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Abstract

We propose a new supervized learning framework for

oversegmenting 3D point clouds into superpoints. We cast

this problem as learning deep embeddings of the local ge-

ometry and radiometry of 3D points, such that the border of

objects presents high contrasts. The embeddings are com-

puted using a lightweight neural network operating on the

points’ local neighborhood. Finally, we formulate point

cloud oversegmentation as a graph partition problem with

respect to the learned embeddings.

This new approach allows us to set a new state-of-the-art

in point cloud oversegmentation by a significant margin, on

a dense indoor dataset (S3DIS) and a sparse outdoor one

(vKITTI). Our best solution requires over five times fewer

superpoints to reach similar performance than previously

published methods on S3DIS. Furthermore, we show that

our framework can be used to improve superpoint-based

semantic segmentation algorithms, setting a new state-of-

the-art for this task as well.

1. Introduction

The interest of segmenting point clouds into sets

of points known as superpoints—the 3D equivalent of

superpixels— as a preprocessing step to their analysis has

been extensively demonstrated [27, 39, 35, 7, 50]. However,

these unsupervized methods rely on the assumption that

segments which are geometrically and/or radiometrically

homogeneous are also semantically homogeneous. This as-

sertion should be challenged, especially since the quality of

any further analysis is limited by the quality of the initial

oversegmentation. Our objective in this paper is to formu-

late a supervized framework for oversegmentating 3D point

clouds into semantically pure superpoints in order to facili-

tate their semantic segmentation.

Although superpixel-based methods and deep learning

have both been around for a long time in computer vision,

convolutional neural networks have only recently been used

for superpixel oversegmentation. Notably, [32] introduced

a loss function emulating oversegmentation metrics, and

which is compatible with graph-based clustering methods.

[24] propose a fully differentiable version of the SLIC su-

perpixel algorithm [1], allowing for end-to-end training of

spatial clustering methods. Both approaches have shown

promising results, displaying significant improvement upon

methods relying on handcrafted descriptors. In this paper,

we build upon these ideas, albeit in the 3D setting.

We propose formulating point cloud oversegmentation as

a deep metric learning problem structured by an adjacency

graph defined on an input 3D point cloud. We introduce

the graph-structured contrastive loss, a loss function which

learns to embed 3D points homogeneously within objects

and with high contrast at their interface. This loss can be

adapted to the non-differentiable task of oversegmentation

by using our cross-partition weighting strategy. The points’

embeddings themselves are computed from the points’ local

geometry and radiometry by a lightweight model inspired

from PointNet [36] and called Local Point Embedder (LPE).

Finally, the superpoints are defined as a piecewise-constant

approximation of the learned embedding in the adjacency

graph, in the manner of [17].

Furthermore, we define the end-goal of our point cloud

oversegmentation as assisting semantic segmentation meth-

ods by providing semantically pure superpoints. We show

that our approach can be integrated with the superpoint

graph approach of [27] to significantly improve the partition

step, and consequently the resulting semantic segmentation.

The contributions of this paper are as follows:

• We present the first supervized framework for 3D point

cloud oversegmentation;

• We introduce the graph-structured contrastive loss,

which can be combined with our cross-partition

weighting strategy to produce point embeddings with

high contrast at objects’ borders;

• We introduce the local point embedder, a lightweight

architecture, inspired by [36], to embed the local ge-

ometry and radiometry of 3D points in a compact way;

• We significantly improve the state-of-the-art of point

cloud oversegmentation for two well-known and very

different datasets;
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(a) Input Point Cloud (b) Learned Embedding (c) Oversegmentation (d) True Objects

Figure 1: Illustration of our framework on a hard-to-segment scene with a white board on a white wall: a colored point

cloud is given as input (a), an embedding is computed for each point (b), which allows a clustering technique to compute an

oversegmentation (c), which closely follows the ground truth (d). Throughout the figures of this paper, the embeddings are

projected into a 3-dimensional space to allow color visualization.

• When combined with the superpoint graph semantic

segmentation method, our approach improves upon the

state-of-the-art for this task as well.

