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Supervized Segmentation with Graph-Structured Deep Metric Learning

Loic Landrieu* ! Mohamed Boussaha' !

Abstract

We present a fully-supervized method for learning
to segment data structured by an adjacency graph.
We introduce the graph-structured contrastive
loss, a loss function structured by a ground truth
segmentation. It promotes learning vertex embed-
dings which are homogeneous within desired seg-
ments, and have high contrast at their interface.
Thus, computing a piecewise-constant approxi-
mation of such embeddings produces a graph-
partition close to the objective segmentation. This
loss is fully backpropagable, which allows us to
learn vertex embeddings with deep learning algo-
rithms. We evaluate our methods on a 3D point
cloud oversegmentation task, defining a new state-
of-the-art by a large margin. These results are
based on the published work of Landrieu & Bous-
saha (2019).

1. Introduction

We consider the problem of learning to segment data points
into meaningful groups. More precisely, we consider the
case in which such points are linked by a sparse graph-
structure, and each point is attributed with expressive fea-
tures. In this case, segmentation can be viewed as a graph
partitioning problem based on learned vertex embeddings.

The task of segmentation has been extensively studied for
images (Achanta et al., 2012), 3D point clouds (Lin et al.,
2018; Papon et al., 2013), and community retrieval (Fortu-
nato, 2010). A common roadblock is that segmentation op-
erators are not backpropagable. The first problem is that the
codomain of such operators is the set of vertex partitions for
which no simple metric can be used to compute derivatives.
Furthermore, graph partitions generally rely on computing
connected components, which is highly discontinuous as a
single edge can completely overhaul the partition. These
limitations prevent directly using segmentation metrics for
learning point embeddings.
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(a) Ground truth partition P

(b) Learned embeddings e.

Figure 1. Illustration of our method: vertex embeddings (b) are
learned such that they are homogeneous within ground truth seg-
ments P (a), and with high contrast at transition edges (in red).

These issues are addressed by Jampani et al. (2018) for
images by using soft-affectations, which render the segmen-
tation process continuous and allow for backpropagation.
However, these improvements come with strong assump-
tions on the uniform size and distribution of the segments.
While these are reasonable for computing superpixels, our
objective is to allow for adaptive segment size and density
in order to deal with other types of data.

Liu et al. (2018) proposes a new loss function, called the
segmentation-aware loss (SEAL), for learning pixel embed-
dings while taking into account their influence on the quality
of the segmentation. In this paper, we propose an improved
way of incorporating guidance from segmentation, which is
simultaneously more stable and accurate.

Community discovery methods are largely based on graph
topology analysis rather than point embeddings, and hence
are beyond the scope of this paper. Likewise, the random
forest-based supervised graph partitioning algorithm of Reas
et al. (2018) aims at learning to recognize transitions be-
tween segments rather than learning vertex embeddings.
Finally, the work of Liao et al. (2018) uses graph parti-
tioning to help classification rather than learn to segment.
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2. Method

We propose a two step approach to graph partitioning su-
pervized by a ground truth segmentation. First, we com-
pute vertex embeddings which are homogeneous within
segments and present high contrasts at their border; second,
we compute a piecewise-constant approximation of these
embeddings with respect to an adjacency graph, as repre-
sented in Figure 1. As suggested by Wang et al. (2014), we
bound the embeddings to the unit sphere to prevent their
collapse during learning.

We consider a set V' of data points, whose adjacency struc-
ture is encoded by the graph G = (V, E), with E CV x V
the set of edges. Throughout this paper, we will assume
that this adjacency structure is sparse, in the sense that
|E| < |V|°. Note that this is not necessary for the mathe-
matical derivations of the method. However, the proposed
method would not be well-suited for a segmentation prob-
lem with a complete adjacency structure.

For a partition U = (Uy,---,Uk) of V, we denote
Eians(U) its set of transition edges, i.e. linking different
elements of U: Eyus(U) = {(u,v) € E | u € U;,v €
Uj,i #J }

Generalized Minimal Partition. We associate to each ver-
tex v an embedding e, in the m-dimensional unit sphere
Sy = {z € R™ | ||z|| = 1}. For such embeddings, we
can partition V into the constant connected component of a
piecewise-constant approximation of e with respect to graph
G. Such approximation can be defined as the solution of the
Generalized Minimal Partition Problem (GMPP) introduced
by Landrieu & Obozinski (2017):

et Gal}gniinZHfi*Gi\PJr > owilhi#A £, O

ESm eV (i,j)€E

with w € R¥ the edges’ weight and [z # y] the Iverson’s
bracket equal to 0 if x = y and 1 otherwise. To encour-
age splitting along high contrast areas, we define the edge
weight as w; ; = Aexp (Zt|e; — ¢;]|?) , with parameters
A,o € R*. This problem is noncontinuous, nondifferen-
tiable, and nonconvex, and hence hard to solve. However,
good approximate solutions can be efficiently computed
with the /—0 cut-pursuit algorithm of Landrieu & Obozinski
(2017). Thus, a given embedding e defines a GMPP, whose
approximate solution is e*, whose constant connected com-
ponents defines a segmentation, which we denote S (e),

Undersegmentation Error. Given a proposed partition
S = {S1,---,SL} of G, one can define its agreement
with a ground truth segmentation P through the underseg-
mentation error L (Levinshtein et al., 2009), which sums
over each segment S; the number of vertices which are not
in the majority true segment, i.e. the element of P with the

largest overlap with .S;:

L
1 .
L(P,S) = G ;:1 min |5\ P .

