
HAL Id: hal-03016083
https://hal.science/hal-03016083

Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating the Potential Gain of Auditory and
Audiovisual Speech-Predictive Coding Using Deep

Learning
Thomas Hueber, Eric Tatulli, Laurent Girin, Jean-Luc Schwartz

To cite this version:
Thomas Hueber, Eric Tatulli, Laurent Girin, Jean-Luc Schwartz. Evaluating the Potential Gain of
Auditory and Audiovisual Speech-Predictive Coding Using Deep Learning. Neural Computation, 2020,
32 (3), pp.596-625. �10.1162/neco_a_01264�. �hal-03016083�

https://hal.science/hal-03016083
https://hal.archives-ouvertes.fr


LETTER Communicated by Karl Friston

Evaluating the Potential Gain of Auditory and Audiovisual
Speech-Predictive Coding Using Deep Learning

Thomas Hueber
thomas.hueber@gipsa-lab.grenoble-inp.fr
Eric Tatulli
eric.tatulli@gmail.com
Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab,
38000 Grenoble, France

Laurent Girin
laurent.girin@gipsa-lab.grenoble-inp.fr
Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble,
France, and Inria Grenoble-Rhône-Alpes, 38330 Montbonnot-Saint Martin, France

Jean-Luc Schwartz
jean-luc.schwartz@gipsa-lab.grenoble-inp.fr
Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab,
38000 Grenoble, France

Sensory processing is increasingly conceived in a predictive framework
in which neurons would constantly process the error signal resulting
from the comparison of expected and observed stimuli. Surprisingly,
few data exist on the accuracy of predictions that can be computed
in real sensory scenes. Here, we focus on the sensory processing of
auditory and audiovisual speech. We propose a set of computational
models based on artificial neural networks (mixing deep feedforward
and convolutional networks), which are trained to predict future au-
dio observations from present and past audio or audiovisual observa-
tions (i.e., including lip movements). Those predictions exploit purely
local phonetic regularities with no explicit call to higher linguistic lev-
els. Experiments are conducted on the multispeaker LibriSpeech audio
speech database (around 100 hours) and on the NTCD-TIMIT audiovi-
sual speech database (around 7 hours). They appear to be efficient in a
short temporal range (25–50 ms), predicting 50% to 75% of the variance
of the incoming stimulus, which could result in potentially saving up
to three-quarters of the processing power. Then they quickly decrease
and almost vanish after 250 ms. Adding information on the lips slightly
improves predictions, with a 5% to 10% increase in explained variance.
Interestingly the visual gain vanishes more slowly, and the gain is maxi-
mum for a delay of 75 ms between image and predicted sound.
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1 Introduction

1.1 The Predictive Brain. The concept of “predictive brain” progres-
sively emerged in neurosciences in the 1950s (Attneave, 1954; Barlow, 1961).
It assumes that the brain is constantly exploiting the redundancy and reg-
ularities of the perceived information, hence reducing the amount of pro-
cessing by focusing on what is new and eliminating what is already known.
After half a century of experimental developments, the predictive brain has
been mathematically encapsulated by Friston and colleagues into a pow-
erful framework based on Bayesian modeling (Friston, 2005), assimilating
such concepts as perceptual inference (Friston, 2003), reinforcement learn-
ing (Friston, Daunizeau, & Kiebel, 2009), and optimal control (Friston, 2011).
In this framework, it has been proposed that the minimization of free en-
ergy, a concept from thermodynamics, could provide a general principle
associating perception and action in interaction with the environment in
a coherent, predictive process (Friston, Kilner, & Harrison, 2006; Friston,
2010). A number of recent neurophysiological studies confirm the accuracy
of the predictive coding paradigm for analyzing sensory processing in the
human brain (e.g., Keller & Mrsic-Flogel, 2018).

Actually, predictive coding is a general methodological paradigm in in-
formation processing that consists of analyzing the local regularities in an
input data stream in order to extract the predictable part of these input data.
After optimization of the coding process, the difference signal (i.e., predic-
tion error) provides an efficient summary of the original signal. Technically,
this can be cast in terms of minimum description lengths (MDL; Grünwald,
Myung, & Pitt, 2005) and accompanying (variational) free energy minimiza-
tion. The predictive brain is conceived as an inference engine with a fixed
structure whose parameters are tuned to provide optimal predictions, that
is, predictions of incoming signals from past ones, optimizing mutual infor-
mation between both sets. This principle was introduced by Barlow (1961)
in terms of redundancy reduction.

The information processing system can then focus on the difference be-
tween input data and their prediction. In a very general manner, whatever
the processing system is, there are two main advantages to processing the
difference signal over directly processing the input signal. First, if the pre-
diction is efficient, the difference signal is generally of (much) lower energy
than the original signal, which leads to energy consumption saving in sub-
sequent processes and resource saving for representing the signal with a
given accuracy (e.g., bit rate saving in an audio or a video coder). In short,
this reduces the “cost” of information processing. Second, there is a con-
centration of novelty or unpredictable information in the difference signal,
which is exploitable for, for example, the detection of new events. Because
of these advantages, predictive coding has been largely exploited in tech-
nological applications, in particular in signal processing for telecommuni-
cations (Gersho & Gray, 1992; Jayant & Noll, 1984).



598 T. Hueber, E. Tatulli, L. Girin, and J.-L. Schwartz

1.2 Predictions in Speech. Speech involves different linguistic levels
from the acoustic-phonetic level up to the lexical/syntactic/semantic and
pragmatic levels. Each level of language processing is likely to provide
predictions (Manning & Schütze, 1999), and globally, automatic speech
recognition (ASR) systems are based on statistical predictive models of the
structure of speech units in the acoustic input (Jelinek, 1976; Rabiner, 1989;
Deng & Li, 2013). Generative grammar traditionally conceives linguistic
rules as providing the basis of language complexity at all levels (Jackendoff,
2002), and the existence of correlations between linguistic units at various
ranges has been the focus of a large amount of scientific research—for ex-
ample, by Kaplan and Kay (1994) and Berent (2013) for phonology, Heinz
and Idsardi (2011) for lexicon or syntax, and Oberlander and Brew (2000)
and Altmann, Cristadoro, and Degli Esposti (2012) for semantics in textual
chains. The search for dependencies between linguistic units at various
scales may also be related to the more general framework describing long-
term dependencies in symbolic sequences (Li, 1990; Li & Kaneko, 1992;
Ebeling & Neiman, 1995; Montemurro & Pury, 2002; Lin & Tegmark, 2017).