2. Related work

Superpixels/ Supervoxels: There is a large body of lit-

erature on the oversegmentation of images into superpixels

[44] and videos into supervoxels [51]. These methods can

be divided into two groups: graph-based, which exploit the

pixels’ connectivity [11, 16, 31], and cluster-based, which

use the pixels’ relative positions [1, 46, 52, 28]. Recently,

deep learning methods have been successfully used to de-

velop supervized superpixels oversegmentation approaches,

either graph-based [32], or cluster-based [24].

Oversegmentation of 3D Point Clouds: The aforemen-

tioned methods perform well on images, but rely on the reg-

ular structure of pixels. 3D point clouds, as unordered point

sets with irregular distributions, require special attention.

[4] propose three extensions of 2D local variation graph-

based method [11] to 3D oversegmentation and study differ-

ent strategies for constructing the graph, edge weights, and

subgraph merging. [43] introduce a graph-structured ap-

proach which exploits the structure of LiDAR sensors to re-

move edges corresponding to boundary points. [34] propose

a cluster-based method based on the k-means algorithm and

octrees. However, this method remains sensitive to the clus-

ters’ initialization. [12] use the visual saliency of RGBD

images to initialize clustering. [30] propose a clustering

method which does not require such initialization, and is

therefore less sensitive to the irregular densities of LiDAR

point clouds. Likewise, [17] introduce an initialization-free

segmentation model formulated as a graph-structured opti-

mization problem. All these methods rely on hand-crafted

geometric and/or colorimetric features.

Deep Learning for 3D Point Clouds: The work in [36]

has pioneered the use of deep learning for 3D point cloud

processing. However, this usage has so far only been used

for semantic segmentation [29, 45, 9, 41, 38, 37, 53, 49],

object detection [56], or reconstruction [15]. To the best of

our knowledge, no supervised 3D point oversegmentation

technique that leverages deep learning-based embeddings

to generate superpoints has been developed yet.

Metric Learning: Metric learning aims to learn a sim-

ilarity function between data points with properties corre-

sponding to a given task [25]. In practice, an embedding

function associates each data point with a feature vector

attuned to a given objective. These objectives can be re-

lated to classification [13, 40], or clustering [42, 19], among

many other applications (see [2] for a useful taxonomy). In

the context of deep learning, this can be achieved by using

a well-chosen loss, such as the contrastive loss [8, 5]; the

triplet loss [20] or some of its variants [48]. Notably, met-

ric learning has recently been used to improve the quality

of learned features for a 3D point semantic segmentation

task [10]. However, our task is different in the sense that

our embeddings are related to oversegmentation through a

graph partition problem rather than classification.

3. Method

Our goal is to produce a high-quality 3D-point cloud

oversegmentation, so that it can be in turn used by

superpoint-based semantic segmentation algorithms. This

translates into the following three properties:

(P1) object-purity: superpoints must not overlap over ob-

jects, especially if their semantics are different;

(P2) border recall: the interface between superpoints

must coincide with the borders between objects;

(P3) regularity: the shape and contours of the superpoints

must be simple.

Our approach can be broken down into two steps: in Sec-

tion 3.1 we present the local cloud embedder, a simple neu-

ral network which associates each point with a compact em-

bedding that captures its local geometry and radiometry. In

Section 3.2, we describe how we compute a point cloud

oversegmentation from this embedding using either graph

or cluster-based oversegmentation algorithms.
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Figure 2: Architecture of the spatial transform network. It

takes a point’s coordinate as point-input pi and the coordi-

nates of its neighbors as set-input Pi. The vertex r computes

the radius of a point cloud (1), the vertex z extract the ver-

tical coordinate of a point’s position, and the vertex PTN

is a small PointNet-like network (2) which outputs a 2 × 2
rotation matrix around the z axis (4). In this and subse-

quent figures, set-features (respectively point-features) are

represented by a dotted line (respectively a solid line). The

numbers above the lines represent the size of the channels.
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Figure 3: Architecture of the local point embedder (LPE)

(7), which computes an embedding set-feature Xi and

point-feature xi encoding the local radiometry and the nor-

malized geometry. The L2 block normalizes the output on

the unit sphere (6).