Learning Embeddings for Segmentation. Our objective
is to learn a vertex embedding function £ : V' +— S,,, such
that £(V') is homogeneous within the segments of the ground
truth segmentation P, and with high contrast at transition
edges Eins(P). This property encourages Flans(S €v)) )—
the transition edges between constant connected compo-
nents of the piecewise approximation of e — to be close
t0 Eirans(P). The function £ is typically a neural network
operating on features of the data points corresponding to
the vertices of V. This can be for example the color of
the pixels of an image, or the local geometry/radiometry
of 3D points in a point cloud. Furthermore, these features
can be computed from the neighbors of each vertex in G,
allowing for the use of a wide range of networks such as
convolution-based architectures.

Graph-Structured Contrastive Loss. The naive way to
learn such an embedding function £ would be to minimize
the undersegmentation error £(S¢(V)) P) directly. How-
ever, because the optimization problem defined in (1) is non-
continuous and nonconvex, it is difficult, if not impossible,
to backpropagate through its minimization. As discussed
earlier, the constant connected component operator is not
backpropagable either. Furthermore, the undersegmenta-
tion error would favor very granular partitions as it doesn’t
penalize high segment counts.

Consequently, we introduce ¢ the graph-structured con-
trastive loss, a surrogate loss function to the undersegmen-
tation error, which operates on edges instead vertices and
allows for backpropagation:

6(67P)"E| = Z ¢(€u—€v)+2/h(fjl¢(€u—€v),

(u,v) EE\ Eggans (P) (u,v) € Erans(P)

with ¢ (resp. 1) a function favoring similarity (resp. con-
trast), and ugf} € REun 3 weight on transition edges, dis-
cussed later. A vertex embedding function minimizing this
loss will be uniform within elements of P and have high
contrasts at Fis(P). Consequently, Eians(S (e)) should
be close to Eyns(P). Our proposed loss is related to the
contrastive loss of Chopra et al. (2005) and the triplet loss
popularized by both Hoffer & Ailon (2015) and Wang et al.
(2014). However, our method takes advantage of the adja-
cency structure. This allows us to bypass the problem of
example picking altogether. Indeed, the positive and nega-
tive examples are directly determined by the graph structure,
instead of computationally intensive hard example mining.

We chose ¢—the function promoting intra-segment

homogeneity—as ¢(x) = d(+y/||z]|?/d2 + 1 — 1) (repre-

sented in Figure 2). This means that the first term of ¢ is the
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(pseudo)-Huber graph-total variation on the non-transition
edges (Huber et al., 1973; Charbonnier et al., 1997), promot-
ing smooth homogeneity of embeddings within segments.

With P(x) =
max (1 — [|z|,0),  the 2
second part of ¢ is the

opposite of the truncated

graph-total variation !
(Zhang et al., 2009) on

the transition edges. It o
penalizes similar embed- i
dings at the edges between : '
ground truth segments.

¢(x) and 9(x)

. Figure 2. The functions ¢ (in
As the embeddings are blue) and ¢ (in red) used in

spherically-pound, ) we the graph-structured contrastive
threshold this function for o4

differences larger than 1

(corresponding to a 60 degree angle). In other words, i
encourages vertices linked by a transition edge to have
embeddings with an euclidean distance of 1, but does not
push for a larger difference.

Note that a loss of 0 can be achieved by any embeddings
which are exactly constant within ground truth segments and
have a difference of at least 1 between adjacent segments.
The four-color theorem (Gonthier, 2008) tells us that this is
always possible as long as the dimension of the embeddings
is at least 3. However, because embeddings are computed
by &, which operates on vertex features, there needs to be
a recognizable pattern at the border between segments in
order for our method to detect a transition.

Cross-partition Weighting. Note that without an appropri-
ate edge weighting scheme, this loss will only encourage
high accuracy in recovering transition edges. However, the
influence of each edge can be vastly different in terms of un-
dersegmentation error L. Indeed, a single missed edge can
result in the erroneous fusion of large adjacent segments. In
order for / to better represent £, we choose the edge weights

MRS Rf‘“‘"’“(m to reflect this influence.

To this end, we introduce the cross-partition graph G =
(C, &), represented in Figure 3 and defined as the adjacency
graph of the cross-partition between P and S(¢) considering
only transition edges Fians(P):

C:{Pm5|PeRSes@ampms¢@}
E={(UV)eC|UXVNEyus # D} .