These different levels of prediction in speech correspond to different tem-
poral scales, ranging from a few tens or hundreds of milliseconds for the
lowest linguistic units (i.e., phoneme/syllable) up to a few hundred mil-
liseconds or seconds for the highest ones (i.e., word/phrase/utterance).
In the human brain, exploiting these different levels is done by hierarchi-
cally organized computational processes that correspond to a large network
of cortical areas, as described in a number of recent review papers (e.g.,
Friederici & Singer, 2015). In this network, fast auditory and phonetic pro-
cessing is supposed to occur locally in the auditory cortex (superior tem-
poral sulcus/gyrus, STS/STG), while slower lexical access and syntactic
processing involve information propagation within a larger network asso-
ciating the temporal, parietal, and frontal cortices (Hickok & Poeppel, 2007;
Giraud & Poeppel, 2012; Friederici & Singer, 2015).

Importantly, Arnal and Giraud (2012) have identified rapid cortical cir-
cuits that seem to provide predictions at low temporal ranges in the hu-
man brain. They propose that the predictions in time (“when” something
important would happen) are based on a coupling between low-frequency
oscillations driven by the syllabic rhythm in the delta-theta channel of neu-
ral firing (around 2–8 Hz) and midfrequency regulation in the beta channel
of neural firing (12–30 Hz). The “what” information would combine top-
down predictions conveyed by the beta channel with analysis of the sen-
sory input providing prediction errors to be conveyed to higher centers in
a bottom-up process through the gamma channel (30–100 Hz). Such local
gamma-theta-beta auditory structures typically operate at relatively short
temporal scales (up to a few hundreds of milliseconds) characteristic of pho-
netic processes and likely to operate at the level of auditory cortical areas in
the STS/STG region (Gagnepain, Henson, & Davis, 2012; Mesgarani, Che-
ung, Johnson, & Chang, 2014). These local circuits mostly operate without
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lexical and postlexical processes that would require both larger temporal
scales and longer cortical loops.

To our knowledge, such predictions occurring at the acoustic-phonetic
level have never been quantified. Still, it is of real importance to evaluate
what is the nature and amount of phonetic predictions that can be made
locally in the speech input. This letter is focused on the quantitative analy-
sis of temporal predictions in speech signals at a phonetic, sublexical level,
using state-of-the-art machine learning models.

1.3 Predictions in Speech Coding Systems. In essence, the largest and
historically prominent family of computational models for speech signal
predictions is found in speech coding techniques for telecommunications.
The vast majority of standardized predictive speech codecs apply predic-
tion of a speech signal waveform sample from a linear combination of the
preceding samples in the range of about 1 ms. This is the basis of the fa-
mous linear predictive coding (LPC) technique and LPC family of speech
coders (Markel & Gray, 1976). The predictor coefficients are calculated over
successive so-called short time frames of signal of a few tens of millisec-
onds (typically 20–30 ms), every 10–20 ms. Globally, LPC techniques may
be related to the general principle of MDL minimization mentioned in sec-
tion 1.1, where the MDL model is the set of prediction coefficients (Kleijn &
Ozerov, 2007).

The prediction power of the LPC technique within a single short-term
frame has been largely quantified in the speech coding literature. However,
this literature has quite poorly considered the prediction of speech at
the level of one to several short time frames ahead (i.e., a few tens to a
few hundred milliseconds—in other words, an intermediary timescale
in between the speech sample level and the lexical level). This is mostly
due to constraints on latency in telecommunications. For example, only a
very few studies have applied some form of predictive coding on vectors
of parameters encoding a short-term speech frame. This has been done
using differential coding (Yong, Davidson, & Gersho, 1988), recursive
coding (Samuelsson & Hedelin, 2001; Subramaniam, Gardner, & Rao,
2006), or Kalman filtering (Subasingha, Murthi, & Andersen, 2009). Yet
these approaches are limited to one-step frame prediction. A few other
“unconventional” studies (Atal, 1983; Farvardin & Laroia, 1989; Muduga-
muwa & Bradley, 1998; Dusan, Flanagan, Karve, & Balaraman, 2007; Girin,
Firouzmand, & Marchand, 2007; Girin, 2010; Ben Ali, Djaziri-Larbi, & Girin,
2016) have proposed “long-term” speech coders, which aim at exploiting
speech signal redundancy and predictability over larger time spans, typ-
ically in the range of a few hundreds of milliseconds.1 However, these

1
Such coders are limited to speech storage since interactive communication is not fea-

sible with the resulting high latency.
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methods actually implement a joint coding of several short-term frames
(basically, by using trajectory models or projections) but do not apply any
explicit prediction of a frame given past frames. In short, to the best of our
knowledge, no study has yet attempted to systematically quantify the pre-
dictability of the acoustic speech signal at the phonetic to syllable timescale
(i.e., one to several short-term frames). A first objective of this letter is to
address this question thanks to a (deep) machine learning approach that we
present.

1.4 Visual Potential Contribution to Phonetic Predictions in Speech.
Importantly, the visual input can also convey relevant information for
acoustic-phonetic predictions. As a matter of fact, pioneer studies such as
Besle, Fort, Delpuech, and Giard (2004) and Van Wassenhove, Grant, and
Poeppel (2005) showed that the visual component of an audiovisual speech
input (e.g., “ba”) could result in decreasing the first negative peak N1 in the
auditory event-related potential pattern in electroencephalographic (EEG)
data. Peak decrease has been related to the ability of the visual input to pro-
vide predictive cues likely to suppress the auditory response displayed in
N1. The potential predictive role of vision is supported by behavioral data
showing that vision of the speaker’s face may indeed provide cues for au-
ditory prediction (e.g., Sánchez-García, Alsius, Enns, & Soto-Faraco, 2011;
Venezia, Thurman, Matchin, George, & Hickok, 2016).

It has been claimed that the predictive aspect of visual speech informa-
tion might be enhanced by the fact that there is often an advance of im-
age on sound in natural speech (Chandrasekaran, Trubanova, Stillittano,
Caplier, & Ghazanfar, 2009). Actually, this remains a matter of controversy
(Schwartz & Savariaux, 2014). Still, studies on audiovisual speech coders
capable of exploiting correlation between audio and visual speech are ex-
tremely sparse (though see the pioneering studies in Rao & Chen, 1996, and
Girin, 2004). Hence, here also, no systematic quantification of the potential
role of the visual input in the predictive coding of speech stimuli has been
realized yet. Providing such a quantification, using a machine learning ap-
proach, is the second objective of this study.

