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The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as material for phase-change
memories. In particular, the stoichiometric compound Ge2Sb2Te5 exhibits a rapid congruent crystallization.
To increase the temperature at which spontaneous crystallization erases the stored information, alloys that
are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and
eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy
components and the time evolution of the microstructure during device operations, we develop a multi-phase-
field model for the crystallization of GST that includes segregation, and couple it with orientation fields that
describe the grain structure. We demonstrate that this model is capable to capture both the emergence of
a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and
recrystallization during the SET and RESET operations in a memory cell of the “wall” type.
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I. INTRODUCTION

The quest for non-volatile random-access memories
for information storage has led to the exploration of
various solutions based on different physical effects1.
Phase-Change Memory (PCM) is considered one of the
most mature technologies among emerging non-volatile
memories2. In phase-change memories, each bit of infor-
mation is stored in a small portion of a phase-change ma-
terial, which can exist in two different solid states : crys-
talline and amorphous. The memory effect results from
the contrast in the electrical resistivity of the two phases.
To be an appropriate candidate for PCM applications,
a phase-change material must on the one hand exhibit
strongly different electrical resistivities in the two states,
and on the other hand be able to switch rapidly between
them. There are many materials that can be rapidly
quenched from the melt to an amorphous state, but only
very few also exhibit a pronounced difference in elec-
trical resistivity between the amorphous and crystalline
states. This contrast arises from the atomic arrange-
ment that differs between the amorphous and crystalline
states; nevertheless, the atomic rearrangement required
by recrystallization can proceed on a fast timescale (ten
to one hundred nanoseconds) in those materials3. The
concept of using the amorphous to crystalline phase tran-
sition of chalcogenide materials to store information has
been proposed since the early 1960s4. In the 1980s, the
research highlighted the ternary Ge-Sb-Te system with
different compositions located on the pseudo-binary line
GeTe-Sb2Te3 and allowing crystallization in a few tens of
nanoseconds5. This alloy, in particular in its stoichiomet-
ric composition Ge2Sb2Te5, originally studied for optical
disk applications6, is among the most popular materials
for PCM devices. With this composition, the material

FIG. 1: Schematic view in three dimension of a
technological stack including several PCM Wall cells (a)

and a zoom on the Wall structure itself (b).

crystallizes rapidly without change in composition (con-
gruent crystallization). In PCM memories, the switching
between the two states is accomplished by localized heat-
ing of the material prompted by an electric current (Joule
effect). Engineering of the memory cell has led to a ther-
mally optimized structure, the so-called Wall structure7,
schematized in figure 1: the cell is made of a bottom con-
tact, a heater element for heat generation by the Joule
effect, and a GexSbyTez layer that is capped with a top
contact.

The amorphous state of the PCM material is
metastable, and the transition to the thermodynamically
stable crystalline state always eventually occurs, with
a waiting time that strongly depends on temperature.
Therefore, a crystallization temperature can be defined if
the required retention time is specified. The Ge2Sb2Te5
compound shows a crystallization temperature close to
150◦C8. Therefore, this alloy is not suitable to guaran-
tee data storage when functionality in an extended tem-
perature range is requested. For example, roughly 1–2
years high temperature data retention at 150◦C is re-
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FIG. 2: Chemical mapping using STEM/EELS of a
PCM Wall Structure after device operations13. The

material in the active zone (area delimited by the white
dashed lines) is in the amorphous and the crystalline

state after the RESET and SET operations,
respectively.

quested in case of automotive applications9. In order to
improve the retention properties of the PCM cell based
on the Ge–Sb–Te chalcogenide, the germanium-rich por-
tion of the ternary diagram has been explored, and a
germanium-rich region where the crystallization temper-
ature is around 350 ◦C has been identified10–12. The price
to pay is that now the crystallization is no longer con-
gruent: the growing GST crystal rejects germanium into
the surrounding amorphous matrix. If this enrichment
becomes sufficiently strong, a new phase, almost pure
crystalline germanium, can appear in the system. Since
GST and germanium have quite distinct electrical and
thermophysical properties, the spatial distribution of the
two phases has to be known in order to assess the quality
and security of memory operations. Information can be
obtained post mortem by electron microscopy11,13. In the
example shown in Fig. 2, the redistribution of alloy com-
ponents after the device operation can clearly be distin-
guised. However, these methods cannot give any insights
concerning the dynamical processes at play. In order
to better understand the fundamental mechanisms be-
hind the evolution of composition and structure, a math-
ematical model that is capable to describe the dynamics
of crystallization, segregation, and microstructure evolu-
tion processes in germanium-rich GST would therefore
be highly useful.

