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Abstract
Objective Unilateral labyrinthectomy (UL) and unilateral vestibular neurectomy (UVN) are two surgical methods to produce 
vestibular lesions in the mouse. The objective of this study was to describe the surgical technique of both methods, and 
compare functional compensation using vestibulo-ocular reflex-based tests.
Methods UL and UVN were each performed on groups of seven and ten mice, respectively. Main surgical landmarks were 
the facial nerve, the external auditory canal and the sternomastoid and digastric muscles. For UL, the sternomastoid muscle 
was elevated to expose the mastoid, which was drilled to destroy the labyrinth. For UVN, the bulla was drilled opened and a 
transcochlear approach enabled the identification of the vestibulo-cochlear nerve exiting the brainstem, which was sectioned 
and the ganglion of Scarpa suctioned. Behaviour and vestibular function were analysed before surgery and at 1, 4, 7 days 
and at 1 month postlesion using sinusoidal rotation, off-vertical axis rotation, static head tilts and angular velocity steps.
Results UL is a faster and safer procedure than UVN (operative time 16.3 vs 20.5 min, p = 0.19; survival rate 86% vs 60%, 
p = 0.25). UVN was more severe with significantly worse behavioural scores at day 4 and day 7 (p < 0.001). Vestibular com-
pensation was overall similar during the first week and at 1 month (non-statistically significant difference).
Conclusion Both UL and UVN procedures can routinely be performed in the mouse with similar post-operative recovery 
and behavioural compensation. The operative risk of vascular or neurological damage is smaller in UL compared to UVN. 
UVN may be required for specific research protocols studying central cellular process specifically related to the destruction 
of the ganglion of Scarpa and following vestibular nerve degeneration.
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Introduction

The first description by Flourens in 1824 of the behavioural 
symptoms that follow an inner ear lesion is a starting point 
in the field of vestibular research [1]. The study of vestibular 
lesions and compensation in different vertebrate species has 
helped to understand vestibular physiology and the capac-
ity of the brain to cope with the loss of a sensory function 
[2–10]. Unilateral labyrinthectomy (UL) and unilateral ves-
tibular neurectomy (UVN) are two surgical methods to pro-
duce vestibular lesions. These are more invasive than phar-
macological methods but are also more radical and definite 
lesions which may be required in certain research protocols 
[11]. Surgical techniques need to be described in detail to 
be reproducible [12–18]. Some articles report the surgical 
methods for UL or UVN in other animal models (e.g. frogs 
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[19], chicks [20], rats [21–23], or cats [24–26]) but not in the 
mouse. Yet mouse models are currently the most used world-
wide, due to ease of use for genetic engineering or breeding, 
and ethical limitations when working with larger mammals. 
Surgery in the mouse is challenging due to its small size 
and specific anatomy. Here we provide a detailed step-by-
step description of both UL and UVN in adult mice. Video-
oculography was used to assess vestibular function following 
successful surgery, and to monitor vestibular compensation 
by quantitative measurements of the vestibulo-ocular reflex 
[11, 14, 27]. The objective of this study was an update of 
existing protocols for vestibular lesions, allowing the inves-
tigator to improve their effectiveness and safety, and reduce 
the duration of the surgery, critical for survival. We discuss 
differences in the two approaches to help choose between 
UL and UVN as adequate methods for a vestibular lesion.

Materials and methods

Ethics statement

A total of 17 male C57/BL6J mice, aged 10–30 weeks, was 
operated on, seven mice for UL and ten for UVN. Animals 
were used in accordance with the European Communi-
ties Council Directive 2010/63/EU. All efforts were made 
to minimize suffering and reduce the number of animals 
included in the study. All procedures were approved by the 
ethical committee for animal research of the University of 
Paris (CEEA.34).

Anaesthesia and peri‑operative care

Anaesthesia and peri-operative care were identical for either 
UL or UVN procedure. A stock solution of anaesthesia was 
prepared including 1 ml Ketamine 100 mg/ml (Virbac, Car-
ros, France), 500 μl  Rompun® 2% (Bayer Vital GmbH, Lev-
erkusen, Germany), and 8.5 ml physiological saline solution. 
A dosage of 100 mg/kg ketamine and 10 mg/kg xylazine, 
warmed to body temperature, was administered intraperito-
neally at a volume of 10 µl/g of body weight.

After anaesthesia, sub-cutaneous injection of buprenor-
phine 0.3 mg/ml (Buprecare, Axience, Patin, France) was 
administered at a dose of 0.08 mg/kg of body weight. Local 
anaesthesia using Laocaïne® 2% (MSD Santé Animale, 
Beaucouzé, France) was administered sub-cutaneously at 
the surgical site at a dose of 2 mg/kg of body weight.