1.5 Our Contribution: Modeling and Assessing Mid-Term Pre-
dictability in Acoustic and AudioVisual Speech. The goal of this study
is to quantify what is really predictable online from the speech acoustic
signal and the visual speech information (mostly lip movements). To this
aim, we propose to use a series of computational models based on artificial
(deep) neural networks trained to predict future acoustic features from
past information. We focus on midterm prediction, that is, a prediction
at the level of sequences of multiple consecutive short-term frames (from
25 ms to 450 ms in our experiments) and with no explicit access to lexical
or postlexical information. Depending on the representation (audio or
audiovisual), different network architectures such as feedforward neural
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networks and convolutional neural networks are used to learn sequences
of acoustic and visual patterns. In order to generalize the network speech
prediction capabilities across many speakers, these networks are trained
on large multispeaker audio and audiovisual speech databases. More
specifically, we use the LibriSpeech corpus (Panayotov, Chen, Povey, &
Khudanpur, 2015), one of the largest publicly available acoustic speech
databases, and the NTCD-TIMIT corpus (Abdelaziz, 2017), one of the
largest publicly available audiovisual speech databases.

The choice of a statistical framework based on deep learning was mo-
tivated by its ability to build successive levels of increasingly meaningful
abstractions in order to learn and perform complex (e.g., nonlinear) map-
ping functions. By combining different types of generic layers (e.g., fully
connected, convolutional, recurrent) and training their parameters jointly
from raw data, deep neural networks provide a generic methodology for
feature extraction, classification, and regression. Deep learning–based mod-
els have led to significant performance improvement in many speech pro-
cessing problems, for example, acoustic automatic speech recognition (ASR;
Abdel-Hamid et al., 2014), speech enhancement (Wang & Chen, 2018), au-
diovisual and visual ASR (Mroueh, Marcheret, & Goel, 2015; Wand, Kout-
ník, & Schmidhuber, 2016; Tatulli & Hueber, 2017), articulatory-to-acoustic
mapping (Bocquelet, Hueber, Girin, Savariaux, & Yvert, 2016), and more
generally for tasks involving speech-related biosignals (Schultz et al., 2017).
Thus, deep-learning models are here considered as providing an accurate
evaluation of the amount of information and regularities present in the au-
ditory and visual inputs and likely to intervene in speech-predictive coding
in the human brain. Though substantially different from biological neural
networks, artificial deep neural networks provide a computational solution
to cognitive questions and may thus provide some insight into the nature
of biological processes (Kell, Yamins, Shook, Norman-Haignere, & McDer-
mott, 2018).

The proposed computational models of predictive speech coding en-
abled us to address the following questions:

• How much of the future speech sounds can be predicted from the
present and the past ones? What is the temporal range at which
acoustic-phonetic predictions may operate, and how much of past
information do they capitalize on for predicting future events?

• If the visual input (i.e., information on the speaker’s lip movements)
is added to the acoustic input (i.e., the speech sound), how much
gain can occur in prediction, and what temporal window of vi-
sual information is typically useful for augmenting auditory predic-
tions? Crucially, can audiovisual predictions confirm the assumption
that visual information would be available prior to auditory infor-
mation in the predictive coding of speech, and by what temporal
amount?
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2 Materials and Methods

2.1 Database. Two publicly available data sets were used in this study.
The first is the LibriSpeech corpus, which is derived from read audiobooks
from the LibriVox project (Panayotov et al., 2015). In this study, we used
the “train-clean-100” subset of LibriSpeech, which contains 100.6 hours of
read English speech, uttered by 251 speakers (125 female speakers and 126
male speakers). The second data set is the NTCD-TIMIT data set (Abdelaziz,
2017), which contains audio and video recordings of 59 English speakers,
each uttering the same 98 sentences extracted from the TIMIT corpus (Garo-
folo et al., 1993)—5782 sentences in total, representing around 7 hours of
speech). NTCD-TIMIT contains both clean and noisy versions of the audio
material. In our study, we used only the clean audio signals. As for the video
material, NTCD-TIMIT provides a postprocessed version of raw video se-
quences of the speaker’s face focusing on the region of interest (ROI) around
the mouth. This includes cropping, rotation, and scaling of the extracted
ROI so that the mouths of all speakers approximately lie on the same hori-
zontal line and have the same width. Each ROI image is finally resized as a
67×67 pixels 8-bit gray-scale image (Abdelaziz, 2017).

Librispeech is our favored data set here for quantifying the auditory
speech prediction from audio-only input. Experiments conducted on the
NTCD-TIMIT corpus aim more specifically at quantifying the potential ben-
efit of combining audio and visual inputs (over audio-only input) for such
prediction. In spite of its reduced size compared to Librispeech (around 7
hours and 59 speakers versus 100 hours and 251 speakers), it remains one
of the largest publicly available audiovisual data sets of continuous speech.

2.2 Data Preprocessing. For the LibriSpeech corpus, no specific prepro-
cessing of the audio signal was done. For the NTCD-TIMIT corpus, each
audiovisual recording was first cropped in order to reduce the amount of
silence before and after each uttered sentence. Temporal boundaries of si-
lence portions were extracted from the phonetic alignment file provided
with the data set. In order to take into account anticipatory lip gestures,
a safe margin of 150 ms of silence was kept intact before and after each
recorded sentence.

A sliding window was used to segment each waveform into short-term
acoustic frames. Aclassical frame length of 25 ms was used in our study (400
samples at 16 kHz). Importantly, a frame shift of 25 ms was chosen in order
to avoid any overlap between consecutive frames (i.e., the frame shift was
set equal to the frame length). This aimed at preventing the introduction
of artificial correlation due to shared samples, which could introduce some
bias in the midterm prediction (i.e., the prediction of a speech frame given
the preceding ones).