In metallurgy and many other applications, phase-field
models have been highly successful for the description of
microstructure evolution14–18. In such models, the local
state of matter is described by one or several scalar phase
fields, which can be coupled to thermodynamic state vari-
ables and transport equations. Interfaces and surfaces
are described in this framework by rapid but smooth vari-
ations of the phase field across diffuse interfaces with a
small but finite thickness. The equations of motion for all
fields can be obtained from the fundamental principles of

non-equilibrium thermodynamics, and take the form of
coupled partial differential equations that can be time-
integrated with standard methods. Phase-field modeling
has already been applied to describe the congruent crys-
tallization of phase-change materials19–21.

In the present contribution, we formulate a phase-field
model for the crystallization of germanium-rich GST al-
loys that takes into account segregation and the exis-
tence of two crystalline phases. For this purpose, we
combine several models that are available in the liter-
ature. The crystallization of an amorphous phase into
two solids of different structures and composition is akin
to an eutectic reaction; consequently, we choose a ther-
modynamic model which produces an eutectic phase di-
agram. A phase-field model for eutectic solidification22

is then adapted to the specifics of the GST alloy, using
the grand-potential formalism23,24. Finally, to resolve
the grain structure of both phases, two orientation fields
are added to the model, following lines of earlier work on
polycristalline materials25. The various parameters that
appear in the model are related to physical quantities,
whenever the latter are available.

The switching between amorphous and crystalline
states is triggered in PCM memory cells by short cur-
rent pulses, which induce through Joule heating a rapid
(on the time scale of 100 ns) and localized (on the scale
of a memory cell of several 10 nm) heating and cooling of
the material. Therefore, crystallization and microstruc-
ture evolution take place in a temperature field with a
non-trivial spatiotemporal structure. In order to limit
power consumption while operating the memory cell, the
Wall architecture was specially engineered to minimize
the volume of PCM in which phase change occurs, which
is called the active volume of PCM (blue area in Fig. 1b
and area within white dashed lines in Fig. 2). During de-
vice operations, the PCM material in the active domain
gets melted when the current is maximal, and depending
on the way the current and subsequently the temperature
are decreased in the active domain, the material gets the
time to crystallize or not. In order to simulate a realis-
tic proxy of a device operation, we therefore couple our
phase-field model to an electrothermal solver which pro-
vides an approximation for the temperature field for a
given shape of the current pulse. This temperature field
is used as input data for our phase-field simulations.

The remainder of this article is structured as follows: in
section II, we present the various parts of the model, dis-
cuss the choice of the parameters, and give some details
on the implementation of the simulations. In section III,
we present simulations of two different situations that are
relevant for PCM applications: the crystallization of an
as-deposited thin amorphous film, and the SET and RE-
SET operations that are used to switch back and forth
between the crystalline and amorphous states. A brief
discussion of the results is given in Section IV, followed
by conclusions and perspectives.



3

II. MODEL

A. Approximations

The crystallization of a ternary mixture under non-
equilibrium conditions is a complex process. In order to
obtain a tractable problem, we make a certain number of
approximations:

1. In a ternary mixture, there are two independent
degrees of freedom for the composition. However,
the composition maps obtained from TEM analyses
shown in figure 2 indicate that there is a strong cor-
relation between the concentrations of Te and Sb.
Therefore, we make a pseudobinary approximation:
we consider only alloys that are located on a linear
segment in the ternary phase diagram that extends
between stoichiometric Ge2Te2Sb5 and pure germa-
nium. We define a scaled concentration variable c
that describes the position on this segment, with
c = 0 corresponding to the stoichiometric com-
pound and c = 1 to pure germanium.

2. In the ternary alloy GST, a large number of sto-
ichiometric compounds have been identified, and
the phase diagram is complex26. X-ray diffraction
spectra measured on thin layers of GST alloy en-
riched with germanium after annealing at 400◦C
show the presence of two cubic phases identified
as the 225 and Ge phases27. Therefore, among all
the stoichiometric compounds we will only take into
account the 225 compound and call it GST phase.
The other phases present in the system are crys-
talline germanium and the amorphous phase. Since
the relevant temperatures for device crystallization
operation are located between the glass tempera-
ture of 80◦C28 and the equilibrium temperature for
crystallization, the amorphous phase will be assim-
ilated to a supercooled liquid with very slow kinet-
ics.

3. We will assume that the molar volume of the three
involved phases (GST, germanium and amorphous)
is the same. This is an approximation commonly
used in the field of phase-field modeling. In partic-
ular, this implies that we do not take into account
mechanical effects on the phase-change mechanism.

