directly with the scaling parameters, γi, (of course separately for
the BQP bound and the complementary BQP bound), he heuristically sought
good values for the γi.

2.3.2 Optimizing the parameters

The (strengthened) mBQP bound depends on the parameters (α, γ1, γ2). We
do not have any type of full joint convexity. But based on Theorem 7, to find
a good upper bound, we are motivated to formulate two convex problems.

First, for given ψ̂1 and ψ̂2, we consider the convex optimization problem

min{Vψ̂1,ψ̂2
(α) : α ∈ [0, 1]} , (3)

where

Vψ̂1,ψ̂2
(α) := v̌(C, s;α, exp(ψ̂1), exp(ψ̂2))

= (1− α)f1(C, s; exp(ψ̂1), (x∗, X∗)) + αf2(C, s; exp(ψ̂2), (x∗, X∗)),

and (x∗, X∗) = (x∗(α), X∗(α)) solves the maximization problem in Proposi-

tion 5 for the given α, when γ1 = exp(ψ̂1), and γ2 = exp(ψ̂2).

Next, for i = 1, 2, we use f∗i (α) as a short form for fi(C, s; exp(ψ̂i), (x
∗, X∗)).

We solve (3) with a primal-dual interior-point method, considering the
following barrier problem

min
{
Vψ̂1,ψ̂2

(α)− µ(log(α) + log(1− α)) : α ∈ (0, 1)
}
, (4)

where µ > 0 is the barrier parameter. Let

Lµ,ψ̂1,ψ̂2
(α) := Vψ̂1,ψ̂2

(α)− µ(log(α) + log(1− α)) .

We motivate our algorithm, by assuming some differentiability. The opti-
mality conditions for the barrier problem is obtained by differentiating Lµ,ψ̂1,ψ̂2

with respect to α, and can be written as

Gµ,ψ̂1,ψ̂2
(α) :=

∂Vψ̂1,ψ̂2
(α)

∂α
− µ

α
+

µ

1− α
= 0 .

We aim at improving the mBQP bound by taking Newton steps to solve
the nonlinear equation above. The search direction δα, is defined by

HGµ,ψ̂1,ψ̂2
(α)(δα) = −Gµ,ψ̂1,ψ̂2

(α) ,

where

HGµ,ψ̂1,ψ̂2
(α) =

∂2Vψ̂1,ψ̂2
(α)

∂α2
+

µ

α2
+

µ

(1− α)2
.
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We note that

∂Vψ̂1,ψ̂2
(α)

∂α
= −f∗1 (α) + (1− α)

∂f∗1 (α)

∂α
+ f∗2 (α) + α

∂f∗2 (α)

∂α
.

However, we cannot analytically compute ∂f∗i (α)/∂α, for i = 1, 2. Indeed, we
do not even know that the f∗i are differentiable. In the implementation of the
interior-point method, we consider the following approximations:

−f∗1 (α) + (1− α)
∂f∗

1 (α)
∂α ≈ −f∗1 (α) ,

f∗2 (α) + α
∂f∗

2 (α)
∂α ≈ f∗2 (α) .

(5)

We then approximate the second partial derivative ∂2Vψ̂1,ψ̂2
(α)/∂α2, also con-

sidering (5). At the first iteration of the interior-point method, we approximate
it by b0 = 1, and in iteration k ≥ 0, we compute

bk+1 = −∆f
∗
1 (α)k+1

∆α
+
∆f∗2 (α)k+1

∆α
,

where, for i = 1, 2, ∆f∗i (α)k+1/∆α := (f∗i (αk+1)− f∗i (αk)/(αk+1 − αk) is the
finite-difference approximation of the first-order partial derivative ∂f∗i (α)/∂α.
Following what is commonly applied in a BFGS scheme, we update the ap-
proximation of the second partial derivative at iteration k only if bk+1 is non-
negative.