Throughout this paper we will stress the difference be-

tween set-features, which are unordered sets of descriptors

(such as information related to the neighbors of a point),

and point-features, which characterize a specific point. Set

features will always be capitalized, while point-features will

use lowercase.

Let us consider a point cloud C, with each point i de-

fined with its position pi ∈ R
3 and d-dimensional radio-

metric information ri ∈ R
d (this can be colors if avail-

able, or intensity for LiDAR scans, or be ignored if none

is available). Each point i is associated with the set-features

Pi and Ri, respectively comprised of the position and ra-

diometry of its k nearest neighbors Ni in the input cloud:

Pi = {pj | j ∈ Ni} , Ri = {rj | j ∈ Ni}. For ease of no-

tation, any operator or function f applied to a set-feature

X is to be understood as being applied to all its elements:

f(X) = {f(x) | x ∈ X}.

3.1. Local Point Embedding

Our objective is to associate to each point a compact m-

dimensional embedding ei characterizing its point-features

(position, color, etc.) and the geometry and radiometry of

its local neighborhood. The embeddings are constrained to

be within the m-unit sphere Sm, as suggested by [47], to

prevent collapse during the training phase, and to normalize

their distance with one another.

To this end, we introduce the Local Point Embedder

(LPE), a lightweight network inspired by PointNet [36].

However, unlike PointNet, LPE does not try to extract

information from the whole input point cloud, but rather

encodes each point based on purely local information.

Here, we describe the different units of our network.

Spatial Transform: This unit takes the positions of a target

point pi and its local k-neighborhood Pi, as represented in

Figure 2. It normalizes the neighbors’ coordinates around

pi, and such that the standard deviation of the point’s po-

sition is equal to 1 (3). Then, this neighborhood is rotated

around the z axis with a 2 × 2 rotation matrix computed

by small PointNet network PTN (4). As advocated by

[23], these steps aim to standardize the position of the

neighborhood clouds of each point. This helps the next net-

work to learn position distribution. Along the normalized

neighborhood position P̃i, this unit also outputs geometric

point-features p̃i describing the elevation p
(z)
i , the neighbor-

hood radius, as well as its original orientation (through the

4 values of the rotation matrix: [Ωx,x,Ωx,y,Ωy,x,Ωy,y])(5).

By keeping track of the normalization operations, the

embedding can stay covariant with the original neighbor-

hood’s radius, height, and original orientation, even though

the points’ positions have been normalized and rotated.

rad = std (Pi)(1)

Ω = PTN(P̃i)(2)

P ′
i = (Pi − pi)/rad(3)

P̃i = {p× Ω | p ∈ P ′
i} (4)

p̃i = [p
(z)
i , rad,Ω] (5)

Local Point Embedder: The LPE network, represented

in Figure 3, computes a normalized embedding from two

inputs: a point-feature xi and a set-feature Xi. As in

PointNet [36], the set-features are first processed inde-

pendently by a multi-layer perceptron (denoted MLP1)

comprised of a succession of layers in the following order:

linear, activation (ReLu [33]), normalization (batch [22]),

and so on. The resulting set-features are then maxpooled

into a point-feature, which is concatenated with the input

point-feature. The resulting vector is processed through

another multi-layer perceptron MLP2 (7), and finally

normalized on the unit sphere.

The embeddings ei are computed for each point i of C
through a shared LPE (8). The input set-feature Xi is set

as the concatenation of the neighbour’s transformed posi-

tion P̃i and their radiometric informationRi, while the input

point-feature xi is composed of the neighborhood geomet-

ric point-feature p̃i and the radiometry ri of point i.