The discrete Fourier transform (DFT) was applied on each frame to
represent its spectral content. The overall process is referred to as the
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short-term Fourier transform (STFT) analysis, and the resulting signal rep-
resentation is the STFT (complex-valued) spectrogram. In our study, a 512-
point fast Fourier transform (FFT) was used to calculate each DFT (each
400-sample short-term frame was zero-padded with 112 zeros and was then
applied a Hanning analysis window). Only the 257 first coefficients in the
frequency dimension, corresponding to positive frequencies, are retained.
Then we computed the log magnitude of the STFT spectrogram (on a dB
scale) and rescaled the resulting values to the range [0,−80] dB for each
sentence of the data set (the maximum value over each sentence was set to
0 dB and all values below −80 dB were set to −80 dB). Finally, the short-
term speech spectrum was converted into a set of so-called Mel-frequency
cepstral coefficients (MFCC). Such coefficients were obtained by integrat-
ing subbands of the log power spectrum using a set of 40 triangular filters
equally spaced on a nonlinear Mel frequency scale and converting the re-
sulting 40-dimensional Mel-frequency log spectrum into a 13-dimensional
vector using the discrete cosine transform (DCT). The resulting represen-
tation for a complete utterance (a sequence of frames) is referred to as the
MFCC spectrogram.

MFCC coefficients are widely used in many fields such as automatic
speech recognition (ASR; Rabiner, 1989) and music information retrieval
(e.g. classification of musical sound; Kim et al., 2010). MFCC analysis can
be seen as a high-level biologically inspired process related to psychoacous-
tics (i.e., simulating the cochlear filtering). Moreover, MFCC analysis leads
to a compact representation of the short-term speech spectrum, which may
be of significant interest in the context of statistical learning since it may
limit the number of free model parameters to estimate. All the above audio
analysis procedures were performed using the Librosa Python open-source
library, release 0.6.0 (McFee et al., 2018).

As concerns the video sequences (for the NTCD-TIMIT corpus), a linear
interpolation across successive images in the pixel domain was performed
in order to adjust the video frame rate (originally 30 fps) to the analysis
rate of the audio recordings (40 Hz). Each frame of 67×67 pixels was then
resized to 32×32 pixels using linear interpolation. Eight-bit integer pixel in-
tensity values were divided by 255 in order to work with normalized values
in the [0, 1] range. Video analysis was performed using the openCV2 Python
open-source library (Bradski, 2000; release 3.4.0.12).

2.3 Computational Models of Speech Prediction from Audio-Only
Data.

2.3.1 Task. We denote xt a Dx-dimensional (column) vector of spectral
audio features, which in this study is a 13-dimensional vector of MFCC
coefficients. The frame index t is an integer and corresponds to time tH
where H = 25 ms is the frame spacing (see the previous section). The pre-
dictive coding problem using past audio information can be formulated as
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computing

x̂t+τ f = f (xt, xt−1, . . . , xt−τp ), (2.1)

where x̂ denotes an estimated (predicted) value of x and τ f and τp denote
a time lag in the future and in the past, respectively (in number of frames).
In summary, τ f labels the depth into the future of the prediction, based on
a sequence of past observations from the current time step t to t − τp. These
time indices correspond to 25 ms of clock time. We propose to model the
nonlinear predictive function f by an artificial (deep) neural network, de-
scribed below.

2.3.2 Architectures. To process the MFCC spectrograms, we use a stan-
dard feedforward deep neural network (FF-DNN). An FF-DNN is com-
posed of a cascade of fully connected layers. Each neuron of a given fully
connected layer performs a nonlinear transformation of a weighted sum of
its inputs, which are the outputs of the previous layer. In the case of a regres-
sion task (as we consider here with prediction and as opposed to classifica-
tion), the last (output) layer is directly the weighted sum of its inputs; it has
a linear activation function. To process the portion of MFCC spectrogram
composed of frames t − τp to t, the latter has to be vectorized, that is, con-
catenated into a single larger vector, and equation 2.1 is here reformulated
as

x̂t+τ f = fFF-DNN
([

xT
t xT

t−1 . . . xT
t−τp

]T)
, (2.2)

where T denotes vector transpose.

2.3.3 General Methodology for Model Training. All parameters (i.e.
weights) of FF-DNNs are learned from data, usually by stochastic gradient
descent and backpropagation. Briefly, this consists of iterating the following
process: (1) evaluating a loss function, which measures the average discrep-
ancy between the prediction of the network and the ground-truth value for
a subset of the training data (called a minibatch), and (2) calculating the
gradient of this loss function with respect to all the network weights, start-
ing from the output layer and backpropagating it through all the hidden
layers, then (3) updating all weights using the gradient in order to decrease
the loss function. This process is applied over all minibatches of the training
data and repeated a certain number of times, called epochs, until the loss
function no longer significantly evolves.

In addition to this general process, three strategies are often used to
prevent model overfitting and accelerate training convergence: (1) early
stopping, which consists of monitoring the loss function on a validation
data set and stopping the training as soon as its value stops decreasing af-
ter a given number of epochs; (2) batch normalization, which consists of



Evaluating the Gain of Speech Predictive Coding Using Deep Learning 605

applying a transformation so that the inputs to each layer have zero mean
and unit variance (Ioffe & Szegedy, 2015); and (3) dropout, which consists of
not updating a random fraction of neurons in a given layer during training.
In our study, we combined these three processes.

2.3.4 Model Selection and Training. As in many modeling studies based on
deep learning, complex architectures require setting a large number of hy-
perparameters, mostly related to the sizing of the network, a process known
as model selection. It also requires setting several training settings. An ex-
tensive search for the optimal combination for these hyperparameters and
settings is out of range. Therefore, we optimized only some of them on a
subset of each database. We tested combinations of 1, 2, 3, and 4 layers with
either 128, 256, or 512 neurons each. This converged to the same architecture
for the two data sets, with three groups of 256-neuron fully connected lay-
ers. This model is represented in Figure 1a. All models were trained using
the Adam optimizer, a popular variant of the stochastic gradient descent
(Kingma & Ba, 2014), on minibatches of 256 observations. The Leaky ReLU
was used as an activation function (for the neurons of the hidden layers). It
is defined as f (x) = αx for x < 0 and f (x) = x for x ≥ 0 (with α = 0.03 in our
experiments). The mean squared error (MSE) was used as the loss function.
In each experiment, 66% of the data (randomly partitioned) were used for
training, and the remaining 33% were used for testing. Twenty percent of
the training data were used for validation (early stopping). The number of
epochs in early stopping was set to 10.