We emphasize that to compute the search direction at each iteration of
the interior-point method, we need to compute f∗i (α), i = 1, 2, and therefore
we need the optimal solution (x∗, X∗) = (x∗(α), X∗(α)) of the (strengthened)

mBQP relaxation for the current α, when γ1 = exp(ψ̂1), and γ2 = exp(ψ̂2).
The relaxation is thus solved at each iteration of the algorithm, each time for
a new α. As α is a real variable, the time to minimize the mBQP bound is
dominated by solving mBQP relaxations, the remaining effort for computing
the bound is negligible.

In Algorithm 1, we present, in detail, an iteration of the interior-point
method. The iteration presented is repeated for a fixed value of the barrier
parameter µ, for a prescribed number of times or until the absolute value
of the residual r is small enough. The parameter µ is then reduced and the
process repeated, until µ is also small enough.

In what follows, we also define for given α̂ ∈ [0, 1], the convex problem

min{Vα̂(ψ1, ψ2) : (ψ1, ψ2) ∈ R2} , (6)

Vα̂(ψ1, ψ2) := v̌(C, s; α̂, exp(ψ1), exp(ψ2))

= (1− α̂)f1(C, s; exp(ψ1), (x∗, X∗)) + α̂f2(C, s; exp(ψ2), (x∗, X∗)),

and (x∗, X∗) = (x∗(ψ1, ψ2), X∗(ψ1, ψ2)) solves the maximization problem in
Proposition 5 for α = α̂, γ1 = exp(ψ1), and γ2 = exp(ψ2).
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Algorithm 1: Updating α, with γ1 = exp(ψ̂1), γ2 = exp(ψ̂2)

Input: k, αk, (x∗(αk), X∗(αk)), f∗1 (αk), f∗2 (αk), bk, µk, τα := 0.9, τµ := 0.1.
Compute the residual:

r := −f∗1 (αk) + f∗2 (αk)−
µk

αk
+

µk

1− αk
.

Compute the search direction δα:

δα = −r/
(
bk +

µk

(αk)2
+

µk

(1− αk)2

)
.

Update α:
αk+1 := αk + θ̂δα,

where

θ̂ := τα ×min{1, argmaxθ{αk + θδα ≥ 0}, argmaxθ{αk + θδα ≤ 1}}.

Obtain the optimal solution (x∗(αk+1), X∗(αk+1)) of the mBQP relaxation,

considering α := αk+1, γ1 := exp(ψ̂1), and γ2 := exp(ψ̂2).
For i = 1, 2, set:

f∗i (αk+1) := fi(C, s; exp(ψ̂i), (x
∗(αk+1), X∗(αk+1)),

∆i := (f∗i (αk+1)− f∗i (αk)/(αk+1 − αk).

if ( −∆1 +∆2 > 0) then

bk+1 = −∆1 +∆2,

else

bk+1 := bk.

Output: αk+1, (x∗(αk+1), X∗(αk+1)), f∗1 (αk+1), f∗2 (αk+1), bk+1.

Next, for i = 1, 2, we use f∗i (ψ1, ψ2) as a short form for fi(C, s; exp(ψi) ,
(x∗, X∗)), and we use Fi as a short form for Fi(C, s; exp(ψi), (x

∗, X∗)).

The optimality condition for (6) is given by
∂Vα̂(ψ1,ψ2)

∂ψ1
= (1− α̂)

∂f∗
1 (ψ1,ψ2)
∂ψ1

+ α̂
∂f∗

2 (ψ1,ψ2)
∂ψ1

= 0 ,

∂Vα̂(ψ1,ψ2)
∂ψ2

= (1− α̂)
∂f∗

1 (ψ1,ψ2)
∂ψ2

+ α̂
∂f∗

2 (ψ1,ψ2)
∂ψ2

= 0 .