L2(·) = ·/‖ · ‖ (6)

LPE(Xi, xi)=L2 (MLP2 ([max (MLP1(Xi)) , xi])) (7)

ei = LPE([P̃i, Ri], [p̃i, ri]) (8)
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3.2. Graph­Based Point Cloud Oversegmentation

3.2.1 The Generalized Minimal Partition Problem

Once the embeddings are computed, we define the super-

points with respect to an adjacency graph G = (C,E) de-

rived from the point cloud C. Note that E can be obtained

from the neighbors’ structure used for the LPE. However,

we find that much smaller neighborhoods are needed to cap-

ture the cloud’s adjacency structure than to describe the lo-

cal neighborhood of points. As proposed by [17], we define

the superpoints as the constant connected components in G
of a piecewise-constant approximation of the embeddings

e ∈ S
C
m. This approximation is the solution f⋆ of the fol-

lowing optimization problem:

f⋆ = argmin
f∈RC×m

∑

i∈C

‖fi − ei‖
2 +

∑

(i,j)∈E

wi,j [fi 6= fj ] , (9)

with w ∈ R
E
+ the edges’ weight and [x 6= y] equal to 0

if x = y and 1 otherwise. To encourage the network to

split along high contrast areas, we define the edge weight as

wi,j = λ exp
(

−1
σ
‖ei − ej‖

2
)

,with parameters λ, σ ∈ R
+.

Problem (9), known as the generalized minimal partition

(GMP) and introduced by [26], is neither continuous, dif-

ferentiable, nor convex, and therefore the global minimum

cannot be realistically retrieved. However, the ℓ0-cut pur-

suit algorithm [26] allows for fast approximate solutions.

The contour penalty automatically implements (P3) for

reasonable parameterization of the problem. Note that the

optimization variable f can take its values in R
C×m, while

each embedding ei is constrained on the m-sphere. This is

a limitation of our approach due to efficiency concerns. It

can lead to some suboptimal approximate solutions. How-

ever, we show in the numerical experiments that the learned

embeddings lead to satisfactory partitions.

3.2.2 Graph-Structured Contrastive Loss

As mentioned earlier, the semantic purity property (P1) is

the first quality of superpoints. Once could imagine tak-

ing a metric estimating the semantic purity of the solution

of (9) as a loss function. However, the GMP is a non-

continuous non-convex optimization problem, and comput-

ing connected components on a graph is inherently non-

differentiable. This makes optimizing directly with respect

to properties of the partition very hard, if not impossible.

Instead, we note that if the border recall property (P2)

is implemented (i.e. superpoints and objects share the same

boundaries), then (P1) ensues. Therefore, we propose a

surrogate loss called graph-structured contrastive loss fo-

cusing on correctly detecting the borders between objects.

To this end, we define Eintra (resp. Einter ) the set of intra-

edges (resp. inter-edges) as the set of edges of G between

points within the same object (resp. point from different

adjacent objects).

In the spirit of the original contrastive loss [8], our loss

encourages embeddings of vertices linked by an intra-edge

to be similar, while rewarding different embeddings when

linked by an inter-edge:

ℓ(e)=
1

|E|





∑

(i,j)∈Eintra

φ (ei − ej) +
∑

(i,j)∈Einter

µi,jψ (ei − ej)



,

with φ (resp. ψ) a function minimal (resp. maximal) at 0,

and µi,j ∈ R
Einter a weight on inter-edges. A point embed-

ding function minimizing this loss will be uniform within

objects and have stark contrasts at their interface. Conse-

quently, the components of the piece-wise constant approx-

imation of (9) should follow the objects’ borders. This loss

differs from the triplet loss [20, 47], as it involves all ver-

tices within a graph (or a sub-graph) at once, and not just an

anchor and related positive/negative examples. In this way,

it bypasses the problem of example picking altogether. In-

deed, the positive and negative examples are directly given

by the adjacency structure set by Eintra and Einter. It dif-

fers from [10] as it does not try to learn semantic informa-

tion, but rather to compute a signal on a graph such that its

constant approximation respects certain properties, with no

attention to semantics. Indeed, objects of different classes

can share the same embeddings as long as they are never

adjacent, such as floors and ceilings for indoor scenes.

−2 −1 1 2

0.5

1

1.5

2

x

φ(x) and ψ(x)

Figure 4: The functions φ
(in blue) and ψ (in red) used

in the graph-structured con-

trastive loss.