4. In the calculations of the temperature field, we do
not take into account the release of the latent heat

of crystallization. This is reasonable as a first ap-
proximation, given that the adiabatic temperature
(the ratio of latent heat and specific heat) for GST
is approximately 480 K, whereas the temperature
changes generated by the Joule heating are of the
order of 1000 K. This issue will be further discussed
below.

These approximations, together with a large degree
of uncertitude on several materials parameters (see
below) imply that we cannot expect the model to be
quantitatively accurate. Nevertheless, as we will see, the
model is capable to account for numerous observations
made in the experiments.

B. Thermodynamic model

The phase-field method needs as an input the free-
energy density of each phase as a function of composi-
tion and temperature. Since free-energy data are hard to
obtain directly, we adopt a similar approach as the CAL-
PHAD method, which uses physically motivated models
for the free energy and adjusts the parameters of these
models to available data, such as phase diagrams and
calorimetric data29. Our starting point is the pseudobi-
nary phase diagram of Ref.26 along a line reaching from
Sb2Te3 to pure germanium, which is close to the segment
that we consider. On the two sides (stoichiometric com-
pound and pure germanium), a solid-liquid coexistence
occurs, with the behavior that is characteristic for di-
lute solutions. In particular, the melting temperature of
the GST phase decreases upon addition of germanium,
and the melting temperature of the germanium phase de-
creases upon addition of Te and Sb. Moreover, in thermal
annealing of amorphous films, it is observed that the ger-
manium phase nucleates first and grows, thereby decreas-
ing the germanium content of the amorphous matrix, un-
til the GST phase also nucleates and grows30,31. The sim-
plest phase diagram that is compatible with these facts
is of the eutectic type. Therefore, we choose free-energy
functions that generate an eutectic phase diagram. This
is done by considering two regular solution models with
simple lens-shape phase diagrams, one between GST-225
and the virtual compound X, and the other between ger-
manium and the virtual compound Y. The properties of
the virtual compounds X and Y are then adjusted such
as to obtain the correct liquidus and solidus slopes in
the dilute limits, and a reasonable value for the eutectic
temperature and composition.

The free-energy functions for the GST, germanium and
liquid (amorphous) phases are, respectively,

fGST (c, T ) =
1

Vm

(
(1− c)LGST

TGSTm

(T − TGSTm ) + c
LX
TXm

(T − TXm ) +RT (c ln(c) + (1− c) ln(1− c)) + ΩGST c(1− c)
)
, (1)
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fGe(c, T ) =
1

Vm

(
(1− c)LY

TYm
(T − TYm ) + c

LGe
TGem

(T − TGem ) +RT (c ln(c) + (1− c) ln(1− c)) + ΩGec(1− c)
)
, (2)

fliq(c, T ) =
1

Vm

(
RT (c ln(c) + (1− c) ln(1− c)) + Ωliqc(1− c)

)
, (3)

where T im is the melting temperature of pure compound
(or element) i, Li its molar latent heat of melting, and
Ωi its molar enthalpy; furthermore, c is the scaled ger-
manium concentration, R is the gas constant, T the tem-
perature, and Vm the molar volume.

The enthalpy coefficient of the liquid, Ωliq is chosen
such as to make the liquid free energy convex; the enthaly
coefficients of the Ge and GST phases can then be related
to the partition coefficients (the ratios of the liquidus
and solidus slopes in the phase diagram at the respective
melting points) kGe and kGST through

ΩGST = Ωliq−RTGSTm ln(kGST (TGSTm ))−LX
TXm

(TGSTm −TXm ),

(4)

ΩGe = Ωliq−RTGem ln(kGe(T
Ge
m ))+

LY
TYm

(TGem −TYm ), (5)

where we have chosen the latent heats of the virtual com-
pounds to satisfy LX/T

X
m = LGST /T

GST
m and LY /T

Y
m =

LGe/T
Ge
m . The values of the constants used are listed in

table I. The phase diagram is obtained from these func-
tions through the standard common tangent construction
and is shown in figure 3.

FIG. 3: Phase diagram obtained from the free energy
functions with the parameters listed in table I.