Here we should observe that we cannot analytically compute ∂f∗1 (ψ1, ψ2)/∂ψ2

nor ∂f∗2 (ψ1, ψ2)/∂ψ1. Again, we cannot even be sure that these derivatives
exist. In the implementation of the interior-point method, we consider the
following approximations: (1− α̂)

∂f∗
1 (ψ1,ψ2)
∂ψ1

+ α̂
∂f∗

2 (ψ1,ψ2)
∂ψ1

≈ (1− α̂)
∂f∗

1 (ψ1,ψ2)
∂ψ1

,

(1− α̂)
∂f∗

1 (ψ1,ψ2)
∂ψ2

+ α̂
∂f∗

2 (ψ1,ψ2)
∂ψ2

≈ α̂∂f
∗
2 (ψ1,ψ2)
∂ψ2

.
(7)
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We obtain then the following approximation for the optimality conditions
for (6):

Gα̂(ψ1, ψ2) :=

(
n− s− F−1

1 • (I − diag(x∗))
s− F−1

2 • diag(x∗)

)
=

(
0
0

)
. (8)

We aim now at improving the bound by taking Newton steps to solve the
nonlinear system above. The search direction is defined by

∇Gα̂(ψ1, ψ2)

(
δψ1

δψ2

)
= −Gα̂(ψ1, ψ2),

where,

∇Gα̂(ψ1, ψ2) =

(
∂Gα̂(ψ1, ψ2)

∂ψ1
,
∂Gα̂(ψ1, ψ2)

∂ψ2

)
, (9)

∂Gα̂(ψ1, ψ2)

∂ψ1
=

(
exp(ψ1)(e− x∗)′ diag

(
F−1

1 (C ◦X∗)F−1
1

)
0

)
,

∂Gα̂(ψ1, ψ2)

∂ψ2
=

(
0

exp(ψ2)x∗′ diag
(
F−1

2 (C−1 ◦ (X∗ + ee′ − ex∗′ − x∗e′)F−1
2

)).
In Algorithm 2, we present an iteration of the Newton method applied

to update the parameters ψ1 and ψ2 in the mBQP relaxation. The iteration
presented is repeated for a prescribed number of times or until the absolute
value of the residuals, components of Gα̂(ψ1, ψ2), are small enough.

Algorithm 2: Updating ψ1, ψ2, with α = α̂

Input: k, (x∗(ψk1 , ψ
k
2 ), X∗(ψk1 , ψ

k
2 ));ψki , F

k
i , f
∗
i (ψk1 , ψ

k
2 ), i = 1, 2.

Compute Gα̂(ψk1 , ψ
k
2 ) and ∇Gα̂(ψk1 , ψ

k
2 ) as defined in (8) and (9).

Solve the linear system to obtain the search direction (δψ1
, δψ2

)′:

∇Gα̂(ψk1 , ψ
k
2 )

(
δψ1

δψ2

)
= −Gα̂(ψk1 , ψ

k
2 ) ,

For i = 1, 2, update ψi:
ψk+1
i := ψki + δψi .

Obtain the optimal solution (x∗(ψk+1
1 , ψk+1

2 ), X∗(ψk+1
1 , ψk+1

2 )) of the mBQP

relaxation, considering α := α̂, γ1 := exp(ψk+1
1 ), and γ2 := exp(ψk+1

2 ).
For i = 1, 2, set:

Fk+1
i := Fi(C, s; exp(ψk+1

i ), (x∗(ψk+1
1 , ψk+1

2 ), X∗(ψk+1
1 , ψk+1

2 )),

f∗i (ψk+1
1 , ψk+1

2 ) := fi(C, s; exp(ψk+1
i ), (x∗(ψk+1

1 , ψk+1
2 ), X∗(ψk+1

1 , ψk+1
2 )).

Output: (x∗(ψk+1
1 , ψk+1

2 ), X∗(ψk+1
1 , ψk+1

2 ));ψk+1
i , Fk+1

i , f∗i (ψk+1
1 , ψk+1

2 ), i = 1, 2.

