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Parallel Cut Pursuit
For Minimization of the Graph Total Variation

Raguet Hugo 1 Landrieu Loic 2

Abstract
We present a parallel version of the cut-pursuit
algorithm for minimizing functionals involving
the graph total variation. We show that the
decomposition of the iterate into constant con-
nected components, which is at the center of this
method, allows for the seamless parallelization
of the otherwise costly graph-cut based refine-
ment stage. We demonstrate experimentally the
efficiency of our method in a wide variety of set-
tings, from simple denoising on huge graphs to
more complex inverse problems with nondiffer-
entiable penalties. We argue that our approach
combines the efficiency of graph-cuts based opti-
mizers with the versatility and ease of paralleliza-
tion of traditional proximal splitting methods.

1. Introduction
In 2017, (Landrieu & Obozinski, 2017) introduced the cut-
pursuit algorithm, a working-set algorithm for minimiz-
ing functionals involving the total variation structured by
a graph G “ pV,E,wq , w P RE

` being edge weights:

F : x P ΩV ÞÑ fpxq `
ÿ

pu,vqPE

wpu,vq ‖xu ´ xv‖ . (1)

where x “ pxvqvPV P ΩV is the variable of interest and
Ω is some base space, typically R or Rn, n P N˚. The
core idea of this approach is to exploit the coarseness of
the solution, i.e. the fact that it can be decomposed into a
small number of constant connected graph components of
the graph compared to the total number of vertices. This
method was further refined by Raguet & Landrieu (2018),
allowing for the efficient regularization of a larger class
of functionals. In particular, they dropped the convexity
requirements in the optimality analysis, and extended the
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range of function f to extended directionally differentiable
functions with a possibly nondifferentiable part which is
separable along the graph G.

The cut-pursuit algorithm starts by associating all vertices
to the same constant connected component and then re-
peats the two following steps: reduction and refinement.
In the reduction step, the problem is solved under the
constraint that all vertices in a same component have the
same value. On many problems, when the number of con-
stant connected components is smaller than the number of
vertices in the graph, the reduced problem can be solved
more efficiently than the original one, as it has fewer vari-
ables. In the refinement step, new “degrees of freedom”
are added by splitting each constant connected component
into smaller ones, based on a subproblem involving the di-
rectional derivatives of the functionals and which can be
solved by graph cuts. This process is illustrated in Figure 1.

This scheme provably converges to a critical point in a fi-
nite number of steps; ensuring global optimality in the con-
vex case. When the number of constant connected com-
ponents of the solution is actually small, only a few itera-
tions are needed for convergence. Succinctly, this approach
allows to solve a wide range problems regularized by the
graph total variation, in a little more than a few graph cuts.

In contrast, classical first-order proximal algorithms re-
quire many iterations, each of them updating all variables.
Still, they attract considerable attention, notably because
they can be preconditioned and easily parallelized; see
for instance (Raguet & Landrieu, 2015; Möllenhoff et al.,
2018; Kumar et al., 2015; Padilla et al., 2017; Barbero &
Sra, 2017). On the other hand, the efficient use of graph
cuts is reminiscent of the method of (Chambolle & Dar-
bon, 2009), which uses a parametric maximum flow for-
mulation. However, the latter can only be used to compute
the proximity operator of the graph total variation (also
called “graph total variation denoising”, or “graph fused
LASSO signal approximation”), that is f restrained to a
sum of square differences. Not only can our method han-
dle a much more general class of problems, but now that
it can be parallelized, it combines the advantages of both
proximal and graph cuts-based methods.
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Figure 1. Illustration of the cut pursuit algorithm. The vertices of a graph G are initially combined into a single component. This graph
is recursively split into constant connected components. At each iteration, a reduced graph G encoding the adjacency between constant
components is computed. The values associated with each constant components can be computed using the smaller reduced graph. The
vertex colors represent their values, from low in blue to high in red.