Artificial tears (Ocry-gel, TVM lab, Lempdes, France) 
were administered to both eyes. Loss of pedal withdrawal 
reflex of both hind paws was verified before incision, and 
was monitored during surgery. The cervical skin immedi-
ately below the ear was shaved and cleaned (Vétédine Solu-
tion, Vetoquinol, Magny-Vernois, France). Subcutanenous 

hydration was performed after the surgery and twice daily 
for 2 days.

Behaviour evaluation

Mouse behaviour was assessed before and after surgery on 
day 1, day 4, day 7 and day 28. Normal locomotor mouse 
behaviour was assessed: ability to swim (over a 30-s-long 
period), to groom, to move in the cage and to reach for food 
or water. Vestibular postural and locomotor impaired behav-
iour was assessed: head tilt (inclination of the head towards 
the lesioned side), tumbling (mouse rolling around its lon-
gitudinal axis towards the lesioned side), twirl (while the 
mouse is being held by the tail) and circling (stereotyped 
movement in circles around the mouse’s hip). All eight items 
were quantified with a scale from 0 (normal behaviour, no 
deficit) to 3 (highest degree of abnormal behaviour), with a 
maximum deficit score of 24.

Vestibular function exploration using 
video‑oculography

To perform head restrained vestibular exploration, a head 
post was surgically implanted 2 weeks before the vestibular 
lesion. Head implant surgery and peri-operative care have 
been described previously [28, 29]. Briefly, under gas anaes-
thesia (isoflurane), a small custom-built head holder was 
cemented (C&B Metabond) to the skull just anterior to the 
lambda landmark (see França de Barros et al. 2019 for a 
video tutorial [30]).

Vestibular function was explored before vestibular sur-
gery and after surgery at day 1, day 4, day 7 and long-term 
day 28. As reported previously, [9, 28, 29, 31] all eye move-
ments recordings were made in the dark using an infrared 
video system (ETL-200, ISCAN, Burlington, MA, USA), 
recording pupil and corneal reflection (CR) position.

Eye movements were recorded using non-invasive 
video-oculography [32]. The experimental set-up, appara-
tus and methods of data acquisition were similar to those 
described previously [29, 33, 34]. Briefly, mice were head-
fixed at a ~ 30° nose-down position to align the horizontal 
canals with the yaw plane [35]. Animals were placed in a 
custom-built Plexiglas tube secured on the superstructure 
of a vestibular stimulator. The VOR tests were performed 
in a temperature-controlled room (21 °C) with all sources 
of light turned off except for computer screens. The turn-
table was further enclosed in a box to isolate the animal 
from any remaining light, with a final luminance inside the 
box < 0.02 lx. Myosis was induced with topical 2% pilocar-
pine applied 10 min before experimentation. Recorded eye 
and head position signals were sampled at 1 kHz, digitally 
recorded (CED power1401 MkII) using Spike 2 software 
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and later exported into the Matlab programming environ-
ment for off-line analysis (Matlab, The MathWorks).

 i. Videonystagmography first recorded spontaneous 
eye movements without any vestibular stimulation, 
and number and direction of the nystagmus rate per 
minute were reported.

 ii. Then, the angular horizontal vestibulo-ocular reflex 
(aVOR) was tested during horizontal sinusoidal 
rotation of the turntable (at 0.2; 0.5; 1 and 1.5 Hz; 
peak velocity 30°/s). Analysis was made on at least 
10 cycles. Two parameters were extracted from the 
recordings: the gain and the phase. The gain was the 
ratio between the amplitude of the eye (response) and 
head (stimulus) rotations. Since the animal was head-
fixed to the rotating table, head movements and table 
movements were identical. The phase was the tempo-
ral shift between the eye and table rotations, expressed 
in degrees as the ratio of the sinusoidal cycle (2 pi). 
Details for gain and phase calculation were reported 
in Carcaud et al. [33]. Values with VAF (variance-
accounted-for) under 0.5 were discarded [28].

 iii. The eye movements evoked by a specific stimulation 
of the otolith organs (maculo-ocular reflexes, MOR) 
were tested [36] using an off-vertical axis rotation 
(OVAR) as previously described [29]. Briefly, the axis 
of rotation was tilted from the vertical by 17°. Rota-
tions were performed at a constant speed (50°/s) for at 
least 10 rotations both in clockwise (CW) and counter-
clockwise (CCW) directions. Due to the inertial nature 
of the angular movement detection, a rotation at con-
stant speed elicits a combined canalar and otolithic 
response at the onset of movement, however, after a 
few seconds only the otolithic component remains 
[29, 37]. Since gravitational acceleration acts verti-
cally, this stimulation is equivalent to a continuous 
rotation (at 0.14 Hz) around the mouse’s head of a 
17° tilted constant linear acceleration stimulus (see 
Fig. 2b in Beraneck et al. [29]). For horizontal OVAR 
responses, quick-phases of reflexive eye movements 
were identified and not considered for analysis. Dur-
ing rotations, the velocity of horizontal slow phases 
is modulated (modulation, μ) around a constant bias 
(β). Both parameters (μ and β) were calculated from 
the sinusoidal fit of eye horizontal slow-phase velocity 
using the least-squares optimization of the equation:

where SP(t) is the slow-phase velocity, β is the steady-
state bias slow phase velocity, μ is the modulation of 
eye velocity, f0 is the frequency of table rotation, td is 
the dynamic lag time (in msec) of the eye movement 