Finally, in order to obtain a good bound, we propose an algorithmic ap-
proach where we start from given values for the parameters α, ψ1, and ψ2
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Fig. 4 Variation of f1, f2, and the overall bound, with α,ψ1, ψ2(n = 63, s = 10)

and alternate between solving problems (3) and (6), applying respectively, the
procedures described in Algorithms 1 and 2.

In Figure 4 we illustrate how f1, f2, and the (strengthened) mBQP bound
vary with each of the parameters α, ψ1, and ψ2, separately, for the instance
with n = 63, s = 10. To construct each plot in Figure 4, we fix two of the
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parameters and vary the other. The values of the two parameters that are fixed
were obtained by the procedure described above, i.e., alternating between the
execution of Algorithms 1 and 2. The interval in which the third parameter
varies is centered in the value also obtained with the alternating algorithm, so
the best bound obtained by the algorithm is depicted in the figure. The plots
in Figure 4 were considered to support the approximations pointed in (5) and
(7), used in the computation of the search directions of Algorithms 1 and 2.

3 Mixing the NLP bound with the complementary NLP bound

Now, we introduce the mixed NLP (mNLP) bound :

w(C, s;α, γ1, γ2) :=

max (1− α)
(

ldet
(
γ1X

p/2(C −D)Xp/2 + (γ1D)x
)
− slogγ1

)
+ α

(
ldet

(
γ2Y

p̄/2(C−1 − D̄)Y p̄/2 + (γ2D̄)y
)
− (n− s)logγ2 + ldetC

)
,

subject to:

e′x = s, x+ y = e,

where 0 ≤ α ≤ 1 is a weighting parameter.
The objective function of the mNLP relaxation is defined over the order-

n diagonal matrices D and D̄, the order-n vectors p and p̄, and the scaling
parameters γ1, γ2 > 0. The following notation is also employed in its definition:
X := diag(x), Y := diag(y), and (V u)i,i := V uii,i , i = 1, . . . , n, for a diagonal
matrix V and a vector u.

In [AFLW99], three different strategies are presented for choosing D, p,
and γ1, in order to have the NLP relaxation proven convex. Analogously,
the strategies also applies to the selection of the parameters D̄, p̄, and γ2,
for the complementary problem. In our numerical experiments with the NLP
bound, we have chosen these parameters based on the so-called “NLP-Trace”
strategy, where D minimizes the trace of D − C, subject to D − C being
positive semidefinite. Once D is chosen, the scaling parameter γ1 should be
selected in the interval [1/dmax, 1/dmin] (see [AFLW99]). In our experiments,
we have tested 100 values for γ1 in this interval an report results for the
best one. The same strategy is applied to the complementary problem. We
note that the optimal scaling factors for the mBQP bound were obtained
with Newton steps in the previous section, as described in Algorithm 2. The
same methodology could not be applied here, because the objective function
of the mNLP relaxation is neither convex in the scaling parameters nor in
the logarithms of the scaling parameters. Therefore, for the results we present
on the mNLP bound, we choose γ1 to be the best scaling parameter for the
original NLP bound (α = 0), among the 100 values tested, we choose γ2 to be
the best scaling parameter for the complementary NLP bound (α = 1), among
the 100 values tested. To select α for each instance, we obtained the mNLP



Mixing convex-optimization bounds for maximum-entropy sampling 17

bound for all α = 0.1i, i = 0, 1, . . . , 10. The results reported correspond to the
best such α.

Finally, we note that unlike the mBQP bound, the mNLP bound cannot
be computed by SDPT3, via Matlab and Yalmip. So, to compute it, we have
coded an interior-point algorithm, also in Matlab. The solution procedure is
the same as described in [AFLW99, Section 3], where the NLP bound and
the complementary NLP bound are considered. Later, the procedure was also
applied in the related work [AFLW01]. The procedure employs a long-step
path following methodology, using logarithmic barrier terms for the bound
constraints on x (i.e., 0 ≤ x ≤ e). For a fixed value of the barrier parameter
µ, the barrier function is approximately minimized on {x ∈ Rn : e′x = s}.
The parameter µ is then reduced and the process is repeated, until µ is small
enough for an approximate minimizer to be within a prescribed tolerance of
optimality. The tolerance is certified by a dual solution generated by the al-
gorithm, providing a valid upper bound for the optimal value of NLP.