2. Method
2.1. Reduced Problem

We consider V “ tU1, . . . , U|V|u a partition of the vertices
V of graph G. We define the reduced problem as minimiz-
ing the objective functional F under the constraint that the
variable is constant over each component of the partition:

F pVq : ξ P ΩV ÞÑ F p
ÿ

UPV
ξU b 1U q ,

where ξU b 1U P ΩV is a notation for pξU b 1U qv “ ξU if
v P U , 0 otherwise. In many problems, ξ ÞÑ fp

ř

UPV ξU b
1U q has regularity and structure similar to f . But since
the reduced problem can be rewritten as a problem of only
|V| variables, F pVq is easier to solve than F , typically with
preconditioned first-order proximal splitting algorithms.

2.2. Refinement

The goal of the refinement step in the cut pursuit algorithm
is to split the current partition V such that the solution of the
next reduced problem can decrease the objective functional
F as much as possible. This is done by considering first-
order information through finding a steepest directional
derivative of F at the current iterate x “

ř

UPV ξU b 1U ,
where ξ is the solution of the last reduced problem:

dpxq P arg min
dPΩV

F 1px, dq .

Interestingly, to make the problem more tractable, the space
of directions to consider can be restricted to a finite set
D. Landrieu & Obozinski (2017) show that if f is dif-
ferentiable and Ω “ R, D “ t´1, 1uV is sufficient
to retain optimality at convergence. Raguet & Landrieu
(2018) extend this result to functions f with a nondiffer-
entiable part which is separable along the graph G, with
D “ t´1, 0, 1uV . Furthermore, they provide heuristic di-
rection sets Dpxq “

Ś

vPV D
pxq
v for multidimensional Ω.

The search for a steepest descent direction restricted to a
finite set D defines a new partition by computing the cross
partition between the current partition and the maximal
constant connected components of dpxq. This problem is
a combinatorial optimization problem involving unary and
binary terms:

F 1px, dq “
ÿ

vPV

δpx, dvq `
ÿ

pu,vqPE
pxq
“

wu,v ‖du ´ dv‖ , (2)

where Epxq“ “ tpu, vq P E | xu “ xvu. In the monodimen-
sional case, this problem is equivalent to finding a mini-
mum cut in a convenient flow graph; in the multidimen-
sional case, it can be solved approximately via a series of
graph cuts.

2.3. Parallelization

In practice, the refinement step is often the computational
bottleneck of the cut-pursuit algorithm. While there exists
very efficient graph cut solvers, they require a lot of mem-
ory and are not well-suited to parallelization.

Now, since the only binary terms in (2) are for edges within
the constant components of x, the steepest descent problem
is separable along the components of V:

F 1px, dq “
ÿ

UPV
F 1U pxU , dU q , with for all U P V ,

F 1U pxU , dU q “
ÿ

vPU

F 1pxv, dvq `
ÿ

pu,vqPE
pxq
“ XU2

wu,v‖du ´ dv‖ ,

where we note dU “ tdvuvPU . Consequently, this prob-
lem can be decomposed into finding the steepest descent
direction dpxqU P D

pxq
U “

Ś

vPU D
pxq
v in each component U

independently. This allows us to perform the graph cuts in
parallel with only a slight adaptation of augmenting path
graph cut methods such as the one of Boykov and Kol-
mogorov (2004) (Boykov & Kolmogorov, 2004), and with
no supplementary memory cost.
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2.4. Balancing the Parallel Workload Distribution

The above modifications already allows us to significantly
speed up the cut-pursuit algorithm. However, thread uti-
lization can still be improved. Indeed, when performing the
split step in parallel along components, each component is
assigned to a single thread, thus the computation is at least
as long as the time required for splitting the hardest one,
typically the largest. If the partition is unbalanced, this can
lead to most threads being idle while the last one finishes.
Consider in particular the very first iteration, in which the
partition only has one component.