We associate the following weight My to each edge
(U,V) of € and p,, ,, to each transition edge:

M), = Mymin (|U],[V])} for (U, V) € €

(e)
(€) _ Myy
My =

— —OY  for (u,v) € U x V N Eyans.
: | U x V N Eans | (u,v) ‘

P1 NSy

3My/3

My/1
|7)0ﬂ8()
My/2 |P2NS

(a) Proposed partition S

(b) Cross-partition graph G.

Figure 3. Illustration of the proposed superedge weighting scheme.
In (a), we represent an erroneous proposed partition S with 3
segment. In (b) we represent the cross partition graph G with the
edge weights My, v/ |U X V N Eians|-

with p a parameter of the model. By definition of £, two
segments U and V' of C linked by a superedge (U,V) € £
are in two different ground truth segments. The underseg-
mentation error caused by the erroneous fusion of these
two components is proportional to min(|U|, |V'|). This er-
ror, spread evenly over the edges constituting the transition
superedge, determines the edge weights.

This weighting scheme differs from the SEAL strategy (Liu
et al., 2018). Indeed, in the latter, the edge weights are
shared by all transition edges of a given segment. This favors
long interfaces in the loss too strongly, and inadequately
handles large segments with multiple interfaces. Finally,
SEAL sets the weights to 1 as soon as a border is retrieved,
which makes the loss rather unstable and hard to optimize.

Setting My = |E| / |V| gives the same importance to the
classification of transition and non-transition edges. Indeed,
assuming that most edges are non-transition, we have the
sum of non-transition edge weights close to | E|, while the
sum of transition edge weights is in the order of magnitude
of [V|. In an oversegmentation setting, My must be set
higher to prioritize recovering object borders.

3. Numerical Experiments

We present numerical illustrations of our approach for 3D
point cloud oversegmentation. To this end we consider two
different datasets: S3DIS, composed of dense indoor scans
(Armeni et al., 2016), and vKITTI3D, a virtual dataset of
sparse outdoor point clouds (Engelmann et al., 2017; Gaidon
et al., 2016). The first one has both object and semantic
label annotations. For the second one, we define the ground
truth partition P as the connected components of the seman-
tic labels. Both datasets are composed of 6 independent
parts, which allows us to perform 6-fold cross-validation.
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Figure 4. Performance of the different algorithms on the 6-fold S3DIS dataset (a, b, ¢), and the 6-fold vKITTI3D dataset (d, e, f).

Note that for considerations of simplicity and efficiency, we
relax the optimization domain of (1) from S,,, to R, while
still learning spherical embeddings. While this can lead to
suboptimal partitions, the segmentation retrieved are still
relevant. We set the dimensions of the embeddings to 4, and
My to 5|E| / |V, hence favoring oversegmentations. The
embedding function is a small PointNet-like network (Qi
et al., 2017) operating on the 20 nearest neighbors of each
point. More details in the appendix.

In Figure 4, we report the performance of our algorithm
according to three segmentation metrics: OOA, BR, and BP.
OOA denotes the Oracle Overall Accuracy, i.e. the OA of the
oracle classification algorithm associating the majority label
to each segment of the proposed partition S. Note that the
OOA is a higher bound on the pointwise overall accuracy of
any classification algorithm operating on the segments. The
OOA is also closely linked to the undersegmentation error,
but adds a semantic component. BP (resp. BR) denotes
the precision (resp. recall) of the predicted transition edges
Einra(S) compared to iy (P) with a tolerance of one edge.
We denote our method by SSP for Supervized SuperPoints
and compare our approach to the following methods:
SSP-cluster is our adaptation of the soft partition approach
of Jampani et al. (2018) to the 3D setting.

SSP-SEAL uses the same framework as SSP, but with the
cross-partition weights replaced by the SEAL weighting
strategy (Liu et al., 2018). Note that this is not equivalent

to the framework of Liu et al. (2018), as they use a different
loss and clustering algorithm.

Geom-graph is the graph-based method introduced by
Guinard & Landrieu (2017) solving (1) on handcrafted
features (Demantke et al., 2011) instead of learned ones.

VCCS is the octree-structured cluster-based method intro-
duced by Papon et al. (2013).

Lin et al. is the adaptive resolution graph-based method
introduced by Lin et al. (2018).

We observe that for the large S3DIS dataset (600 Mpoints),
supervized methods provide considerably better results. In
particular, our method SSP obtains better accuracy with
300 segments than the state-of-the-art method of Lin et
al. with 1500 segments. The advantages for border recall
and precision are even more significant. For the smaller
vKITTI3D dataset (15 Mpoints), Lin et al. obtain better
results than all supervized methods except our approach.
Illustration of the results as well as more details on the
models and metrics are given in the appendix.