After model selection, the optimal set of hyperparameters and the same
training settings were then used to train and evaluate the final compu-
tational models of speech prediction from audio-only data. Two separate
series of experiments were conducted. These models were trained and eval-
uated using the entire train-clean-100 subset of the LibriSpeech corpus
(around 100 hours, 251 speakers). They were also trained and evaluated
on the audio data of the entire NTCD-TIMIT audiovisual corpus (around 7
hours, 59 speakers). The latter series of experiments were mostly done for
comparison with their audiovisual counterpart.

Technical implementation of all models was performed using the Keras
open-source library (Chollet et al., 2015, release 2.1.3). All models were
trained using GPU-based acceleration.

2.4 Computational Models of Speech Prediction from Both Audio and
Visual Data.

2.4.1 Task. We denote It the lip image at frame t (in our case a gray-scale
image of 32×32 pixels). The predictive coding problem using both audio
and visual past information can be formulated as

x̂t+τ f = f (xt, It, xt−1, It−1, . . . , xt−τp, It−τp ). (2.3)
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2.4.2 Architectures. Integration of audio and visual speech information
has been largely considered for automatic audiovisual speech recognition
(Potamianos, Neti, Gravier, Garg, & Senior, 2003; Mroueh et al., 2015) and
also (though much less extensively) for other applications, such as speech
enhancement (Girin, Schwartz, & Feng, 2001) and speech source separa-
tion (Rivet, Girin, & Jutten, 2007). Basically, the general principle is that in-
tegration can be processed at the input signal level (concatenation of the
input data from each modality, that is, early integration), at the output level
(combination of the outputs obtained separately from each modality, that is,
late integration), or somewhere in between those extremes (after some sepa-
rate processing of the inputs and before final calculation of the output, that
is, midlevel integration) (Schwartz, Robert-Ribes, & Escudier, 1998). Artificial
neural networks provide an excellent framework for such multimodal in-
tegration, since it can be easily implemented with a fusion layer receiving
the inputs from different streams and generating a corresponding output.
Moreover, the fusion layer can be placed arbitrarily close to the input or the
output.

In this study, we propose a computational model of auditory speech from
both audio and visual inputs based on artificial neural networks. We adopt
the midlevel fusion strategy, which enables to benefiting from the design
and training of the audio (FF-DNN) network used for predictive coding
based on audio-only input presented in the previous section, and the design
and training of a visual model dedicated to process the lip images.

A convolutional neural network (CNN; LeCun, Bengio, & Hinton, 2015)
was used as the core of this visual model. A CNN is a powerful network ar-
chitecture well adapted to process 2D data for classification and regression.
It can extract a set of increasingly meaningful representations along its suc-
cessive layers. It is thus widely used in image and video processing—for
example, object detection (Szegedy et al., 2015), gesture recognition (Bac-
couche, Mamalet, Wolf, Garcia, & Baskurt, 2012; Ji, Xu, Yang, & Yu, 2013;
Karpathy et al., 2014; Simonyan & Zisserman, 2014), or visual speech recog-
nition (Noda, Yamaguchi, Nakadai, Okuno, & Ogata, 2014; Tatulli & Hue-
ber, 2017).

Technically, a CNN is a deep (multilayer) neural network classically com-
posed of one or several convolutional layers, pooling layers, fully connected
layers, and one output layer. In a nutshell, a convolutional layer convolves
an input 2D image with a set of so-called local filters and then applies a
nonlinear transformation to the convolved image. The output is a set of
so-called feature maps. Each feature map can be seen as the (nonlinear) re-
sponse of the input image to the corresponding local filter. One important
concept in the convolutional layer is weight sharing, which states that the
parameters of each filter remain the same whatever the position of the fil-
ter in the image. This allows the CNN to exploit spatial data correlation
and build translation-invariant features. A pooling layer then downsam-
ples each feature map in order to build a scale-invariant representation. For
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Figure 2: Selected architecture for the audiovisual model. Audio and visual pre-
trained subnetworks from Figure 1 are merged using a 256-neuron fully con-
nected fusion layer.

example a so-called max-pooling layer outputs the max value observed on
subpatches of a feature map. The convolutional + pooling process can be
cascaded several times. A CNN generally ends up with a series of fully con-
nected layers that have the same function as in a standard feedforward deep
neural network, as described in section 2.3. Note that in a CNN, the first
fully connected layer usually operates over a vectorized form of the down-
sampled feature maps provided by the last pooling layer.

We thus first designed and trained such a visual CNN for efficient visual
speech feature extraction from speakers’ lip images. Its architecture is rep-
resented in Figure 1b. This visual CNN maps a sequence of a speaker’s lip
images into the corresponding future MFCC vector. Because we process a
sequence of (τp + 1) images, the 2D convolution is extended to a 3D con-
volution, including the temporal dimension, as illustrated by the red cube
in Figure 1b. Then, the convolutional + pooling layers of the visual CNN
and the fully connected layers of the MFCC FF-DNN were selected. These
subnetworks were merged using a fully connected fusion layer, which
is followed by other usual layers. The resulting network regressing au-
dio and visual data into audio data is represented in Figure 2. Each por-
tion of the present and past MFCC spectrogram and associated sequence
of lip images is mapped into an output predicted (future) MFCC vector.
This audiovisual model was trained anew with the audiovisual training
data.

2.4.3 Model Selection and Training. As concerns the CNN model process-
ing the speakers’ lip images (used to initialize the audiovisual model), we
tested one, two, or three groups of convolutional or pooling layers. As often
done in computer vision tasks involving CNNs (e.g., Noda et al., 2014), the
number of filters was incremented in each layer: 16 for the first layer, 32 for
the second, 64 for the third. Filters of size 3×3, 5×5, and 10×10 were tested.
The pooling factor was fixed to 2×2.
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For the audiovisual model (the one jointly processing audio and visual
data to predict audio), we used the subnetworks of the selected audio and
visual networks, and we varied only the number of fully connected layers
NFC ∈ {1, 2, 3}, with either 256 or 512 neurons each.

The selected visual CNN has three groups of convolution + pooling
layers, with 16, 32, and 64 filters of size 3× 3× (τp + 1), and a single 256-
neuron fully connected layer, as represented in Figure 1b. Finally, the audio-
visual model merges the subnetworks from the selected audio and visual
models using a 256-neuron, fully connected fusion layer, as represented in
Figure 2.