A naive approach would be to cap the maximal number
of vertices in each component of V according to the prob-
lem size and the number of available threads; coherence
with the graph structure could be enforced by greedily con-
structing each component with breadth-first search, until
the component is exhausted, or until the cap is reached.
However, such arbitrary balancing components might not
be beneficial for the reduced problem: in nonconvex set-
tings, they might lead to bad local minima, and even in con-
vex settings, they might not be consistent with the structure
of the main problem and both slow down and reduce the
accuracy of the solution.

For this reason, we advocate to decompose large compo-
nents only for the split step; then modifying the augment-
ing path algorithm accordingly to perform the graph cuts
in parallel along these components. In a nutshell, this cor-
responds to isolating the balancing components by setting
their border edge capacities to 0 instead of wu,v ‖du ´ dv‖
as they would be normally set to in the steepest direction
problem. Unfortunately, the corresponding minimum cuts
now solve only approximately the original problem.

As edges separating the balancing components are ignored
by these parallel graph cuts, the question remains as how
to define the new partition of a large component from
the steepest directions found for its balancing components.
Observe that all vertices of a component U share the same
set of candidate directions DpxqU , even in the multidimen-
sional setting where it might change from one component
to another. Consequently, the balancing components parti-
tioning a given large component also share the same direc-
tion set. We can can thus refine U from d

pxq
U regardless of

the presence of balancing components.

Note that this is not the only possible strategy. Depending
on the problem at hand, it might still be relevant to apply
the naive approach, or to compensate the discarded edge
capacities by adjusting unary terms. However, the strategy
presented here provided the most consistent improvement
across our numerical experiments (alternative not shown).

We stress that solving only approximately the steepest di-
rection problem invalidates the theoretical guarantees of the

Algorithm 1 Parallel Cut Pursuit (PCP)

Initialize: V “ tV u
repeat

- - - - - reduced problem - - - - -
Find: ξpVq stationary point of F pVq

xÐ
ř

UPV ξ
pVq
U b 1U

- - - - - parallel refinement - - - - -
for all U P V do in parallel

Find: dpxqU P D
pxq
U minimizing F 1U px, dU q

UÐ max. constant connected components of dpxqU

V Ð VztUu Y U
end for

until V does not change

monodimensional setting, and might degrade the approxi-
mation further in the multidimensional setting. Although
our experiments display this effect, they also show that
such solutions remain satisfying at usual precision levels.

Let us finally note that there is still room for many improve-
ments. For instance, finding rationales replacing the greedy
breadth-first construction of the balancing components, or
even randomizing it along iterations, might alleviate fur-
ther the suboptimality. More importantly, in-depth study
of the graph cuts complexity might suggest better parallel
scheduling than a balancing only based on the number of
involved vertices. This exploration is however beyond the
scope of the present work, and left for future research.

3. Numerical Experiments
In this section, we show that our algorithm outperforms not
only the highly specialized parametric maximum flow ap-
proach for the simpler problem of the proximity operator
of the graph total variation, but also flexible preconditioned
proximal algorithms on ill-conditioned problems involving
several nondifferentiable regularizers beyond the total vari-
ation. All experiences are run on a 14-cores, 28-threads
i9-7940X CPU 3.10GHz with 64 GB RAM.

Throughout this section, we compare our approach to the
following state-of-the-art algorithms:

• PMF: the parametric max flow-based algorithm of Cham-
bolle & Darbon (2009) for the proximity operator of the
graph total variation;

• PFDR: the preconditioned Forward-Douglas–Rachford
splitting algorithm of Raguet (2018), with all proximal
steps parallelized;

• CP: the cut pursuit algorithm of Raguet & Landrieu
(2018), using PFDR to solve the reduced problem;

• PCP: our proposed parallelization of CP, without balanc-
ing the parallel workload distribution;
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Figure 2. Objective functional against the running time of the algorithms; optimal values are estimated by longest, high-precision runs.

• PCP-balanced: PCP with balancing.