C. Multi-phase-field model for crystallization

We use a multi-phase field model that was originally
developed for the description of eutectic solidification22,
together with a grand-canonical reformulation of phase-
field models for alloy solidification23,24. The model works

with three phase fields pi, each of which represents the
local volume fraction of phase i. Therefore, they satisfy
the constraint

∑
i pi = 1. We associate p1 with the GST

phase, p2 with the germanium phase, and p3 with the
amorphous phase. The model equations can be obtained
from the grand-potential functional

Ω =

∫
V

ω(p, ~∇p, µ, T ) dV (6)

where ω is the grand-potential density, which depends
on all the phase fields, their gradients as well as on tem-
perature and the chemical (diffusion) potential; we de-
note by the bold face p the set of the three phase fields
{p1, p2, p3}. The grand-potential density reads

ω(p, ~∇p, µ, T ) = Kωgrad(~∇p)

+HωTW(p) + ωth(p, µ, T ). (7)

The second term, ωTW, is a triple-well potential given by

ωTW(p) =
∑
i

p2i (1− pi)2. (8)

that has three wells of equal depth, which correspond to
the three possible phases. In each well, the value of one
phase field is equal to unity, whereas the others are equal
to zero. The first term of Eq. (7) contains gradient terms,

ωgrad(~∇p) =
1

2

∑
i

(
~∇pi
)2
, (9)

which penalize spatial variations of the phase fields and
ensure that the variations of the phase fields between any
two phases are continuous.

The third term in Eq. (7) represents the thermody-
namic driving force for phase transformations, which
modifies the depth of each well according to the local
thermodynamic conditions. In the early phase-field mod-
els for alloy solidification, this term was directly written
as a function of the composition c. However, in a mix-
ture, two phases in equilibrium do generally not have the
same composition; this renders the determination of the
driving force in terms of the composition complicated33.
It is easier to express it in terms of the grand potential
densities of the individual phases,

ωi(µ, T ) = fi(c, T )− µc, (10)

where

µ =
∂fi
∂c

(11)
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Vm molar volume 1.6 × 10−5 m3/mole

TGe
m melting temperature of Ge 1211 K

TGST
m melting temperature of GST 900 K
LGe heat of fusion of Ge 3.7 × 104J/mole
LGST heat of fusion of GST 1.2 × 104J/mole
Ωliq enthalpy coefficient of the liquid 1.5 × 104J/mole

TX
m melting temperature of virtual compound X 150 K

TY
m melting temperature of virtual compound Y 440 K

kGST partition coefficient of GST 0.5
kGe partition coefficient of Ge 1.9 × 10−2

.

TABLE I: Values of the parameters in the free energy model26,32.

is the diffusion potential, which is the thermodynamic
conjugate of the composition c. The grand potential
densities ωi are thus the Legendre transforms of the free
energy functions fi. At equilibrium, the diffusion poten-
tials and the grand potentials of two coexisting phases
are equal; outside of equilibrium, the driving force for
interface motion is given by the difference between the
grand potential densities of the two phases. For free-
energy functions as given by Eq. (1), which are transcen-
dental in c, the Legendre transform cannot be calculated
analytically, but it can easily be tabulated numerically.

This procedure is without difficulty as long as the re-
lation between µ and c is monotonic, which is the case
for all three phases in our system. Once the three grand-
potential densities are determined, the driving-force term
can be expressed as

ωth(p, µ, T ) =
∑
i

gi(p)ωi(µ, T ) (12)

with interpolation functions gi(p) defined in Ref.22,

gi(pi, pj , pk) =
p2i
4

{
15(1− pi)

[
1 + pi − (pj − pk)2

]
+ pi

(
9p2i − 5

)}
(13)

where the values of the indices i, j, and k are all different.
These functions satisfy gi(pi = 1) = 1, and gi(pi = 0) =
0.

The evolution equations for the phase fields are sim-
ple relaxation equations that generalize the Allen-Cahn
equation34 and are obtained from the variational princi-
ple, taking into account the sum constraint on the phase
fields through a Lagrange multiplier22,

∂pi
∂t

= −Γ
δΩ

δpi

∣∣∣∣∑
i pi=1

= −Γ
(2

3

δΩ

δpi
− 1

3

δΩ

δpj
− 1

3

δΩ

δpk

)
, (14)

where Γ is a relaxation rate constant. Given the respec-
tive dimensions of the constants K, H, and Γ, the in-
terface width W and relaxation time τ can be defined
by

W =

√
K

H
, (15)

τ =
1

ΓH
. (16)

After evaluation of the functional derivatives, the evolu-
tion equation reads

τ
∂pi
∂t

= W 2∇2pi

− 2

3

(∑
j

(3δij − 1)pj(1− pj)(1− 2pj)
)

− 1

H

∑
j

ωj(µ)
∂gj
∂pi

∣∣∣∑
i pi=1

. (17)