In Figure 5, we illustrate our approach. By mixing the NLP-Trace bound
and the complementary NLP-Trace bound, we were able to obtain an improve-
ment for the n = 124 problem in the vicinity of s = 73.
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mix

Fig. 5 Mixing the NLP bound with complementary NLP bound

4 On the linx bound

Next, we consider the linx bound introduced by [Ans18a], i.e., the solution of

max{1

2
v(γ, x) | e′x = s, 0 ≤ x ≤ e} (10)

where
v(γ, x) := ldetF (γ, x)− s log γ
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and
F (γ, x) := γC diag(x)C + I − diag(x), (11)

The linx bound has excellent performance, and it is a challenge to improve
upon it. In the the remainder of this section, we consider fine tuning the bound
via its scaling parameter. In §5, we are able to get an improvement on the linx
bound by mixing it with the NLP bound.

4.1 Optimizing the linx bound on the scaling parameter γ

The linx bound depends on the scaling parameter γ. [Ans18a] observed that
the linx bound is particularly sensitive to the choice of γ. This is probably due
to the fact that the bound is derived by bounding the square of the determinant
of an order-s principle submatrix of C. So for mixing with the linx bound, it
is very useful to be able to optimize on γ.

To find the best bound, we now define ψ := log(γ) and formulate the
problem

min
ψ
{H(ψ)} , (12)

where
H(ψ) := v(exp(ψ), x∗) ,

and where x∗ is a maximizer of (10), with γ(= exp(ψ)) fixed.

Theorem 9 The function H(ψ) is convex in ψ ∈ R.

Proof Based on the same argument used in the proof of Theorem 7, we show
that v(exp(ψ), x) is convex in ψ, for fixed x in the feasible set of (10).

We have

∂
∂γ v(γ, x) = F (γ, x)−1 • (C diag(x)C)− s

γ

= 1
γ (F (γ, x)−1 • ((F (γ, x)− I + diag(x))− s)

= 1
γ (F (γ, x)−1 • (diag(x)− I) + n− s)

∂2

∂γ2 v(γ, x) = ∂
∂γ

(
1
γ (F (γ, x)−1 • (diag(x)− I) + n− s)

)
= − 1

γ2 (F (γ, x)−1 • (diag(x)− I) + n− s)
+ 1

γ (e− x)′ diag(F (γ, x)−1(C diag(x)C)F (γ, x)−1).

Therefore
∂
∂ψv(γ, x) = γ ∂

∂γ v(γ, x)

= F (γ, x)−1 • (diag(x)− I) + n− s,
and

∂2

∂ψ2 v(γ, x) = γ ∂
∂γ v(γ, x) + γ2 ∂2

∂γ2 v(γ, x)

= γ(e− x)′ diag(F (γ, x)−1(C diag(x)C)F (γ, x)−1).
(13)

Now, it remains to show that

∂2v

∂ψ2
(exp(ψ), x∗) ≥ 0, ∀ψ.
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Considering (13), it suffices to show that

diag(F (exp(ψ), x∗)−1(C diag(x∗)C)F (exp(ψ), x∗)−1) ≥ 0.

We have C � 0 and diag(x∗) � 0, therefore C diag(x∗)C � 0. Then, it is also
clear from (11) that F (exp(ψ), x∗) � 0 and, therefore,

F (exp(ψ), x∗)−1(C diag(x∗)C)F (exp(ψ), x∗)−1 � 0,

which completes the proof. ut

Remark 10 By working with ψ := log(γ) and establishing convexity, we are
able to rigorously find the best values of the γi. [Ans18b] does not work that
way. Working directly with the scaling parameters, γ, he heuristically sought
a good value for γ.