Point Cloud Reflectance Regularization: We consider
the problem of spatially regularizing LiDAR reflectance on
a large point cloud acquired with a mobile scanning vehi-
cle as described by Paparoditis et al. (2012). The prob-
lem is defined as a graph-total variation denoising prob-
lem f : x ÞÑ ‖x´ y‖2 with y the observed noisy re-
flectance. G is the 5-nearest-neighbors graph of the point
cloud (|V | “ 109 412 178 and |E| “ 317 096 212).

Brain Source Identification in Electroencephalography
We consider the inverse problem of brain source identifi-
cation in Electroencephalography. The brain of a patient
is mapped to a triangular mesh with adjacency structure
G “ pV,Eq with |V | “ 19 626 and |E| “ 29 439. A set
of N “ 91 electrodes records the brain activity y P RN

of the patient and the goal is to retrieve the activity on the
mesh G. The relationship between the electrodes output
and the brain activity is given by the lead-field operator
φ : RV ÞÑ RN . To model the regularity, sparsity and posi-
tivity of brain signals, we chose

f : x ÞÑ
1

2
‖y ´ φx‖2 `

ÿ

vPV

`

λv |xv|` ιR`pxvq
˘

,

with λv the parameters of the weighted LASSO regulariza-
tion and ιR` the set indicator function of R`.

Point Cloud Classification Regularization We consider
the problem of spatially regularizing a noisy semantic la-
beling of a point cloud with class set K (Hackel et al.,
2017). G is the 10-nearest-neighbors graph of the point
cloud, (|V | “ 3 000 111 and |E| “ 17 206 938). A noisy
classification y P RVˆK is obtained from a random for-
est classifier trained on handcrafted geometric features as
described by Guinard & Landrieu (2017). Noting ι∆K

the
convex indicator of the standard simplex in dimension |K|,
and KL pr, sq “

ř

kPK rk logprk{skq the Kullback–Leibler

divergence, we choose

f :x ÞÑ KL pβu`p1´βqyv, βu`p1´βqxvq`
ÿ

vPV

ι∆K
pxvq,

with u “ p1{ |K|qkPK the uniform discrete distribution and
β a smoothing constant (taken as 10´1).

We report performances in Figure 2. All cut-pursuit ap-
proaches significantly outperform PFDR. Our paralleliza-
tion scheme further increases this gap by a large mar-
gin for the large-scale point cloud regularization problems,
even outperforming the specialized PMF. In contrast, par-
allelization brings virtually no gain for the medium-scale
brain source identification problem. Then, balancing the
parallel workload distribution of the split step is beneficial
in terms of speed, in particular for the classification regular-
ization problem, in which one of the components (the road
in the middle of the scene) comprises half of the vertices.
However, it can be seen that the balanced version stops at
a suboptimal solution, which is nonetheless close to solu-
tions found by the others (data not shown). Finally for the
brain source identification problem, our balancing method
is detrimental both in terms of speed and of accuracy. Our
interpretation is that it misses the important sparsity struc-
ture of the problem and the strong correlation between the
variables introduced by the lead-field operator.

Conclusion
We introduce the first fully parallel graph-cut based ap-
proach for graph total variation minimization. It combines
the advantages of traditional first-order proximal splitting
algorithms and specialized graph cut-based methods. It sig-
nificantly outperforms the state-of-the-art on many of the
currently used total variation-regularization formulations.
We provide an implementation of our method, in C++ par-
allelized with OpenMP, with interfaces for GNU Octave,
Matlab and Python, at one of the authors GitHub reposi-
tory /1a7r0ch3/parallel-cut-pursuit.

/1a7r0ch3/parallel-cut-pursuit
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APPENDIX

(a) Reflectance regularization (b) Brain source identification (c) Classification regularization
Figure 3. Illustration of the solutions given by the cut-pursuit algorithms; note that there is no discernable differences between the
different versions. (a) noisy and regularized point cloud reflectance (detail of a much larger scene); (c) synthetic and recovered ground
truth brain activity; (b) noisy prediction and regularized point cloud classification. Images best seen on a monitor.