SP(t) = � + � ∙ sin
[

2� ∙ f
0
∙
(

t + td
)]

with respect to the head movement. The bias (Maculo-
ocular reflex Bias;  MORB) is reported here as the main 
index of the otolithic response [29, 36]. Notably, MOR 
requires normal otolith function but also an efficient 
central velocity storage network.

 iv. Static ocular counterroll (OCR) was studied: ver-
tical pupil position according to the head tilt angle 
was measured first with the mouse maintained at a 0° 
horizontal position. The platform was then tilted into 
different roll positions, at 10°, 20°, 30°, 40° and 50° 
alternatively to the right and to the left. The platform 
was rotated manually and slowly to limit semi-circular 
canal stimulation. Measurements were made in a static 
position during at least 15 s to identify the stable pupil 
position. The vertical eye angle was then calculated 
from the raw vertical CR and pupil position [38]. The 
slope of a linear regression of both variables (verti-
cal eye angle and head tilt degree) was calculated, 
for ispilesional (− 50°–0°) and contralateral (0°–50°) 
sides.

 v. Finally, angular velocity steps in the horizontal 
plane (hsteps) were performed at a speed of 50°/s. 
The horizontal slow phase velocity decay was fitted 
to an exponential curve (f(x) = a*exp(b*x)) and the 
time constant τ was then calculated as τ = − 1/b. The 
time constant of the slow phase exponential velocity 
decay was calculated at the start and stop of CW and 
CCW rotations. CCW-start and CW-stop, CCW-stop 
and CW-start, were combined to assess left and right 
vestibular functions, respectively.

Statistical analysis

Statistical analysis was made using XLstats (Addinsoft, New 
York, NY, USA). All data are reported as mean and standard 
deviation. Non-parametric means were compared with the 
Mann–Whitney test and proportions with the Fisher test. 
Repeated measures ANOVA was used, three-way to compare 
aVOR (lesion, time and frequency), two-way for ipsilateral 
and contralateral OVAR, angular velocity and static head-
tilt stimulations and one-way for the behaviour score and 
nystagmus frequency count. Post-hoc comparisons were per-
formed where appropriate using the Tukey HSD test. Values 
of p < 0.05 were considered significant.

Surgical techniques

Unilateral labyrinthectomy (UL) step‑by‑step 
surgical technique

The anaesthetised mouse was put in a side-lying position. A 
posterior incision of the skin following the external auditory 
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canal anteriorly was performed (Fig. 1). The sub-cutaneous 
fat was incised immediately to find the cartilaginous external 

auditory canal, to dissect along with it in an avascular plane. 
Four retractors were positioned to open the cavity.

The first visible anatomical landmarks were the facial 
nerve, external auditory canal and sternomastoid muscle. 
The facial nerve pointed towards the mastoid which was at 
this stage hidden beneath the sternomastoid muscle. Thus, 
the sternomastoid muscle was elevated from the bone, using 
a cautery to prevent bleeding. The muscle was then retracted 
posteriorly to expose the mastoid bone (Fig. 2a).

A 0.5 mm cutting burr was used to drill the mastoid, 
immediately posteriorly to the facial nerve foramen. The 
bone was not be drilled too posteriorly or superiorly as the 
cranial cavity would otherwise have been opened.

As the posterior semi-circular canal was opened (Fig. 2b), 
perilymphatic liquid oozed out and was suctioned as it can 
sometimes impair vision. The cavity was further opened 
with pointed instruments such as a hook or forceps. The 
drill would have been dangerous at this stage as it could 
have damaged the stapedial artery anteriorly or breached the 
cranial cavity posteriorly.

The contents (utricule, saccule and cupula) were suc-
tioned until a clear and empty vestibular cavity was visible 
(Fig. 2c). The ganglion of Scarpa was left intact.

An absorbable gelatin compressed sponge was packed in 
the cavity and the skin was closed using simple interrupted 
absorbable 4–0 Vicryl (Ethicon, Somerville, NJ, USA).