Finally, after model selection, both the visual-only model of Figure 1b
and the audiovisual model of Figure 2 were (separately) trained on the en-
tire NTCD-TIMIT data set. In each experiment, the settings of the training
were very similar to the ones used for training the MFCC spectrogram FF-
DNNs (e.g., use of the Adam optimizer, use of 66% of the data set for train-
ing, test on the remaining 33%, validation with early stopping on 20% of
the training data).

2.5 Metrics. Two metrics were used to assess the prediction perfor-
mance of the different models: (1) the mean squared error (MSE) between
the predicted audio vector and the corresponding ground-truth audio vec-
tor (this MSE was also used as a loss function to train the different models)
and (2) the weighted explained variance (EV) regression score, evaluating
the proportion to which the predicted coefficients account for the variation
of the actual ones.

For each pair (τp, τ f ) of past context lag and prediction lag, the MSE
is first defined per MFCC coefficient (indexed by d) and per test sentence
(indexed by k) as

MSEτp,τ f ,k,d = 1
Tk − τ f − τp

Tk−τ f∑
t=τp+1

(̂xk,d,t+τ f − xk,d,t+τ f )2, (2.4)

where Tk is the number of audio vectors (i.e., the number of acoustic short-
term frames) in sentence k, and x̂k,d,t and xk,d,t are the dth entry of, respec-
tively, the predicted and ground-truth vectors at frame t for the kth sentence.
Then it is averaged across MFCC coefficients and across sentences:

MSEτp,τ f ,k = 1
D

D∑
d=1

MSEτp,τ f ,k,d, (2.5)

MSEτp,τ f = 1
Ntest

Ntest∑
k=1

MSEτp,τ f ,k, (2.6)
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where D = 13 and Ntest is the number of test sentences. Assuming a gaussian
distribution of the errors, a 95% confidence interval of MSEτp,τ f is defined
as

CIMSE
τp,τ f

= MSEτp,τ f ± 1.96√
Ntest − 1

σ (MSEτp,τ f ,k), (2.7)

where σ (.) denotes the empirical standard deviation evaluated over the set
of test sentences.

The weighted explained variance (EV) regression score is defined as

EVτp,τ f = 1
NtestD

Ntest∑
k=1

D∑
d=1

wτp,τ f ,k,dEVτp,τ f ,k,d, (2.8)

with

EVτp,τ f ,k,d = 1 − Var
{̂
xk,d,t+τ f − xk,d,t+τ f

}
Var

{
xk,d,t+τ f

} (2.9)

and

wτp,τ f ,k,d = Var
{
xk,d,t+τ f

}
∑D

d′=1 Var
{
xk,d′,t+τ f

} , (2.10)

where Var denotes the empirical variance evaluated along the time dimen-
sion (the different frames of a sentence). For each sentence, the contribution
of the dth coefficient to the explained variance is weighted by the normal-
ized variance of each individual coefficient (see equation 2.10). This avoids
a coefficient with very low variance to yield a very large (negative) EV value
for that coefficient, which would pollute the average EV value.

The weighted EV is within the interval ]−∞, 1]. A value close to 1 in-
dicates that the error between a predicted and ground-truth data is small
compared to the ground-truth data themselves—hence, a strong correla-
tion between them. This corresponds to a large prediction gain (larger than
1). An EV value close to 0 generally indicates a poor correlation and a very
weak prediction gain (close to 1). Negative EV values indicate that the error
is larger than the ground-truth data, hence very inefficient predictions.

Note that in contrast to the EV, the MSE is not weighted and not normal-
ized in any way. Therefore, it is expected to be more sensitive than the EV to
potential differences in data sets (e.g., recording material, waveform scaling
to avoid clipping). This means that EV values can be more easily compared
across our two data sets than MSE values.

Both MSE and EV are strongly related to a key metric of the predictive
coding theory, which is the prediction gain (Gersho & Gray, 1992; Markel
& Gray, 1976). Indeed, the latter is defined as the ratio of the ground-truth
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signal power and the prediction error power (i.e, the MSE):

Gτp,τ f ,k,d =
∑Tk−τ f

t=τp+1(xk,d,t+τ f )2

∑Tk−τ f

t=τp+1 (̂xk,d,t+τ f − xk,d,t+τ f )2
=

∑Tk−τ f

t=τp+1(xk,d,t+τ f )2

(Tk − τ f − τp)MSEτp,τ f ,k,d
.

(2.11)

The lower the MSE, the higher the prediction gain. Moreover, in the case
where both ground-truth signal and predicted signal are zero mean, we
have

EVτp,τ f ,k,d = 1 − 1
Gτp,τ f ,k,d

. (2.12)

Therefore, the higher the prediction gain, the closer to 1 the expected vari-
ance is. Those relations are given here for each MFCC coefficient and each
sentence. Depending on how averaging across coefficients and sentences is
performed, they can become more intricate after averaging. In our study,
we define an average prediction gain such as

Gτp,τ f = 1
1 − EVτp,τ f

. (2.13)

3 Results and Discussion

The prediction performances of the audio models trained and evaluated on
LibriSpeech are presented in Figure 3. The prediction performances of both
audio and audiovisual models trained and evaluated on NTCD-TIMIT are
presented in Figure 4. Note that in this section, we express the time lags τp

and τ f in milliseconds for convenience of discussion. For example, EV75,50

denotes the weighted explained variance obtained when predicting a 25 ms
audio frame 50 ms in the future, looking 75 ms in the past—that is, using
the current frame and the three previous past frames.

3.1 Speech Prediction from Audio Data.

3.1.1 General Trends. The results show that it is indeed possible to pre-
dict, to a certain extent, the spectral information in the acoustic speech sig-
nal in a temporal range of 200 ms following the current frame. As expected,
the accuracy of such predictions decreases rapidly when the temporal hori-
zon τ f increases. This evolution more or less follows a logarithmic shape
for MSEτp,τ f and an exponential decay toward 0 for EVτp,τ f . These general
trends are observed on both LibriSpeech and NTCD-TIMIT. The audio-only
predictive models trained on the large-scale LibriSpeech corpus are glob-
ally slightly more accurate than the ones trained on the smaller data set,
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Figure 3: Prediction performance of the audio models using LibriSpeech. Mean
square error with 95% confidence interval, represented by the error bars (left),
and explained variance regression score (right).

