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Methodology proposed and deployed

1. SCALE CHOICE
ie.
Selecting territory and
disaggregation boundaries

3. PRINCIPAL COMPONENTS
ANALYSIS
ie.
Extracting main parameters
for each category
(buildings and urban shapes)
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2. DATA SELECTION
ie.
Choosing and processing
parameters

& for both categories

(buildings and urban shapes)
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First axis for buildings

Parameter Eigen value
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Density of population per m? of floor 0.286
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% of collective central heating among
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Average length of buildings 0.231
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Results on urban shapes |

Figure: Clusters for urban shapes archetypes.
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Results on urban shapes I

Name Description Average Ratio  of  Average dis=  Floor area  Ratio  of
blocks _area  vegetalized tance to public  ratio road surface
(log m?) area transportation
(log m)

Dense close city 1 Bordeaux's highly dense center (small lots, few  8.83305 0.07602 5.04190 0.39233 0.11276
green spaces, few variety of land cover, high CES,  (0.20333) (0.05215) (0.26440) (0.08076) (0.01698)
much road surface)

Suburbs / smaller towns 1 Similar lots of suburbs/smaller towns (average CES, ~ 9.44613 0.21096 5.63650 0.13672 0.07890
small lots, few road surface) (0.29550) (0.09864) (0.25539) (0.03198) (0.01465)

Rural area 1 Rural areas (few schools, larger portion of green ar-  11.15463 051442 6.92366 0.02419 0.02604
eas, diverse land-use, very little built or road surface, ~ (0.49406) (0.23598) (0.33461) (0.01181) (0.00756)
very large lots)

Meédard-en-Jalles int-Médard-en-Jalles (specific part with small 1172024 0.90987 7.87007 0.00357 0.01925
amount of buildings, schools, road, huge lots very  (0.23985) (0.04691) (0.19080) (0.00377) (0.00342)
diversely used)

Historical centre Highly dense historical center (small lots, few 8.28203 0.03221 5.06009 0.56311 0.14258
green spaces, high CES, much road surface, many  (0.30990) (0.02826) (0.39676) (0.05299) (0.01892)
schools/health infrastructure)

Dense close city 2 Bordeaux's dense diverse further surroundings (va-  9.25435 0.10974 5.40891 0.19502 0.08626
riety of land-use, fewer public equipments, smaller  (0.27048) (0.04940) (0.24011) (0.03861) (0.01635)
CES, rather dense and small lots)

Suburbs / smaller towns 2 Similar lots of peri-urban small towns/suburbs (av-  9.97472 0.32657 6.13602 0.08354 0.05366
erage/small CES, few equipments, normal/large  (0.36878) (0.14023) (0.32896) (0.03100) (0.01116)
lots, few road surface)

Activity zone 1 Activity zones around the metropolitan territory 11.11342 031171 7.22860 0.02914 0.03147

(1.05265) (0.27149) (0.37593) (0.01757) (0.01531)

Activity zone 2 Very similar neighborhood of dense fabric built or  8.79446 016334 5.40508 0.15497 0.11542
industrial /activity zone (few housing, high ratio of  (0.24010) (0.07863) (0.34289) (0.04279) (0.01747)
roads, average/large lots)

Dense close city 3 Bordeaux's denser diverse surroundings (variety of  9.10579 0.10384 5.31922 0.28212 0.09553
land-use, fewer public equipments, high CES, rather  (0.22896) (0.07679) (0.25042) (0.06293) (0.01618)

dense and small lots)
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Results on buildings |

Figure: Clusters for buildings archetypes.
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Results on buildings |l

Name Description Number  of  Number Density of pop-  Proportion % of house-
jobs per m?  of average ulation per m2  of buildings  holds with
for company floors of floor (popu-  built before  one car or

lation / CES / 1015 more
area)

Large activity buildings Large activity buildings (since 80-90, small ~ 0.03416 2.47714 0.00083 0.07677 0.94891
population, large number of employees) (0.01867) (0.51356) (0.00070) (0.13238) (0.06293)

Medium density zones Medium density zones ("grands ensembles”  0.01486 2.46905 0.03441 0.01968 0.75182
and small houses, no jobs, post WWII-80", (0.01396) (0.69367) (0.01189) (0.02516) (0.10446)
collective heating, one car)

New periurban suburbs  New periurban suburbs housing (many  0.01531 1.04982 0.01555 0.06552 0.90019

housing houses, very small buildings, cars, since  (0.00950) (0.17071) (0.00630) (0.05051) (0.05051)
2006, no jobs, not dense)

Activity zones with offices _ Activity zones with offices (high buildings,  0.09177 3.08766 0.01979 0.11652 0.68981
high number of employees, mostly recent  (0.03405) (1.19544) (0.00951) (0.10490) (0.16494)
buildings)

High density zones High density zones (towers, not much jobs,  0.01845 440631 0.06725 0.00698 0.64375
post WWII-80', collective heating, one car)  (0.02601) (1.50829) (0.01885) (0.01057) (0.11914)

Close suburbs Close suburbs (small housing, old buildings, _ 0.02166 3.15456 0.02404 0.46656 0.69539
individual or two stores, no car, average jobs)  (0.01923) (0.53618) (0.00598) (0.15570) (0.06815)

ZA de Saint-Médard ZA de Saint-Médard-en-Jalles 022219 2.48303 00094 050000 0.88052

Jalles (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Periurban suburbs hous- Periurban suburbs housing (many houses, 0.01125 1.77626 0.01502 0.06326 0.93829

ing very small buildings, cars, between 75-00, no  (0.00882) (0.12941) (0.00357) (0.06498) (0.03193)
jobs, not dense)

Old urban suburbs hous-  Old urban suburbs housing (many houses, ~ 0.01060 211898 0.02305 0.10197 0.82176

ing very small buildings, between 15-48, no jobs, (0.00804) (0.33796) (0.00565) (0.09758) (0.06818)
not dense)

Historical center Historical center (old, dense, high, no car,  0.03718 5.22854 0.03216 0.72736 0.46322
elec heating, average nb jobs) (0.03169) (1.18080) (0.01067) (0.15306) (0.09589)
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Conclusion and perspectives

Conclusion:
o We obtained archetypes...

o 10 urban shapes,
o 10 buildings,

...based on statistical data on Bordeaux Métropole...
...from open data sources;

Interesting correlations;

Realistic PCA axes;

Coherent results (spatial distribution, can be associated with real urban
shapes. . .).
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Conclusion and perspectives

Conclusion:
o We obtained archetypes...

o 10 urban shapes,
o 10 buildings,

...based on statistical data on Bordeaux Métropole...
...from open data sources;

Interesting correlations;

Realistic PCA axes;

Coherent results (spatial distribution, can be associated with real urban
shapes. . .).

Perspectives:
@ Apply to other French cities;
o Compare with archetype databases (TABULA/EPISCOPE);
2%

@ Take more parameters into account? /(f PSL%
MINES
ech

Urban archetypes through statistical techniques SophlA Summit 2020  15/16



Introduction and context A methodology to create archetypes Data presentation Archetypes creation results Conclusion
[e]e] 000 [e]e]e} 0000 oe

Thank you for your attention!

Matthieu Denoux, PhD Student

matthieu.denoux@mines-paristech.fr

supervised by Nadia Maizi
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