Unilateral vestibular neurectomy (UVN) 
step‑by‑step surgical technique

The technique was adapted from the previously published 
neurectomy procedure in the rat [21]. The anaesthetised 

Fig. 1  Incisions and main anatomical landmarks. a (In blue): poste-
rior incision for labyrinthectomy, b (in red): inferior incision for neu-
rectomy. 1: mandible; 2: bulla; 3: facial nerve; 4: superficial temporal 
vein; 5: temporal artery; 6: sternomastoid muscle; 7: digastric muscle. 
The superficial temporal vein is one of the two main bleeding risks 
with the stapedial artery (not shown on this image). The mandible, 
facial nerve, sternomastoid and digastric muscles are key landmarks 
to find the bulla. The head post is visible on the mouse’s skull, to be 
able to maintain the head in a fixed position during vestibular tests

Fig. 2  Unilateral labyrinthectomy: key steps. Key steps are shown: a 
exposure of the mastoid bone, b drilling of the mastoid, c opening 
of the vestibular cavity. The mastoid bone (shown in green) can be 
exposed after elevation of the sternomastoid muscle posteriorly. The 
following anatomical landmarks stand out: sternomastoid muscle pos-
teriorly (orange), digastric muscle inferiorly (red) and external audi-

tory canal (EAC) superiorly (white). The facial nerve is of particular 
interest as the mastoid is immediately posterior to its foramen, and 
may be used as a guide to find the mastoid in an anterio-posterior 
direction. Great care must be taken not do damage the stapedial artery 
which is immediately anterior to the cavity. Full size figures are avail-
able online (Supplementary Figs. 1, 2, 3)
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mouse was put in a side-lying position. A ventral incision 
(Fig. 1) was performed, from the posterior limit of the exter-
nal auditory canal to the mandible. After initial dissection of 
the subcutaneous fat, the first anatomical landmarks encoun-
tered were the jaw and masseter muscle, upon which lay the 
two branches of the facial nerve. Four retractors were put in 
place to open the surgical field. The superior branch of the 
nerve was parallel and close to the superficial temporal vein, 
which was retracted anteriorly to be protected. The superior 
retractor retracted the skin above the masseter, and the pos-
terior retractor retracted the sternomastoid muscle (Fig. 3a).

The bulla was found by following the facial nerve pos-
teriorly: the facial nerve passed horizontally between the 
insertion of the cartilaginous external auditory canal and 
the bulla.

The two major anatomical landmarks to locate the bulla 
were the digastric muscle inferiorly and the external audi-
tory canal (and facial nerve) superiorly. The digastric muscle 
masked the posterior half of the bulla and was retracted. The 
bulla was also immediately beneath and slightly posterior 
to the Y-shaped temporal artery (Fig. 3a), which was cau-
terised to prevent bleeding. The bony surface of the bulla 
was exposed using a pointed instrument such as a hook or 
forceps.

The bulla was drilled using a 0.5 mm cutting burr, the 
two main vascular risks being the superficial temporal vein 
anteriorly and the stapedial artery in the middle ear cavity 
posteriorly. The bulla was cautiously opened until the sta-
pedial artery was visualised (Fig. 3b).

Next, the cochlea was drilled with the same burr, care-
fully so as not to damage the stapedial artery. Perilymphatic 
fluid was suctioned to find the cochlear nerve. Residual bone 
was cleared using a hook and the cochlear nerve was then 

followed to reach the vestibulo-cochlear nerve and the brain-
stem. The VIIIth nerve was sectioned using a hook and the 
ganglion of Scarpa suctioned (Fig. 3c), great care was taken 
not to damage the brainstem underneath. The ganglion of 
Scarpa was visible as a bulge of the nerve, and the procedure 
was thus a neurectomy of the vestibular ganglion neurons 
(and not a neurotomy).

Gelfoam was packed in the cavity and the skin was closed 
using simple interrupted absorbable 4–0 Vicryl (Ethicon, 
Somerville, NJ, USA).

Results

A total of seven mice underwent UL and ten underwent 
UVN. The survival rate was higher for UL (6/7 mice, 86%) 
than for UVN procedure (6/10 mice, 60%; p = 0.252). Con-
cerning UL, one mouse did not wake up after anaesthesia, 
probably due to cardiogenic shock (no major bleeding during 
surgery). Concerning UVN, two mice died per-operatively, 
one immediately due to vascular damage and intense bleed-
ing, and the other never woke up, with suspected continuous 
internal bleeding. The two other mice died post-operatively 
on day 3 and day 4, possibly due to neurological damage or 
cardiogenic shock. In none of the cases was there evidence 
for an infectious cause.