Conclusion

We presented a framework for learning to segment graph-
structured data with neural networks. Our new loss is fully
backpropagable and indirectly takes the undersegmenta-
tion error into account. We assess its efficiency on two
large-scale point cloud oversegmentation benchmarks. We
demonstrate a significant improvement over unsupervized
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methods of the state-of-the-art and our own implementa-
tions of other supervized methods. All codes will be re-
leased at the following URL: github.com/loicland/
superpoint_graph. Future works includes applying
our method to other graph-structured data types such as
images or relationship graphs and solving the GMPP with
the spherical domain constraint.
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SUPPLEMENTARY MATERIALS
A. 3D Point Embedding

In this section, we describe the embedding function £ used
in the 3D point cloud oversegmentation application. This
function associate to each point a spherical m-dimensional
embedding e; characterizing its point-features (position,
color, etc.) and the geometry and radiometry of its local
neighborhood. To this end, we introduce the Local Point
Embedder (LPE), a lightweight network inspired by Point-
Net (Qi et al., 2017). However, unlike PointNet, LPE does
not try to extract information from the whole input point
cloud, but rather encodes each point based on purely local
information. Here, we describe the different units of our
network.

Spatial Transform: This unit takes the positions of a target
point p; and its local k-neighborhood P;. It normalizes the
neighbors’ coordinates around p;, and such that the standard
deviation of the point’s position is equal to 1 (4). Then,
this neighborhood is rotated around the z axis witha 2 x 2
rotation matrix computed by small PointNet network PTN
(5). As advocated by (Jaderberg et al., 2015), these steps
aim to standardize the position of the neighborhood clouds
of each point. This helps the next network to learn position
distribution. Along the normalized neighborhood position

P;, this unit also outputs geometric point-features p; describ-

ing the elevation p!*

, > the neighborhood radius, as well as
its original orientation (through the 4 values of the rotation
matrix: [Qy 2, Qs y, Uy 2, Qy.y]) (6). By keeping track of
the normalization operations, the embedding can stay co-
variant with the original neighborhood’s radius, height, and
original orientation, even though the points’ positions have

been normalized and rotated.

rad = std(P) (2)
Q = PIN(H) (3)
P = (P, —p;)/rad “4)
P, = {pxQlpePr)} )
P = [pgz) ,rad, Q] (6)

Local Point Embedder: The LPE network computes a nor-
malized embedding from two inputs: a point-feature x; and
a set-feature X;. As in PointNet (Qi et al., 2017), the set-
features are first processed independently by a multi-layer
perceptron (denoted MLP;) comprised of a succession of
layers in the following order: linear, activation (ReLu (Nair
& Hinton, 2010)), normalization (batch (Ioffe & Szegedy,
2015)), and so on. The resulting set-features are then max-
pooled into a point-feature, which is concatenated with
the input point-feature. The resulting vector is processed
through another multi-layer perceptron MLP; (8), and fi-
nally normalized on the unit sphere.

The embeddings e; are computed for each point ¢ of C

through a shared LPE (9). The input set-feature X is set as
the concatenation of the neighbour’s transformed position
Pi and their radiometric information R;, while the input
point-feature x; is composed of the neighborhood geometric

point-feature p; and the radiometry r; of point i.

Lo() =/ -1l )
e; = LPE([P;, Ry], [pi, 7)) )

A.1. Implementation Details

We use a modified version of the ¢y-cut pursuit algo-
rithm'(Landrieu & Obozinski, 2017), with two main dif-
ferences:

e to prevent the creation of many small segments in re-
gions of high contrast, we merge components greedily
with respect to the MGPP energy (1), as long as they
are smaller than a given threshold;

e we heuristically improved the forward step (1) from
(Landrieu & Obozinski, 2017), such that the regular-
ization strength increases geometrically by a factor (of
0.7) along the iterations. This helps improve the qual-
ity of the lower optima retrieved, and consequently the
graph partition.

To limit the spatial extent of the segment we concatenate to
the points’ embeddings their 3D coordinates in (1) multi-
plied by a parameter orgpagial, in the manner of (Achanta et al.,
2012). This determines the maximum size that superpoints
can reach.

In all our experiments, we set m the dimension of our em-
beddings to 4. We choose a light architecture for the LPE,
with less than 15, 000 parameters.

B. Oversegmentation Metrics

There are many standard metrics which assess the quality
of point cloud oversegmentation. In particular, the Bound-
ary Recall (BR) and Precision (BP) are used to evaluate
the ability of the superpoints to adhere to, and not cross,
object boundaries. In the literature, these measures are de-
fined with respect to boundary pixels (Papon et al., 2013) or
points (Lin et al., 2018). However, we argue that transition
occurs between points and not at points for point clouds.
Consequently, we define EP™? the set of predicted transi-
tion, i.e. the subset of edges of E that connect two points
of C in two different superpoints. These metrics are often
given with respect to a tolerance, i.e. the distance at which a
predicted transition must take place from an actual object’s

1https ://github.com/loicland/cut-pursuit
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(b) Learned Embedding

(c) Oversegmentation

(d) True Objects

Figure 5. Illustration of our framework on a hard-to-segment scene with a white board on a white wall: a colored point cloud is given as
input (a), an embedding is computed for each point (b), which allows a clustering technique to compute an oversegmentation (c), which
closely follows the ground truth (d). The embeddings are projected into a 3-dimensional space to allow color visualization.

border for the latter to be considered retrieved. We set this
distance to 1 edge, which leads us to define Et(ril)qs the set of
inter-edges expanded to all directly adjacent edges in E:

