BrainPredict: a Tool for Predicting and Visualising Local Brain Activity - Archive ouverte HAL
Chapitre D'ouvrage Année : 2020

BrainPredict: a Tool for Predicting and Visualising Local Brain Activity

Résumé

In this paper, we present a tool allowing dynamic prediction and visualization of an individual's local brain activity during a conversation. The prediction module of this tool is based on classifiers trained using a corpus of human-human and human-robot conversations including fMRI recordings. More precisely, the module takes as input behavioral features computed from raw data, mainly the participant and the interlocutor speech but also the participant's visual input and eye movements. The visualisation module shows in real-time the dynamics of brain active areas synchronised with the behavioral raw data. In addition, it shows which integrated behavioral features are used to predict the activity in individual brain areas.
Fichier principal
Vignette du fichier
Hmamouche_LREC2020.pdf (836.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03016059 , version 1 (20-11-2020)

Licence

Identifiants

  • HAL Id : hal-03016059 , version 1

Citer

Youssef Hmamouche, Laurent Prevot, Magalie Ochs, Thierry Chaminade. BrainPredict: a Tool for Predicting and Visualising Local Brain Activity. Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), , pp.11 - 16, 2020. ⟨hal-03016059⟩
93 Consultations
72 Téléchargements

Partager

More