We chose φ, the

function promoting

intra-object homo-

geneity as φ(x) =
δ(
√

‖x‖2/δ2 + 1 − 1)
with δ = 0.3 (repre-

sented in Figure 4). This

means that the first term

of ℓ is the (pseudo)-

Huber graph-total

variation on the Eintra

edge [21, 6], promoting

smooth homogeneity of

embeddings within the

same object.

With ψ(x) = max (1− ‖x‖, 0), the second part of ℓ is

the opposite of the truncated graph-total variation [55] on

the inter-edges. It penalizes similar embeddings at the bor-

der between objects. Conscious that our embeddings are

restricted to the unit sphere, we threshold this function for

differences larger than 1 (corresponding to a 60 degree an-

gle). In other words, ψ(x) encourages vertices linked by an

inter-edge to take embeddings with an euclidean distance of

1, but does not push for a larger difference.

Note that any embeddings that are constant within ob-
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jects, and with a difference of at least 1 between adjacent

objects, will have 0 loss. The four-color theorem [14] tells

us that it is always possible as long as the dimension of our

embedding is at least 3. However, because embeddings are

computed by the LPE, borders which do not present recog-

nizable geometric or radiometric configurations cannot be

recovered by our method.

3.2.3 Cross-Partition Weighting

The choice of µi,j plays a crucial role in the efficiency of

the graph-structured contrastive loss. Although (P2) does

imply (P1), small errors in the former can have drastic con-

sequences in the latter. Indeed, a single missed edge can

erroneously fuse two large superpoints covering different

objects. Therefore, we need to incorporate the induced par-

tition’s purity into the loss.

[32] introduced the segmentation-aware affinity loss

(SEAL) implementing this idea. They propose weighting

intra-edges as 1, and inter-edges as µi,j = 1+|S | −|S\OS |
for i and j within the same superpoint S, with OS the

majority-object, i.e. the object for which most points of

S belongs to. Although [32] boasts impressive results for

superpixel oversegmentation, we were not able to extend

this success within our framework. We believe this stems

from three reasons: (i) all border edges of a superpoint are

weighted identically regardless of their influence on the pu-

rity and the size of the interface; (ii) as soon as a superpoint

no longer overlaps an object’s border, its weight decreases

dramatically to 1, making the loss very unstable; (iii) [32]

uses a different graph-based clustering[31].

To overcome these limitations, we introduce the cross-

partition weighting strategy. We first compute the cross-

segmentation graph G = (C, E), defined as the adjacency

graph of the cross-partition C of C between the superpoints

partition S and the object partition O. In other words, C
is the set of connected components of the graph G when

all edges either between objects or between superpoints are

removed, and the super-edge (i.e. set of edges) (U, V ) ∈ E
is the set of inter-edges of Einter between U and V in C:

C = {O ∩ S | O ∈ O, S ∈ S}

E = {{(i, j) ∈ (U × V ) ∩ Einter} | U, V ∈ C} .

We associate the following weight µU,V to each superedge

(U, V ) and µi,j to each edge:

µU,V =
µmin (| U |, | V |)

| (U, V ) |
for (U, V ) ∈ E

µi,j = µU,V for all (i, j) ∈ (U, V )

with µ a parameter of the model. Such weights simulta-

neously take into account the influence of the edges in the

purity and the shape of the interfaces. Indeed, should an

superpoint

majority object

trespassing

interface

µLW,LD =

µRW,RD =

Figure 5: Illustration of the cross-partition weighting strat-

egy on a scene comprised of a door (D) and a wall (W).

Two superpoints L (left) and R (right) overlap the door. The

superedge (LW,LD)(resp. (RW,RD)) represent the adja-

cency between the part of the left (resp. right) superpoint

covering the wall and the part covering the door. With fewer

trespassing points and a longer interface than (RW,RD),
the weights of the edges constituting (LW,LD) are smaller.

edge of the superedge (U, V ) be missed as a border, the

superpoints U and V would be merged. Since U and V
cover different objects (by definition of E), such a merger

would induce at least min (| U |, | V |) vertices trespassing,

i.e. not being in the majority-object of the merged super-

point.The weights are also divided by the number of edges

constituting the interface between U and V in order to dis-

tribute evenly the penalty over the number of edges consti-

tuting an interface. This prevents long borders from being

over-represented in the loss. See Figure 5 for an illustration.