The mean age at surgery was 3.8 (range 2.5–6.3) and 
4.5 (range 1.7–7.6) months, for UL and UVN, respectively. 
Mean operative time (from incision to closure) was 16.3 min 
(range 11–27) for UL and 20.5 min (range 18–25) for UVN, 
p = 0.199. 50% of UL and 100% of UVN had post-opera-
tive total right facial paralysis, although none of the nerves 

Fig. 3  Unilateral vestibular neurectomy: key steps. Key steps are 
shown: a exposing the bulla, b opening the bulla and c exposition the 
vestibulo-cochlear nerve. An important anatomical landmark is the 
facial nerve, which can be followed backwards and which runs supe-
riorly to the bulla (purple). Other anatomical landmarks include infe-

riorly the digastric muscle (red), posteriorly the sternomastoid muscle 
(orange) and the external auditory canal (EAC). The temporal artery 
also marks the bulla as it runs immediately superficially to the bulla, 
and must be cauterised to correctly drill the bulla. Full size figures are 
available online (Supplementary Figs. 4, 5, 6)
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were deliberately cut. Partial recuperation at 1 month was 
observed.

UL and UVN clinical follow‑up

Initial clinical follow-up was identical in both UL and UVN 
mice. Before the animal regained full consciousness after 
anaesthesia, the following signs demonstrated a successful 
procedure: head tilted > 45° and body leaning towards the 
operated side, also the tail 90° bent towards the lesioned 
side. In the hours after surgery, the main behaviour indicat-
ing vestibular impairment was intense and frequent spon-
taneous tumbling (towards the operated side). The behav-
ioural score was not statistically different at day 1 or after 
1 month (Table 1), even though UL mice tended to recover 
more quickly than UVN mice (Fig. 4a). At day 4, all mice 
from both groups were able to reach for food and drink 
autonomously. The first vestibular symptom to disappear 
was tumbling (0/6 UL mice and 1/6 UVN mice at day 4). At 
1 month, circling behaviour had completely disappeared in 
both groups, while all mice still had a noticeable head tilt 
(< 45°) and twirled when held by the tail towards the side 
of the lesion. None were able to swim or float (all presented 
with underwater tumbling).

UL and UVN functional follow‑up

Recordings of spontaneous eye movements always showed 
a nystagmus with the rapid beat towards the opposite side 
of the lesion (no nystagmus reported before surgery). 

Beats/min were maximal at day 1 (statistically higher after 
UVN lesions) and progressively decreased (Fig. 4b) for 
both UL and UVN lesions (Table 1). Sinusoidal rotations 
at 30°/s were overall not statistically different between UL 
and UVN lesions concerning gain or phase (Table 2). The 
gain values were at their lowest at day 1 with an improve-
ment during the first week followed by a stabilisation 
(Fig. 4c). The gain was lower at day 28 compared to prele-
sion, for UL (p = 0.095, p < 0.001, p = 0.001) and for UVN 
(p = 0.011, p < 0.001, p < 0.001), at 0.2 Hz, 0.5 Hz and 
1 Hz, respectively. Phase values were not interpretable at 
day 1 and day 4 with VAF < 0.5, and thus were excluded 
from the analysis (Table 2).

Static ocular counterroll as well as responses to off-ver-
tical axis rotation (OVAR) and angular velocity steps were 
analysed during rotation towards the ipsilesional and con-
tralesional sides (Table 3). Briefly, static ocular counter-
roll was reduced at day 28 compared to prelesion (Fig. 4d), 
for tilts towards the ipsi- and contralesional side in UL 
mice (p < 0.001, p = 0.027) and UVN mice (p = 0.003, 
p = 0.159). At day 28, concerning UL, the ocular coun-
terroll measured during inclination towards the contral-
esional side was statistically greater than when measured 
during inclination towards the ipsilesional side (0.42 vs 
0.19, p = 0.033). This difference in the ocular counterroll 
observed during rotation toward the ipsilateral or con-
tralateral side did not reach significance for UVN (0.47 vs 
0.34, p = 0.220). We noted an important skew deviation 
(with the contralesional eye moving upwards) at day 1 and 
day 4 in both UVN and UL.

Concerning OVAR, MOR gain was lowest at day 1, 
and remained statistically lower at day 28 compared to 
prelesion (Fig. 4e), for rotation towards the ipsilateral side 
but not towards the contralesional side for UL (p < 0.001, 
p = 0.746) and UVN (p < 0.001, p = 0.729). At day 28, gain 
for rotation towards the contralesional side was statisti-
cally higher than during rotations towards the ipsilesional 
side for UL (0.06 vs 0.00, p = 0.011) and for UVN (0.09 
vs 0.01, p < 0.001). There was no statistically significant 
difference between UVN and UL mice (except at day 4 
concerning rotation towards the contralesional side).

Lastly, angular velocity steps showed time constants of 
the velocity decay lowest at day 1, which remained sig-
nificantly lower at day 28 compared to prelesion (Fig. 4e), 
for both rotations towards ipsi- and contralesional sides 
in UL (p < 0.001, p = 0.013) and in UVN mice (p < 0.001, 
p < 0.001). At day 28, in UL mice, the contralesional time 
constant was significantly higher than the ipsilesional time 
constant (2.51 vs 1.21, p = 0.028) but not for UVN (1.71 
vs 1.07, p = 0.277). There was no statistically significant 
difference between UVN and UL mice.