1 . ) )
gy = {(i.4) € B |3, k) or (j,k) € Buans}
This allows us to define the boundary recall and precision
with 1 edge tolerance for a set of predicted transition EP<¢:

trans
pred
| Etrans

d 1
| B2 0 B,
| Etrans | ’

_ | B 0BG

BR =

To assess object purity we define the Oracle Overall Accu-
racy (OOA). This metric characterizes the accuracy of the
labeling that associates each superpoint S of a segmentation
S with its majority ground-truth label. Formally, let I € K¢
be the semantic labels of each point within a set of classes
IC, we define the OOA of a point cloud segmentation S as:

[orle(S) = mode {I; | i € S}
00A = % SN =19,

SeS ieS

with [x = y]| the function equal to 1 if z = y and 0 oth-
erwise. Note that the OOA is closely related to the ASA
(Liu et al., 2011), but consider the majority labels of all
points within a superpixel rather than the label of the ob-
jects with most overlap. This metric is also more fair than

the undersegmentation error (Levinshtein et al., 2009) for
other methods such as (Guinard & Landrieu, 2017), or our
cluster-based approach, as they do not try to retrieve objects
directly, but rather regions of C' with homogeneous semantic
labeling.

In Figure 6, we show the oversegmentation results of our
method and the competing algorithms on VKITTI3D and
S3DIS datasets. We observe that our supervized partition
framework produces superpoints of adaptive sizes which
closely follow hard-to-segment objects such as white boards
or sidewalks. We also notice that the embeddings learn to
ignore certain form of intra-object variability of geometry
and radiometry. In particular, the lamp reflections on the
white boards are almost completely ignored by the embed-
dings. Even more interestingly, the embeddings of trees
are homogeneous despite the significant variability between
leafs and trunks. As a consequence, the trees are segmented
into one component while the other methods produces many
dubious superpoints.

C. Ablation Study

We present an ablation study to empirically justify some of
our design choices. In particular we present Prop-weight,
an alternative version in which the cross-partition weighting
is replaced by a simple inversely-proportional weighting of
the inter/intra edges. Predictably, this method gives lesser
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parameter shorthand section | S3DIS  vKITTI
Local neighborhood size k& 3.1 20
# parameters - - 13,816
LPE configuration - 3.1 [32,128],[64,32,32,m]
ST configuration - 3.1 [16,64],[32,16,4]
Embeddings dimension ~ m 3.1 4
Adjacency graph G 32 5-nn 5-nn + Delaunay
exponential edge factor o 3.2.1 0.5
intra-edge factor i 323 5
spatial influence Otspatial 3.4 0.2 0.02
smallest superpoint ”l(nl]i 34 40 10
epochs - - 50
decay event - - 20,35,45

Table 1. Configuration of the embedding network for the S3DIS and vKITTI datasets.

results as the edges are not weighted according to their
influence in the partition. However, since the weights of the
intra-edge are proportionally higher, the border precision is
improved.

We replaced our choice of function ¢ and v in the loss by
respectively | - | and — | - |, so that our loss is closer to
the pairwise affinity loss used by (Engelmann et al., 2018)
(but still structured by the graph). However, this approach
wouldn’t give meaningful partition as the intra-edge term
conflicts with the constraint that the embeddings are con-
strained on the sphere. Removing this restriction leads the
collapse of the embeddings around 0.

D. Models configuration

Our supervized oversegmentation model has a number of
critical hyper-parameters to tune, given in Table 1. We detail
here the rationale behind our choices.

Local neighborhood and adjacency graphs: For both
datasets, we find that setting the local neighborhood size
to 20 was enough for embeddings to successfully detect
objects’ borders. Combined with our lightweight structure,
this results in a very low memory load overall. The
adjacency graph G requires more attention depending on
the dataset. For the dense scans of S3DIS, the 5-nearest
neighbors adjacency structure was enough to capture the
connectivity of the input clouds. For the sparse scans of
vKITTI, we added Delaunay edges (Delaunay et al., 1934)
(pruned at 50 cm) such that parallel scans lines would be
connected.

Networks configuration: For the LPE and the PointNet
structure in the spatial transform, we find that shallow and
wide architectures works better than deeper networks. We
give in Table 1 the size of the linear layers, before and
after the maxpool operation. Over 250, 000 points can be

embedded simultaneously on 11GB RAM in the training
step, while keeping track of gradients.

Intra-edge factor: The graph-structured contrastive loss
presented in Section 2 requires setting a weight ;. determin-
ing the influence of inter-edges with respect to intra-edge.
Since most edges of G are intra-edges in practice, we
define [ such that u = fic with ¢ = | E |/| V| the average
connectivity of G. Note that ¢ can be determined directly
from the construction of the adjacency graph (it is equal
to k in a k-nearest neighbor graph for example). A value
of i = 1 means that the total influence in ¢ of inter-edges
and intra-edges are identical. Since we are interested in
oversegmentation, we set fi to 5 in all our experiments, but
note that the network is not very sensitive to this parameter,
as demonstrated experimentally: a value of i = 3 gives a
relative performance of (—0.2, —0.6, +1.5) while a value
of 8 gives (+0.1, —0.5,+1.4).