3.3. Cluster­Based Oversegmentation

We also implemented a generalization of the method of

[24] to the 3D setting. The main advantage of this approach

is that the loss can directly implement (P1) through the

cross-entropy of the averaged semantic classes within su-

perpoints. However, this approach remains hindered by its

sensitivity to the superpoint initialization, and its inability

to adapt the superpoints’ size to the local complexity of the

scene. Furthermore, as it bypasses (P3), it produces super-

points with complicated contour.

3.4. Implementation Details

We use a modified version of the ℓ0-cut pursuit algo-

rithm1[26], with two main differences:

• to prevent the creation of many small superpoints in

regions of high contrast, we merge components greed-

ily with respect to the objective energy defined in (9),

as long as they are smaller than a given threshold ;

• we heuristically improved the forward step (8) from

[26], such that the regularization strength increases ge-

ometrically by a factor (of 0.7) along the iterations.

1https://github.com/loicland/cut-pursuit
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(a) S3DIS scene with 58 objects. Superpoint count : SSP 442, VCCS 436, Lin 423.

Input cloud Ground truth objects LPE embeddings SSP (ours) VCCS [34] Lin in [30]

(b) vKITTI scene with 233 objects. Superpoint count: SSP 420, VCCS 422, Lin 425.

Figure 6: Illustration of the oversegmentations of our framework, and from competing algorithms.

This helps improve the quality of the lower optima re-

trieved, and consequently the oversegmentation’s.

To limit the size of the superpoints we concatenate to the

points’ embeddings their 3D coordinates in (9) multiplied

by a parameter αspatial, in the manner of [1]. This determines

the maximum size that superpoints can reach.

In all our experiments, we set m the dimension of our

embeddings to 4. We choose a light architecture for the

LPE, with less than 15, 000 parameters. The exact network

configurations for each dataset are detailed in the appendix.

4. Numerical Experiments

4.1. Datasets

We evaluate our approach on two datasets of different

natures. The first one is S3DIS [3], composed of dense in-

door scans of rooms in an office setting. The second one is

vKITTI [9], an outdoor dataset of urban scenes that mim-

ics sparse LiDAR acquisitions. Note that only S3DIS has

individual object annotation. We consider the objects of

vKITTI to be the connected components of the semantic la-

bels in the adjacency graphG. For vKITTI, we consider the

performance of our algorithm with and without color infor-

mation. Both datasets are large scale (close to 600 million

points for S3DIS and close to 15 million for vKITTI). We

subsample them using a regular grid of voxels (3cm wide

for S3DIS and 5cm wide for vKITTI). In each voxel, we av-

erage the position and color of the contained points. This al-

lows us to decrease the computation time and memory load.

4.2. Point Cloud Oversegmentation

Evaluation Metrics: There are many standard metrics

which assess the quality of point cloud oversegmentations

with respect to properties (P1), (P2), and (P3). In particu-

lar, the Boundary Recall (BR) and Precision (BP) are used

to evaluate the ability of the superpoints to adhere to, and

not cross, object boundaries ((P2), (P3)). In the literature,

these measures are defined with respect to boundary pix-

els [34] or points [30]. However, we argue that transition

occurs between points and not at points for point clouds.

Consequently, we define Epred
inter the set of predicted transi-

tion, i.e. the subset of edges of E that connect two points

of C in two different superpoints. These metrics are often

given with respect to a tolerance, i.e. the distance at which a

predicted transition must take place from an actual object’s

border for the latter to be considered retrieved. We set this

distance to 1 edge, which leads us to define E
(1)
inter the set of

inter-edges expanded to all directly adjacent edges in E:

E
(1)
inter = {(i, j) ∈ E | ∃(i, k) or (j, k) ∈ Einter} .

This allows us to define the boundary recall and precision

with 1 edge tolerance for a set of predicted transition Epred
inter:

BR =
| Epred

inter ∩ E
(1)
inter |

| Einter |
, BP =

| Epred
inter ∩ E

(1)
inter |

| Epred
inter |

.