Table 1  Behavioural score and nystagmus count

All values are represented as mean ± SD (standard deviation). Statisti-
cally significant values are in bold. Nystagmus count was calculated 
during spontaneous eye movement in the dark. Behavioural score and 
nystagmus count values were each compared between UL and UVN 
mice populations, using a two-way repeated ANOVA and post-hoc 
Tukey test, both model characteristics were (40, p < 0.0001)
UL unilateral labyrinthectomy, UVN unilateral vestibular neurectomy

Lesion UL UVN p

Behavioural score
 Before 0 0 –
 Day 1 21.7 ± 1.2 21.3 ± 1.4 0.522
 Day 4 11.5 ± 1.4 14.8 ± 0.8 < 0.001
 Day 7 7.2 ± 0.4 11.8 ± 1.2 < 0.001
 Day 28 5.0 ± 0.6 5.5 ± 0.5 0.339

Nystagmus count (beats per minute)
 Before 0 0 –
 Day 1 19 ± 11 31 ± 16 0.005
 Day 4 12 ± 9 18 ± 12 0.161
 Day 7 7 ± 2 9 ± 5 0.544
 Day 28 5 ± 1 8 ± 3 0.746
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Discussion

Two different surgical strategies to achieve complete ves-
tibular lesions may be used in the mouse, UL (pregan-
glionic lesion) which destroys the peripheral labyrinthine 
organs and UVN (postganglionic lesion) which destroys 
the first order vestibular neurons in the ganglion of Scarpa 
(and is thus a neurectomy of the VIIIth nerve). A summary 
of the differences is presented in Table 4.

In both cases, surgical landmarks are key, mainly the 
facial nerve, the external auditory canal and sternomastoid 
and digastric muscles, to swiftly find the mastoid (UL) or 
bulla (UVN). It is also important to operate with a good 
quality microscope (especially for the neurectomy step) and 
with an electric cautery. Ketamine-xylazine general anaes-
thesia was preferred as isoflurane is known to induce vaso-
dilation [39]. In addition, in the mouse, manipulation of the 
head during surgery may be difficult with a facial mask or 
intubation necessary for isoflurane. Post-operative care is 

Fig. 4  Vestibular function and behaviour of unilateral vestibular neu-
rectomy vs labyrinthectomy. All graphs show the five time points, 
before surgical lesion, and during follow-up at day 1, day 4, day 7 
and day 28 after lesion. Points represented are mean value with SEM 
(standard error of the mean). Statistical comparisons are reported in 
Tables 1, 2 and 3. a Behavioural assessment: vestibular deficit score 
is represented (maximum score of 24). b Spontaneous eye move-
ments: spontaneous recording of the pupil in the dark, reporting the 
number of nystagmus in 1 min. Fast-beating component was always 
directed towards the contralateral side of the lesion (left side). c Sinu-
soidal rotation: results showing aVOR gain for a 0.5  Hz and 30°/s 
stimulation, demonstrating horizontal semi-circular canal function. d 
Static ocular counterroll: the slope of a linear equation is reported, 

of static lateral tilt degree and vertical position of the pupil, corre-
sponding to utricular function. Only the reliable post-lesion results 
are shown at day 28. e Off Vertical Axis Rotation: clockwise and 
counter-clockwise rotations in yaw plane of a 17° tilted platform at a 
rotation of speed of 50°/s. MOR gain is reported, which corresponds 
to a complex integration of otolithic function and velocity storage. f 
Angular velocity steps: horizontal steps including three full rotations 
in yaw plane at 50°/s were analysed for exponential velocity decay 
time constant (at start and stop of clockwise and counter-clockwise 
rotations). Ipsilesional stimulation (right side) corresponds to CW-
start and CCW-stop, contralesional stimulation corresponds to CCW-
start and CW-stop stimulations
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Table 2  Canalar function (sinusoidal rotation at 30°/s): aVOR gain and phase

All values are represented as mean ± SD (standard deviation). Statistically significant values are in bold. Gain and phase values were each com-
pared between UL and UVN mice populations, using a three-way repeated ANOVA and post-hoc Tukey test, gain model (150, p < 0.0001) and 
Phase model (90, p < 0.0001)
aVOR angular vestibular-ocular reflex, UL unilateral labyrinthectomy, UVN unilateral vestibular neurectomy
*Phase was not measurable at day 1 or day 4