Regularization Strength: The generalized minimal
partition problem defined in Section 2 requires setting
the regularization strength factor A, determining the cost
of edges crossing superpoints. We remark that the LPE
produces embeddings of points with an euclidean distance
of at least 1 over predicted objects’ borders. Some calculus
shows us that for a A < 1/(2¢), the solution e* of (1)
should predict superpoints borders at all edges whose
vertices have a difference of embeddings of at least 1 (note
that there is no guarantee that the greedy {y-cut pursuit
algorithm will indeed predict a border). We use this value
to define a normalized regularization strength A such that
A = A/(4c), whose default value is 1.

Regularization path: To obtain the regularization paths in
Figure 4, we first train the network with a regularization
strength of A = 1 (see Section 2). We then compute
partitions with A varying from 0.2 to 6 with no fine-tuning
required.
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Smallest superpoint: To automatically select a minimal
superpoint size (in number of points) appropriate to the
coarseness of the segmentation, we heuristically set:

5 1 1 ~
nfr‘lm = [(max <2nfnli31, nl(nll)n + 5711(111131 log()\))]

1)

where n . is a dataset-specific minimum superpoints
size for A = 1. For example, for nfnlli = 50, the smallest

superpoint allowed for a small regularization strength
A = 0.2 will be 33, while it is 70 for the coarse partition
obtained with A = 6. While specific applications may
require setting up this variable manually, this allowed us
to produce the regularization paths in Figure 4 while only
varying A.

Optimization: Given the small size of our network, we
train it for a short number of epochs (see Table 1), with
decay events set at 0.7. We use Adam optimizer (Kingma &
Ba, 2015) with gradient clipping at 1 (Goodfellow et al.,
2016). Training takes around 2 hours per fold on our 11GB

VRAM 1080Ti GPU.

Mini-batches: For graph-based clustering, the training
phase processes batches of 16 point clouds at once, for
which a subgraph of size 10000 points is extracted. For
the clustering-based segmentation, which is more memory
intensive, and since subgraphs have to be larger to be
meaningfully covered by the initial voxels, we set a batch
size of 1 and a subgraph of 100 000. As a consequence, we
replace the batchnorm layers of the LPEs by group norms
with 4 groups (Wu & He, 2018).

Augmentation: In order to build more robust networks, we
added Gaussian noise of deviation 0.03 clamped at 0.1 on
the normalized position and color of neighborhood clouds.
We also added random rotation of the input clouds for the
network to learn rotation invariance. To preserve orientation
information, the clouds are rotated as a whole instead of
each neighborhood. This allows the spatial transform to
detect change in orientation, which can be used to detect
borders.
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SSP (ours) VCCS Lin et al.
(a) S3DIS scene with 58 objects. Superpoint count : SSP 442, VCCS 436, Lin 423.

SSP (ours) VCCS Lin et al.
(b) vKITTI scene with 233 objects. Superpoint count: SSP 420, VCCS 422, Lin 425.

Figure 6. Illustration of the oversegmentations of our framework, and from competing algorithms.
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1. 3D Point Embedding

In this section, we describe the embedding function & used
in the 3D point cloud oversegmentation application. This
function associate to each point a spherical m-dimensional
embedding e; characterizing its point-features (position,
color, etc.) and the geometry and radiometry of its local
neighborhood. To this end, we introduce the Local Point
Embedder (LPE), a lightweight network inspired by Point-
Net (?). However, unlike PointNet, LPE does not try to
extract information from the whole input point cloud, but
rather encodes each point based on purely local information.
Here, we describe the different units of our network.

Spatial Transform: This unit takes the positions of a tar-
get point p; and its local k-neighborhood P;. It normalizes
the neighbors’ coordinates around p;, and such that the
standard deviation of the point’s position is equal to 1 (3).
Then, this neighborhood is rotated around the z axis with
a 2 x 2 rotation matrix computed by small PointNet net-
work PTN (4). As advocated by (?), these steps aim to
standardize the position of the neighborhood clouds of each
point. This helps the next network to learn position distri-
bution. Along the normalized neighborhood position P,
this unit also outputs geometric point-features p; describing
the elevation pgz), the neighborhood radius, as well as its
original orientation (through the 4 values of the rotation
matrix: [Qy 2, Qs 4, Qy 2, Qyy]) (5). By keeping track of
the normalization operations, the embedding can stay co-
variant with the original neighborhood’s radius, height, and
original orientation, even though the points’ positions have

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review at the ICML 2019 Workshop
on Learning and Reasoning with Graph-Structured Data. Do not
distribute.

been normalized and rotated.

rad = std(P) ()
Q = PIN(P) 2)
P/ = (Pi—p;)/rad (3)
P = {pxQ|pePp} )
B = [p¥, rad, Q) 5)

Local Point Embedder: The LPE network computes a nor-
malized embedding from two inputs: a point-feature x; and
a set-feature X;. As in PointNet (?), the set-features are
first processed independently by a multi-layer perceptron
(denoted MLP;) comprised of a succession of layers in the
following order: linear, activation (ReLu (?)), normaliza-
tion (batch (?)), and so on. The resulting set-features are
then maxpooled into a point-feature, which is concatenated
with the input point-feature. The resulting vector is pro-
cessed through another multi-layer perceptron MLP; (7),
and finally normalized on the unit sphere.