Since the end-goal of our point cloud oversegmentation

framework is to provide useful superpoints for seman-

tic segmentation, we define the Oracle Overall Accuracy

(OOA). To assess object purity (P1), this metric character-

izes the accuracy of the labeling that associates each super-

point S of a segmentation S with its majority ground-truth

label. Formally, let l ∈ KC be the semantic labels of each

point within a set of classes K, we define the OOA of a point

cloud segmentation S as:

loracle(S) = mode {li | i ∈ S}

OOA =
1

| C |

∑

S∈S

∑

i∈S

[

li = loracle(S)
]

,
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Figure 7: Performance of the different algorithms on the 6-fold S3DIS dataset (a, b, c), and the 6-fold vKITTI dataset (d,

e, f). The results of the method annotated with an asterix * have not been reported before. SSP-Cluster and VCCS are not

represented for vKITTI for the sake of legibility as their performance is too low.

with [x = y] the function equal to 1 if x = y and 0 other-

wise. Note that the OOA is closely related to the ASA [31],

but consider the majority labels of all points within a super-

pixel rather than the label of the objects with most overlap.

In this sense, it is a tighter upper bound to the achievable

accuracy of a superpoint-based semantic classification al-

gorithm using S . This metric is also more fair than the un-

dersegmentation error [28] for other methods such as [17],

or our cluster-based approach, as they do not try to retrieve

objects directly, but rather regions of C with homogeneous

semantic labeling.

Competing algorithms: We denote by SSP (Supervized

SuperPoint) our method when using LPE to learn point em-

beddings and then derive the superpoints using the graph-

based methods described in Section 3.2.2, and SSP-Cluster

when using the cluster-based method defined in Section 3.3

instead. We first assess the benefit of learning embeddings

by comparing our results to those of [17], dubbed here

Geom-Graph. This method computes superpoints by solv-

ing the generalized minimal partition problem as well, but

with handcrafted geometric features in place of our learned

embeddings. We illustrate in Figure 7 the oversegmenta-

tions produced by our approach and two state-of-the-art al-

gorithms: VCCS [34] and the work of Lin in [30].

We observe that our approach significantly outperforms

the other approaches on all metrics. In particular, we re-

mark that SSP only requires under 350 superpoints to reach

a performance comparable with VCCS with over 1, 800 su-

perpoints on S3DIS. Furthermore, the quality of the border

is unmatched in our range of superpoints. The improve-

ment is less significant on vKITTI, which could be due to

the difficulty of constructing an adjacency graph on such

a sparse acquisition. The performance is degraded further

without color information, as some transition are not pre-

dictable with purely from the geometry. Geom-Graph per-

forms well on the accuracy, but not on the boundary. This

is expected as the handcrafted geometric features cannot de-

tect some borders, such as adjacent walls. SSP-Cluster per-

forms better than the unsupervized cluster-based method of

Lin et al. , but still suffer from the typical limitations of

clustering methods, such as sensitivity to initialization.

In terms of computational speed, the embeddings can be

computed very efficiently in parallel on a GPU with over

3 million embeddings per second on a 1080Ti GPU. The

bottleneck remains solving the graph partition problem in

(9), which can process around 100, 000 points per second.

4.3. Semantic Segmentation

In Table 1 and Table 2, we show how our point cloud

oversegmentation framework can be successfully used by
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the superpoint-based semantic segmentation technique of

[27]2 (SPG). We replace the unsupervized superpoint com-

putation with our best-performing approach, SSP. We eval-

uate the resulting semantic segmentation using standard

classification metrics: overall accuracy (OA), mean per-

class accuracy (mAcc) and mean per-class intersection-

over-union (mIOU). We observe a significant increase in the

performance of SPG, beating concurrent methods on both

datasets. In particular, we observe that our method allows

for better retrieval of small objects (see detailed IoU in the

appendix), which translates into much better per-class met-

rics, although the overall accuracy is not necessarily better

than the latest state-of-the-art algorithms.