Frequency 0.2 Hz 0.5 Hz 1 Hz

Lesion UL UVN p UL UVN p UL UVN p

aVOR gain
 Before 0.25 ± 0.09 0.35 ± 0.12 0.107 0.58 ± 0.15 0.60 ± 0.11 0.712 0.66 ± 0.17 0.74 ± 0.20 0.192
 Day 1 0.04 ± 0.04 0.03 ± 0.02 0.865 0.09 ± 0.05 0.05 ± 0.03 0.570 0.17 ± 0.11 0.10 ± 0.07 0.294
 Day 4 0.05 ± 0.05 0.07 ± 0.06 0.887 0.12 ± 0.07 0.16 ± 0.07 0.478 0.16 ± 0.07 0.29 ± 0.09 0.030
 Day 7 0.12 ± 0.08 0.16 ± 0.12 0.514 0.27 ± 0.12 0.33 ± 0.16 0.364 0.42 ± 0.21 0.48 ± 0.18 0.335
 Day 28 0.16 ± 0.06 0.20 ± 0.07 0.478 0.36 ± 0.13 0.37 ± 0.16 0.776 0.47 ± 0.16 0.49 ± 0.13 0.820

aVOR phase
 Before 29.3 ± 8.3 24.5 ± 10.6 0.649 9.9 ± 8.7 10.2 ± 3.9 0.982 − 2.2 ± 4.3 − 0.2 ± 3.6 0.855
 Day 1* – – – – – – – – –
 Day 4* – – – – – – – – –
 Day 7 39.6 ± 9.4 31.8 ± 22.0 0.457 39.2 ± 25.6 23.1 ± 13.2 0.126 23.2 ± 14.6 16.0 ± 25.0 0.492
 Day 28 43.6 ± 6.3 26.3 ± 41.9 0.102 27.9 ± 6.1 25.0 ± 11.4 0.393 5.8 ± 7.5 6.8 ± 4.4 0.925

Table 3  Velocity storage and 
otolithic function

All values are represented as mean ± SD (standard deviation). Statistically significant values are in bold. 
Static head tilt, Off-vertical-axis rotation (OVAR) and angular velocity steps values were each compared 
between UL and UVN mice populations, using a three-way repeated ANOVA and post-hoc Tukey test, all 
three model characteristics were (100, p < 0.0001)
UL unilateral labyrinthectomy, UVN unilateral vestibular neurectomy
*Slope of a linear regression of both variables (vertical eye angle and head tilt degree)

Stimulation Ipsilesional Contralesional

Lesion UL UVN p UL UVN p

Static head tilt, slope*
 Before 0.63 ± 0.24 0.67 ± 0.12 0.701 0.65 ± 0.25 0.62 ± 0.14 0.781
 Day 1 0.16 ± 0.26 0.37 ± 0.27 0.053 0.57 ± 0.20 0.42 ± 0.28 0.169
 Day 4 0.15 ± 0.11 0.28 ± 0.14 0.221 0.31 ± 0.28 0.34 ± 0.15 0.814
 Day 7 0.19 ± 0.07 0.22 ± 0.12 0.811 0.41 ± 0.23 0.25 ± 0.18 0.144
 Day 28 0.19 ± 0.14 0.34 ± 0.16 0.493 0.42 ± 0.14 0.47 ± 0.06 0.143

Off-vertical-axis rotation, MOR gain
 Before 0.10 ± 0.07 0.12 ± 0.04 0.312 0.13 ± 0.07 0.10 ± 0.05 0.197
 Day 1 0.02 ± 0.02 0.01 ± 0.01 0.274 0.02 ± 0.03 0.01 ± 0.02 0.292
 Day 4 0.01 ± 0.03 0.02 ± 0.02 0.110 0.05 ± 0.08 0.03 ± 0.04 0.002
 Day 7 0.00 ± 0.02 0.02 ± 0.04 0.222 0.04 ± 0.05 0.05 ± 0.02 0.702
 Day 28 0.00 ± 0.01 0.01 ± 0.03 0.694 0.06 ± 0.03 0.09 ± 0.04 0.114

Angular velocity steps, time constant (seconds)
 Before 3.69 ± 1.67 3.46 ± 1.27 0.690 4.01 ± 1.26 3.88 ± 1.97 0.826
 Day 1 0.00 ± 0.00 0.00 ± 0.00 1 0.00 ± 0.00 0.00 ± 0.00 1
 Day 4 0.22 ± 0.54 1.02 ± 1.35 0.176 1.19 ± 0.63 0.62 ± 0.91 0.336
 Day 7 0.08 ± 0.15 1.11 ± 1.62 0.084 1.44 ± 1.24 1.77 ± 1.53 0.576
 Day 28 1.21 ± 0.58 1.07 ± 1.20 0.807 2.52 ± 1.68 1.71 ± 0.43 0.170
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paramount in both surgeries but especially UVN, to prevent 
dehydration (as mice are unable to drink on their own due 
to tumbling during the first 48 h) but also to prevent ipsilat-
eral keratitis if the facial nerve was damaged. The auditory 
function cannot be preserved due to the surgical destruction 
of the labyrinth, especially in the UVN procedure and its 
transcochlear approach (thus was not tested in this study).