The embeddings e; are computed for each point i of C'
through a shared LPE (8). The input set-feature X is set as
the concatenation of the neighbour’s transformed position
Pi and their radiometric information R;, while the input
point-feature x; is composed of the neighborhood geometric

point-feature p; and the radiometry r; of point i.

La() = /Il (6)
e; = LPE([P;, Ry], [pi, 7)) (®)

1.1. Implementation Details

We use a modified version of the /y-cut pursuit algo-
rithm!(?), with two main differences:

e to prevent the creation of many small segments in re-
gions of high contrast, we merge components greedily
with respect to the MGPP energy (1), as long as they
are smaller than a given threshold;

e we heuristically improved the forward step (1) from
(?), such that the regularization strength increases geo-

"https://github.com/loicland/cut-pursuit
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(a) Input Point Cloud

(b) Learned Embedding

(c) Oversegmentation (d) True Objects

Figure 1. Illustration of our framework on a hard-to-segment scene with a white board on a white wall: a colored point cloud is given as
input (a), an embedding is computed for each point (b), which allows a clustering technique to compute an oversegmentation (c), which
closely follows the ground truth (d). The embeddings are projected into a 3-dimensional space to allow color visualization.

metrically by a factor (of 0.7) along the iterations. This
helps improve the quality of the lower optima retrieved,
and consequently the graph partition.

To limit the spatial extent of the segment we concatenate
to the points’ embeddings their 3D coordinates in (1) mul-
tiplied by a parameter orpagial, in the manner of (?). This
determines the maximum size that superpoints can reach.

In all our experiments, we set m the dimension of our em-
beddings to 4. We choose a light architecture for the LPE,
with less than 15, 000 parameters.

2. Oversegmentation Metrics

There are many standard metrics which assess the quality of
point cloud oversegmentation. In particular, the Boundary
Recall (BR) and Precision (BP) are used to evaluate the
ability of the superpoints to adhere to, and not cross, object
boundaries. In the literature, these measures are defined
with respect to boundary pixels (?) or points (?). However,
we argue that transition occurs between points and not at
points for point clouds. Consequently, we define EF*Y the
set of predicted transition, i.e. the subset of edges of E' that
connect two points of C' in two different superpoints. These
metrics are often given with respect to a tolerance, i.e. the
distance at which a predicted transition must take place
from an actual object’s border for the latter to be considered
retrieved. We set this distance to 1 edge, which leads us to
define Et(r;,)ls the set of inter-edges expanded to all directly
adjacent edges in E:

Et(r;r)ls = {(Zv.]) S E | E'(Z,k) or (.]7k) S Elrans} .

This allows us to define the boundary recall and precision
with 1 edge tolerance for a set of predicted transition EP<¢:

d 1 d 1
BR - B0 B | | Bl O B |
| ELrans | | Epred

trans

To assess object purity we define the Oracle Overall Accu-
racy (OOA). This metric characterizes the accuracy of the
labeling that associates each superpoint .S of a segmentation
S with its majority ground-truth label. Formally, let I € K¢

be the semantic labels of each point within a set of classes
KC, we define the OOA of a point cloud segmentation S as:

1% (S) = mode {I; | i € S}

OOA = ﬁ DD =19,

SeS ieS

with [x = y] the function equal to 1 if z = y and 0 otherwise.
Note that the OOA is closely related to the ASA (?), but
consider the majority labels of all points within a superpixel
rather than the label of the objects with most overlap. This
metric is also more fair than the undersegmentation error
(?) for other methods such as (?), or our cluster-based
approach, as they do not try to retrieve objects directly, but
rather regions of C' with homogeneous semantic labeling.
In Figure 2, we show the oversegmentation results of our
method and the competing algorithms on vKITTI and S3DIS
datasets.

3. Ablation Study

We present an ablation study to empirically justify some of
our design choices. In particular we present Prop-weight,
an alternative version in which the cross-partition weighting
is replaced by a simple inversely-proportional weighting of
the inter/intra edges. Predictably, this method gives lesser
results as the edges are not weighted according to their
influence in the partition. However, since the weights of the
intra-edge are proportionally higher, the border precision is
improved.

We replaced our choice of function ¢ and ) in the loss by
respectively | - | and — | - |, so that our loss is closer to the
pairwise affinity loss used by (?) (but still structured by the
graph). However, this approach wouldn’t give meaningful
partition as the intra-edge term conflicts with the constraint
that the embeddings are constrained on the sphere. Remov-
ing this restriction leads the collapse of the embeddings
around 0.
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Input cloud

Ground truth objects LPE embeddings

SSP (ours) VCCS

Lin et al.

(b) vKITTI scene with 233 objects. Superpoint count: SSP 420, VCCS 422, Lin 425.