4.4. Ablation Study

In Table 3, we present an ablation study to empiri-

cally justify some of our design choices. To make things

more legible, we present the increase/decrease of the 3

performance metrics at 500 superpoints (linearly interpo-

lated) of alternative methods compared to ours, on the

first cross-validation fold of the S3DIS dataset. In par-

ticular we present Prop-weight, an alternative version in

which the cross-partition weighting is replaced by a simple

inversely-proportional weighting of the inter/intra edges.

Predictably, this method gives lesser results as the edges are

not weighted according to their influence in the partition.

However, since the weights of the intra-edge are propor-

tionally higher, the border precision is improved. We im-

plemented the weights of the segmentation-aware affinity

loss of [32] as well for method SEAL-weights, with com-

parable results to the Prop-weight. In +TV-TV, we replace

our choice of function φ and ψ in the loss by respectively

| · | and − | · |, so that our loss is closer to the pairwise

affinity loss used by [10] (but still structured by the graph).

However, this approach wouldn’t give meaningful partition

as the intra-edge term conflicts with the constraint that the

embeddings are constrained on the sphere. Removing this

restriction leads the collapse of the embeddings around 0.

We also tried to stack the LPE in layers, using or not a

residual structure comparable to the one used in [18] to in-

crease their receptive fields (more details are given in the

appendix). The best results were achieved with two layers:

2-Layers and 2-Residuals. However, we observe that when

compared with LPE of a similar number of parameters, the

gains are insignificant if not null. We conclude that to em-

bed points in order to detect borders, a small receptive field

with a shallow architecture is sufficient.

5. Conclusion

In this paper, we presented the first supervized 3D point

cloud oversegmentation framework. Using a simple point

2https://github.com/loicland/superpoint-graph

Method OA mAcc mIoU

6-fold cross validation

PointNet [36] in [9] 78.5 66.2 47.6

Engelmann et al. in [9] 81.1 66.4 49.7

PointNet++ [37] 81.0 67.1 54.5

Engelmann et al. in [10] 84.0 67.8 58.3

SPG [27] 85.5 73.0 62.1

PointCNN [29] 88.1 75.6 65.4

SSP + SPG (ours) 87.9 78.3 68.4

Fold 5

PointNet [36] in [10] - 49.0 41.1

Engelmann et al. in [10] 84.2 61.8 52.2

pointCNN [29] 85.9 63.9 57.3

SPG [27] 86.4 66.5 58.0

PCCN [49] - 67.0 58.3

SSP + SPG (ours) 87.9 68.2 61.7

Table 1: Performance of different methods for the semantic

segmentation task on the S3DIS dataset. The top table is for

the 6-fold cross validation, the bottom table on the fifth fold

only.

Method OA mAcc mIoU

PointNet [36] 79.7 47.0 34.4

Engelmann et al. in [10] 79.7 57.6 35.6

Engelmann et al. in [9] 80.6 49.7 36.2

3P-RNN [54] 87.8 54.1 41.6

SSP + SPG (ours) 84.3 67.3 52.0

Table 2: Performance of different methods for the semantic

segmentation task on the vKITTI dataset with 6-fold cross

validation.

Method # parameters OOA BR BP

Best 13,816 96.2 73.3 22.1

Prop-weights 13,816 -2.6 -12.2 +10.4

SEAL-weights 13,816 -1.3 -11.3 +3.8

2-Layers 14,688 -0.1 -0.7 -0.3

2-Residuals 14,688 +0.0 -0.2 -0.7

Table 3: Impact of some of our design choice on S3DIS.

Best is the SSP method with cross-partition weights.

embedding network and a new graph-structured loss func-

tion, we were able to achieve significant improvements

compared to the state-of-the-art of point cloud oversegmen-

tation. When combined with a superpoint-based semantic

segmentation method, our method sets a new state-of-the-

art of semantic segmentation as well. A video illustration

is accessible at https://youtu.be/bKxU03tjLJ4.

The source code will be made available to the community

as well as trained networks in an update to the superpoint-

graph repository2. Future work will focus on improving

the solving method for the generalized minimum minimal

partition problem to better handle spherically-bounded vari-

ables, and to improve its computational performance.
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