UVN surgery seemed more severe and aggressive than 
UL: the behavioural score was significantly higher at day 4 
and 7 and the number of nystagmus beats per minute was 
higher; however, vestibular compensation followed a compa-
rable time course, both after 1 week and at 1 month.

Thus, for the same overall vestibular deficit, in our hands 
UL is preferred, as the procedure is shorter and bleeding 
and neurological per-operative risks are reduced with higher 
survival rates compared to UVN.

The destruction of the vestibular neurons in UVN (post-
ganglionic lesion) induces Wallerian degeneration of the 
entire vestibular nerve and an inflammatory response reach-
ing the vestibular nuclei [21, 40, 41]. Indeed degeneration of 
afferent fibres seems to take place after post- but not pregan-
glionic lesions [42]. Such intense inflammation may be key 
in certain research protocols, in which case the choice of 
UVN over UL is justified. This has been shown in research 
on central vestibular neurogenesis, where the neurogenic 
potential has been identified after UVN but not after UL or 
pharmacological vestibular lesions [24, 43–45].

Although this was not the main objective of the study, 
the small number of mice limits the fine interpretation of 
functional results especially concerning ipsilesional and 
contralesional data. Some hypothesis may be drawn from 
our statistics, as contralesional stimulation partially recuper-
ated in most cases at 1 month, in line with previous reports 
[14]. Concerning overall vestibular function after a uni-
lateral vestibular lesion, this study confirms other papers 
showing a fast functional compensation period which cor-
responds to rapid behavioural improvement during the first 
post-operative week (especially during the first 3 days), 
which tends to stabilise with a prolonged hypofunction and 

near-normal behaviour at 1 month, except swimming which 
did not recuperate [11, 28]. After initial poor bilateral MOR 
gain, gain improved in both UVN and UL mice at 1 month 
when the contralesional side was stimulated. The mecha-
nism is unclear (it may reflect asymmetric otolith input to 
the central nervous system or interactions between semi-
circular canal-ocular and otolith-ocular reflexes) but it has 
been reported previously that the bias component remains 
either small or in an inappropriate direction during OVAR 
ipsilesional stimulation [46, 47]. Skew deviation is a well 
described vertical contralesional pupil elevation after 
peripheral vestibular lesions, whether of surgical, pharma-
cological or pathological origin [48, 49]. Regarding vertical 
eye position during static head tilt, skew deviation limited 
the capacity to measure the response, especially during tilts 
towards the contralesional side from day 1 to 4. Thus, the 
impairment was greatest at day 4 (UL) or 7 (UVN), and 
then partially recuperated. Lastly, concerning the canalar 
time constant measured during horizontal steps, there was 
no statistically significant difference between UL and UVN 
mice. However, UL contralesional values almost returned 
to perilesional values and were statistically different from 
ipsilesional values; whereas in UVN, ipsi- and contralesional 
values were not statistically different at 1 month. It is pos-
sible that the Wallerian degeneration of the nerve in UVN, 
inducing central vestibular nuclei inflammation, may impact 
velocity storage bilaterally, while UL remaining peripheral 
inputs allows for restoration of the response during rotation 
towards the contralesional side at 1 month. These hypotheses 
should be verified by dedicated studies.

Conclusion

UL and UVN are two reproducible surgical techniques to 
induce definite and total unilateral vestibular lesions. In both 
cases, surgical landmarks are key to quickly identify the ves-
tibular system and protect blood vessels and the cranial cav-
ity. These are mainly the facial nerve, the external auditory 

Table 4  Summary of 
differences between unilateral 
labyrinthectomy and unilateral 
vestibular neurectomy

*No statistically significant difference

Lesion UL UVN

Surgical procedure length Shortest (16 min)* Longest (21 min)*
Mouse survival rate Satisfactory (86%)* Poor (60%)*
Cochlea Intact Destroyed
Vestibular labyrinth Destroyed Intact
Ganglion of Scarpa Intact Destroyed (suctioned)
Type of lesion Preganglionic lesion Postganglionic lesion
Degeneration of afferent fibres No Yes
Behavioural score Shorter recovery Longer recovery
Vestibular function Similarly impaired Similarly impaired
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canal and the sternomastoid and digastric muscles. UVN 
and UL induce similar behavioural and functional vestibular 
deficits during a 1-month follow-up period. Thus, UL should 
be preferred in most cases as the procedure seems techni-
cally safer and quicker, with a higher survival rate. UVN 
can, however, be required in certain research protocols as the 
ganglion of Scarpa is destroyed, and Wallerian degeneration 
may spread inflammation to the central vestibular nuclei.
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