NTCD-TIMIT. This is likely due to the better generalization capacity of the
networks when the data set is larger (in terms of number of speakers and
speech material per speaker).

At τ f = 25 ms, the weighted explained variance is about 0.75 for the
audio-only model trained on LibriSpeech and about 0.65 for the one trained
on NTCD-TIMIT (e.g., for τp = 75 ms, EV75,25 = 0.67 on NTCD-TIMIT and
EV75,25 = 0.76 on LibriSpeech; compare the cyan solid lines in Figures 3 and
4). This corresponds to an average predictive coding gain Gτp,τ f around 2.8
and 4, respectively. This provides a rough estimate of the factor by which
the power of the error signal (input minus predicted) to transmit by neural
processes is reduced compared to the original input. It thus provides some
quantification of the amount of biological energy that the system might gain
in exploiting a short-range (25 ms) predictive process.

At τ f = 50 ms, the weighted explained variance is about 0.5 on Lib-
riSpeech (e.g., EV50,50 = 0.51) and about 0.4 on NTCD-TIMIT (e.g., EV50,50 =
0.41), which corresponds to an average prediction gain between 1.7 and 2.
For the audio-only models trained on LibriSpeech, prediction becomes poor
above τ f = 250 ms: the explained variance goes below 0.1 and keeps on de-
creasing toward 0. For models trained on NTCD-TIMIT, the performance
degradation occurs a bit sooner: the explained variance goes below 0.1 for
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Figure 4: Prediction performance of the audio and audiovisual models using
NTCD-TIMIT. Mean square error with 95% confidence interval (represented by
the error bars) (left) and explained variance regression score (right).

τ f between 100 ms and 150 ms, and prediction keeps on decreasing toward
0. Again, the difference between the results obtained with the two data sets
is likely due to their difference in size and thus to the resulting difference in
generalization properties of the corresponding models. Nevertheless, these
results provide a rather coherent estimation of the temporal window in
which acoustical predictions are available, typically around the duration
of a syllable.

3.1.2 Impact of Past Information. Another aspect of acoustic prediction
concerns the role of the temporal context. Unsurprisingly, adding one con-
text frame to the current one provides significant improvement in the pre-
diction of the next frame for both data sets (e.g., EV (0, 75) = 0.28 and
EV (25, 75) = 0.33 on LibriSpeech, EV (0, 75) = 0.17 and EV (25, 75) = 0.22
on NTCD-TIMIT). Adding a second context frame is also beneficial for the
large LibriSpeech corpus (e.g., EV (50, 75) = 0.36) though more marginally
for the smaller NTCD-TIMIT corpus (e.g., EV (50, 75) = 0.23). Such past in-
formation may enable the model to evaluate speech trajectories and extract
relevant information on the current dynamics, related, for example, to for-
mant transitions, known to be crucial in speech perception. Adding a third
frame of past context (τp = 75 ms) marginally improves prediction, but only
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for τ f larger than about 75 ms and only for LibriSpeech data. Adding a
fourth past frame (τp = 100 ms) provides no further gain. While being re-
lated to a different task, such results may be compared to classical ones in
automatic speech recognition, where adding first and second derivatives of
the spectral parameters is classically considered as the optimal choice for
reaching the best performance.

3.1.3 Prediction Accuracy per Class of Speech Sound. A fine-grained analy-
sis of the prediction accuracy for five major classes of speech sounds is pre-
sented in Figure 5 (this analysis was conducted on the NTCD-TIMIT data
set for which phonetic alignment is available).

Interestingly, the prediction accuracy at τ f = 25 ms is in a comparable
range for vowels, fricatives, nasals, and semivowels but significantly lower
for plosive sounds (i.e., plosives exhibit a significantly larger MSE; see Fig-
ure 5). This may be explained by the difficulty of predicting the precise tim-
ing of the occlusion release within the plosive closure and the shape of the
corresponding short-term spectrum from the prerelease signal. This pattern
is also visible but decreased for predictions at τ f = 50 ms and τ f = 75 ms,
probably due to a ceiling effect of the prediction power at these temporal
horizons.

3.2 Speech Prediction from Audio and Visual Data. The performance
of visual-only models (i.e., predictive models of acoustic speech that rely
only on lip images, trained and tested on the NTCD-TIMIT corpus) is pre-
sented in Figure 6 (left).

As expected, the information provided by the visual modality is real
though limited. For example, the best performance obtained at τ f = 0 ms
is EV75,0 = 0.37 only, which corresponds to a prediction gain of 1.59. This
result can be put in perspective with respect to the literature on automatic
lip-reading (also known as visual speech recognition), where a typical per-
formance of a visuo-phonetic decoder that does not exploit any high-level
linguistic knowledge (via statistical language models) is between 30% and
40% (i.e., 60% to 70% phone error rate). Similarly to the audio-only models,
adding past context frames to the current one provides significant improve-
ment in the prediction accuracy. Most of this improvement is observed
when considering past information at τp = 25 ms—one additional lips im-
age. Adding another past context frame (i.e., τp = 50 ms) only marginally
improves prediction, and going to three past frames does not provide fur-
ther improvement.

Interestingly, the performance of visual-only models decreases relatively
slowly in comparison with the rapid decrease in prediction accuracy for
the audio models (for the NTCD-TIMIT data set) in the same range of
time lags. For example, for τ f = 50 ms, we have EV50,50 = 0.32, and for
τ f = 75 ms, we have EV50,75 = 0.25. However, on average, visual modal-
ity does not seem to convey useful information above τ f = 100 ms (e.g., at
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Figure 6: Performance of the visual-only and audiovisual models using NTCD
TIMIT. Explained variance obtained when considering only the visual modal-
ity (left) and difference of explained variance between audio and audiovisual
models (right).

τ f = 150 ms, EV50,150 = 0.06). These results may contribute to the debate in
the neuroscience literature on the fact that the lip movements could be in ad-
vance on the sound because of anticipatory processes in speech production
(see Chandrasekaran et al., 2009; Golumbic, Cogan, Schroeder, & Poeppel,
2013). The prediction of the spectral parameters from the lip information is
maximal for the frame synchronous with the current input lip image (i.e.,
τ f = 0 ms)—or for the next frame (τ f = 25 ms) only for τp = 50 ms—and
then decreases smoothly with time. This is not in agreement with a stable
advance of lips on sound.