Figure 2. llustration of the oversegmentations of our framework, and from competing algorithms.

parameter shorthand section | S3DIS vKITTI
Local neighborhood size k 3.1 20
# parameters - - 13,816
LPE configuration - 3.1 [32,128],[64,32,32,m]
ST configuration - 3.1 [16,64],[32,16,4]
Embeddings dimension m 3.1 4
Adjacency graph G 3.2 5-nn  5-nn + Delaunay
exponential edge factor o 3.2.1 0.5
intra-edge factor i 323 5
spatial influence Qspatial 34 0.2 0.02
smallest superpoint nr(nllzl 3.4 40 10
epochs - - 50
decay event - - 20,35,45

Table 1. Configuration of the embedding network for the S3DIS and vKITTI datasets.

4. Models configuration

Our supervized oversegmentation model has a number of
critical hyper-parameters to tune, given in Table 1. We detail
here the rationale behind our choices.

Local neighborhood and adjacency graphs: For both
datasets, we find that setting the local neighborhood size
to 20 was enough for embeddings to successfully detect
objects’ borders. Combined with our lightweight structure,
this results in a very low memory load overall. The
adjacency graph G requires more attention depending on
the dataset. For the dense scans of S3DIS, the 5-nearest
neighbors adjacency structure was enough to capture the
connectivity of the input clouds. For the sparse scans of
vKITTI, we added Delaunay edges (?) (pruned at 50 cm)
such that parallel scans lines would be connected.

Networks configuration: For the LPE and the PointNet
structure in the spatial transform, we find that shallow and

wide architectures works better than deeper networks. We
give in Table 1 the size of the linear layers, before and
after the maxpool operation. Over 250, 000 points can be
embedded simultaneously on 11GB RAM in the training
step, while keeping track of gradients.

Intra-edge factor: The graph-structured contrastive loss
presented in Section 2 requires setting a weight p determin-
ing the influence of inter-edges with respect to intra-edge.
Since most edges of G are intra-edges in practice, we
define i such that u = fic with ¢ = | E |/| V| the average
connectivity of G. Note that ¢ can be determined directly
from the construction of the adjacency graph (it is equal
to k in a k-nearest neighbor graph for example). A value
of ji = 1 means that the total influence in ¢ of inter-edges
and intra-edges are identical. Since we are interested in
oversegmentation, we set /i to 5 in all our experiments, but
note that the network is not very sensitive to this parameter,
as demonstrated experimentally: a value of i = 3 gives a
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relative performance of (—0.2, —0.6,+1.5) while a value
of 8 gives (+0.1, —0.5, +1.4).

Regularization Strength: The generalized minimal
partition problem defined in Section 2 requires setting
the regularization strength factor A\, determining the cost
of edges crossing superpoints. We remark that the LPE
produces embeddings of points with an euclidean distance
of at least 1 over predicted objects’ borders. Some calculus
shows us that for a A < 1/(2¢), the solution e* of (1)
should predict superpoints borders at all edges whose
vertices have a difference of embeddings of at least 1 (note
that there is no guarantee that the greedy ¢y-cut pursuit
algorithm will indeed predict a border). We use this value
to define a normalized regularization strength X such that
A = A/(4c), whose default value is 1.

Regularization path: To obtain the regularization paths in
Figure 4, we first train the network with a regularization
strength of A = 1 (see Section 2). We then compute
partitions with A varying from 0.2 to 6 with no fine-tuning
required.

Smallest superpoint: To automatically select a minimal
superpoint size (in number of points) appropriate to the
coarseness of the segmentation, we heuristically set:

1 1 <
i = | (max (G0l + i toe()) |

1)

where n . is a dataset-specific minimum superpoints

size for A = 1. For example, for nfnllfl = 50, the smallest
superpoint allowed for a small regularization strength
A = 0.2 will be 33, while it is 70 for the coarse partition
obtained with A\ = 6. While specific applications may
require setting up this variable manually, this allowed us
to produce the regularization paths in Figure 4 while only

varying A.

Optimization: Given the small size of our network, we
train it for a short number of epochs (see Table 1), with
decay events set at 0.7. We use Adam optimizer (?) with
gradient clipping at 1 (?). Training takes around 2 hours per
fold on our 11GB VRAM 1080Ti GPU.

Mini-batches: For graph-based clustering, the training
phase processes batches of 16 point clouds at once, for
which a subgraph of size 10000 points is extracted. For
the clustering-based segmentation, which is more memory
intensive, and since subgraphs have to be larger to be
meaningfully covered by the initial voxels, we set a batch
size of 1 and a subgraph of 100 000. As a consequence, we

replace the batchnorm layers of the LPEs by group norms
with 4 groups (?).

Augmentation: In order to build more robust networks, we
added Gaussian noise of deviation 0.03 clamped at 0.1 on
the normalized position and color of neighborhood clouds.
We also added random rotation of the input clouds for the
network to learn rotation invariance. To preserve orientation
information, the clouds are rotated as a whole instead of
each neighborhood. This allows the spatial transform to
detect change in orientation, which can be used to detect
borders.