4.2 The Newton method on the variable ψ := log(γ)

The optimality condition for (12) can be written as

G(ψ) :=
∂

∂ψ
v(exp(ψ), x∗) = n− s− F (exp(ψ), x∗)−1 • (I − diag(x∗)) = 0.

We aim at improving the linx bound by taking Newton steps to solve the
nonlinear equation above. The Newton direction δψ is then defined by

HG(ψ)δψ = −G(ψ) ,

where

HG(ψ) := ∂2

∂ψ2 v(exp(ψ), x∗)

= exp(ψ)(e− x∗)′ diag
(
F (exp(ψ), x∗)−1(C diag(x∗)C)F (exp(ψ), x∗)−1

)
.

5 Mixing the NLP bound and a “non-NLP bound”

A convenient solver for calculating the BQP bound and its complement and
also for calculating the linx bound is SDPT3 via Yalmip. But the NLP bound
and its complement are not amenable to solution by SDPT3 via Yalmip. So
we developed our own IPM for calculating the NLP bound. Because of this
dichotomy between available solvers, we need a special approach for mixing the
NLP bound or its complement, with any of the BQP bound, its complement,
or the linx bound.

We are not very concerned with efficiency. Rather, we only seek a practical
method for calculating these mixed bounds to see if we can get an improvement
on the unmixed bounds by mixing.

Our idea is simply to apply Lagrangian relaxation to the mixing bound, in
its form with duplicated variables, as follows:

v(α) := max {αf1(x,X ) + (1− α)f2(y,Y) : (x,X ) ∈ P, (y,Y) ∈ Q, x+ y = e}
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= min
π∈Rn

{
max {αf1(x,X ) + (1− α)f2(y,Y) + π′ (e− x− y) :

(x,X ) ∈ P, (y,Y) ∈ Q}

}
.

= min
π∈Rn

{
π′e+ max {αf1(x,X )− π′x : (x,X ) ∈ P}

+ max {(1− α)f2(y,Y)− π′y : (y,Y) ∈ Q}

}
.

In this form, we apply subgradient optimization to find an optimal π ∈ Rn,
and at each step the Lagrangian subproblem decouples into the (x,X ) ∈ P
maximization problem and the (y,Y) ∈ Q maximization problem. So we can
apply separate solvers to each.

In Figure 6, we illustrate some successes with our approach. By mixing the
NLP-Trace bound and linx bound, we were able to obtain an improvement for
the n = 63 problem in the vicinity of s = 25.
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Fig. 6 Mixing the NLP bound with “Non-NLP bounds”
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6 Concluding remarks

It is a challenge to efficiently employ our ideas in the context of branch-and-
bound. We need to find effective mixing parameters α quickly. Note that in
our notation, [Ans18b] is using only α = 0 or 1, and in the context of branch-
and-bound, each child inherits α from its parent, only updating the choice
occasionally. In the context of branch-and-bound, we would now expect that
for many subproblems, we would have α = 0 or 1. But we can further expect
that for many we will have 0 < α < 1, and we would then gain from our
approach. The guidance of [Ans18b] is: “we use a simple criterion based on
the number of fixed variable and depth in the tree to decide when to check the
other bound”. So we would proceed similarly, doing a univariate search for a
good α after an inherited value becomes stale.

It is not clear at all how our mixing idea could be adapted to “spectral and
masked spectral bounds” (see [KLQ95,AL04,BL07,HLW01,LW03]), because
these are apparently not based on convex relaxation. We would like to highlight
this as an interesting area to explore.

Very recently, [LX20] presented new results on a relaxation and on an
approximation algorithm for MESP. It will be interesting to see if some of
those results can be exploited in our context.

Finally, our general mixing idea, although well suited for MESP, should find
application on other combinatorial-optimization problems with nonlinearities.
It is a challenge to find other good applications.
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