As illustrated in Figure 4, combining audio with visual information im-
proves the prediction over using audio only (compare solid lines with
dashed lines). The gain is small but real, increasing the weighted explained
variance by up to 0.1 depending on τ f and τp. In order to better illustrate
the dynamics of the gain brought by the visual input, we displayed in Fig-
ure 6 (right) the difference of weighted explained variance between audio-
visual models and audio-only models. Importantly, results show a peak
in the gain provided by the visual input for τ f = 75 ms. Therefore, even
if there is no systematic lead of lips on sounds, there is a temporal win-
dow between 50 ms and 100 ms where the use of visual information is most
helpful.

3.2.1 Qualitative evaluation. All of these quantitative results were aver-
aged over many test sentences and speakers. Here, we finally discuss from
a qualitative point of view the accuracy of the predicted spectral content at
the utterance level. An example of a prediction error at τ f = 100 ms using
either an audio-only or audiovisual predictive model is shown in Figure 7.
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For the audio-only model (see the blue in plot c), peaks in prediction
errors are mainly observed at either the vowel onset of consonant-vowel
sequences (e.g., [d-iy], [l-(hh)-er]) or at the onset of the consonant of vowel-
consonant sequence (e.g., [er-m], [er-t]) for which the precise initiation of
the trajectory after a period of relative stability is hardly predictable. As
concerns the audiovisual model, the average gain is accompanied by a
large range of variations, leading to fluctuations between large gains and
large losses provided by lip movements. A substantial gain from the vi-
sual input may occur when the speaker produces preparatory lip gestures
before beginning to speak as in the [s] onset after the silence at the begin-
ning of the utterance. Visible though poorly audible gestures as the clo-
sure for [m] in [l-ey-m] also lead to a visual gain in prediction. Another
source of gain could be related to a coarticulation effect, when lips antic-
ipate the upcoming vowel as during the first [d] in the utterance where
the stretching gesture starts before the onset of the [iy]. Conversely, cases
of error increase due to the visual input concern occurrences of nonvisible
tongue gestures, such as intensity decrease in the vowel [uw] due to dis-
placement of the tongue apex in the dental region in the following [nd] clus-
ter around 0.4 s that is detected in the auditory stream but not in the visual
stream.

3.3 A Database of Prediction Errors for Future Neurocognitive Exper-
iments. A number of recent neurophysiological experiments have tested
the existence and characteristics of predictive patterns in the audio and
audiovisual responses to speech in the human brain (Van Wassenhove
et al., 2005; Arnal, Morillon, Kell, & Giraud, 2009; Tavano & Scharinger,
2015; Ding, Melloni, Zhang, Tian, & Poeppel, 2016) and a recent theo-
retical review of predictive processes (Keller & Mrsic-Flogel, 2018). Im-
portantly, these experiments lack a ground-truth basis on the natural
predictive structure of audio and audiovisual speech, which can lead to
misinterpretations or overgeneralizations of observed patterns (Schwartz
& Savariaux, 2014). Our study could provide an interesting basis for fu-
ture studies, providing a quantitative knowledge on the amount of “pre-
dictability” available in the physical signals considered in the simulations.
The source code used to format the data and train and evaluate both au-
dio and audiovisual predictive models on LibriSpeech and NTCD-TIMIT
data sets, as well as all simulation results, has been made publicly avail-
able on https://github.com/thueber/DeepPredSpeech (for source code)
and https://zenodo.org/record/3528068 (for data, simulation results on
NTCD-TIMIT and pretrained models, doi:10.5281/zenodo.1487974). We be-
lieve that such results could be of interest in future neurophysiological
experiments aiming at testing neural predictions in speech processing in
the human brain.
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4 Conclusion

In the general framework of predictive coding in the human brain, this
study aimed at quantifying what is predictable online from the speech
acoustic signal and the visual speech information (mostly lip movements).
We proposed a set of computational models based on artificial (deep) neural
networks that were trained to predict future audio observations from past
audio or audiovisual observations. Model training and evaluation were per-
formed on two large and complementary multispeaker data sets, respec-
tively for audio and audiovisual signals, both publicly available. The key
results of our study are these:

• It is possible to predict the spectral information in the acoustic speech
signal in a temporal range of about 250 ms. At 25 ms, prediction en-
ables reducing the power of the signal to transmit by neural processes
(i.e., the error signal instead of the input signal) by a factor up to four.
But the accuracy of the prediction decreases rapidly with future time
lag (e.g., with average prediction gain obtained on the larger of our
two tested data sets around 2 (EV ≈ 0.5) at 50 ms (with τp = 75 ms),
1.6 at 75 ms (EV = 0.37) and almost 1 (EV = 0.05), i.e., no gain, at
around 350 ms).

• The information provided by the visual modality is real but limited.
The prediction accuracy of the predictive model based on visual-
only information does not evidence a stable advance of lips on
sound (as sometimes stated in the literature). The maximum average
gain provided by the visual input in addition to the audio input is
about +0.1 of explained variance and is obtained for a prediction at
75 ms.

• Best prediction accuracy is obtained when considering 50 to 75 ms of
past context, for both audio and audiovisual models.

• Plosives are more difficult to predict than other types of speech
sound.

This study hence provides a set of quantitative evaluations of auditory
and audiovisual predictions at the phonetic level, likely to be exploited in
predictive coding models of speech processing in the human auditory sys-
tem. These evaluations are based on a specific class of statistical models
based on deep learning techniques. Of course, it can be envisioned that the
number of regularities in the speech signal might be actually larger than
what has been captured by deep learning techniques in this study. Still, the
large amount of data exploited here and the acknowledged efficacy of deep
learning techniques make us confident that the estimations provided in this
work constitute a reasonable estimation of the order of magnitude of pos-
sible regularities captured by statistical models.

As we stated in section 1, predictive coding should operate at a num-
ber of higher stages in speech neurocognitive processing, related to lexical,
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syntactic, and semantic/pragmatic levels exploiting wider temporal scales.
Our study should hence be considered as just a first stage in the analysis of
predictive coding in speech processing. It provides a baseline along which
further studies on higher-level predictive stages can be evaluated quantita-
tively, comparing the number of additional predictions that can occur from
linguistic models to this audiovisual phonetic reference. Future work will
focus on the integration of this linguistic level in a more complete neurocog-
nitive architecture for speech predictive coding.
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