The concentration obeys a conservation law,

∂c

∂t
= −~∇ · ~J (18)

with a diffusive mass current driven by the diffusion po-
tential gradient,

~J = −M(µ, T )~∇µ, (19)

with M(µ, T ) the interdiffusion mobility of germanium.
Since, in the grand-canonical framework, the composition
is a quantity that derives variationally from the grand
potential,

c(µ, T,p) = −δΩ
δµ
, (20)
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Eq. (18) can be transformed into an evolution equation
for µ using the chain rule23,24. However, since the rela-
tion between µ and c is nonlinear, the numerical errors
linked to time discretization lead to a slight violation of
mass conservation. In order to avoid these numerical er-
rors, we use a mixed formulation, in which both the fields
c and µ are stored. The concentration is then evolved us-
ing Eq. (18), and the value of µ compatible with the new
values of c and p is found by a simple numerical scheme
that converges in a few iterations.

D. Coupling to orientation fields

In the experiments, it is observed that the crystalliza-
tion of the amorphous phase generally leads to polycrys-
talline materials. Therefore, the model should be able
to describe crystal grains and grain boundaries. Two
strategies have been developed in phase-field models to
achieve this. The first is to associate a separate phase
field to each grain of the crystalline phases. The sec-
ond strategy is to use orientation fields, which indicate
the local orientation of the crystalline unit cell with
respect to a fixed reference frame. For a single crys-
talline phase, in two dimensions a single scalar orienta-
tion field is sufficient25,35, whereas in three dimensions
several fields are necessary36,37. Grain boundaries corre-
spond to localized variations of the orientation field.

Whereas the orientation-field formalism is numerically
simpler, it has, to our knowledge, not previously been
used in conjunction with multi-phase-field models. We
present here a first attempt to formulate such a model.
Whereas we have not succeeded to put together a model
that is fully variational, the results presented below
demonstrate that this model constitutes a reasonable
phenomenological description.

Our starting point is the two-dimensional single-phase
orientation-field model of Ref.25, which uses a singular
coupling between orientation and phase fields. Indeed,
rotational invariance imposes that the free energy cannot
depend on the orientation field, but only on its gradients.
The singular dependence of the coupling ensures that the
energetic cost of orientation variations diverges in the
solid, whereas it vanishes in the liquid. As a result, the
orientation field is almost constant within the crystalline
grains, whereas it rapidly varies across grain boundaries.
In the center of the grain boundaries, a small fraction of
liquid always remains present.

We generalize this model by introducing two separate
orientation fields θ1 and θ2 for the GST and germanium
crystalline phases. The grand potential is supplemented
by an orientational part,

ωori(p, ~∇θ) = Cθ

[
q(p1)(~∇θ1)2

+ q(p2)(~∇θ2)2
]
, (21)

where the function q(p) is given by25,38

q(pi) =
7p3i − 6p4i
(1− pi)3

(22)

and Cθ is a constant that determines the grain boundary
energies.

If this expression is added to the grand-potential den-
sity, Eq. (7) and injected into the variational formalism,
Eq. (14), undesirable properties result. Namely, the dy-
namics of the GST phase is influenced by the orientation
field of the germanium phase, and vice versa. This re-
sults from the coupling due to the Lagrange multiplier
associated with the sum constraint on the phase fields.
Rather than following this route, we have preferred to
couple each orientation field to the equation of motion
of the corresponding phase field exactly as in the origi-
nal model of Ref.25. This corresponds to taking, for the
orientational term, the variational derivative without the
sum constraint. The resulting equations of motion read

τ
∂pi
∂t

= W 2∇2pi

− 2

3

(∑
j

(3δij − 1)pj(1− pj)(1− 2pj)
)

− 1

H

∑
j

ωj(µ)
∂gj
∂pi

∣∣∣∑
i pi=1

− Cθ
H
q′(pi)(∇θi)2 (23)

for the phase fields i = 1, 2. The field p3 is then deter-
mined by the sum constraint.

Since the two orientation fields are not explicitly cou-
pled, their evolution equation can be obtained by the
standard variational method,

∂θi
∂t

= −Γθi
δΩ

δθi

=
ΓθiCθ
q(pi)

~∇ ·
[
q(pi)~∇θi

]
, (24)

where i = 1, 2, and Γθi are relaxation rate constants for
the orientation fields. More detailed comments and dis-
cussions about this equation of motion and its use for the
description of polycrystalline single-phase materials can
be found in Refs.25,38,39.

E. Choice of the model parameters

The model contains numerous parameters that need to
be determined. The first are the constants K and H in
the grand-potential density, Eq. (7). Those can be re-
lated to the thickness of the diffuse interfaces W , already
introduced in Eq. (15), and to the interface free energy σ

by σ =
√

2KH/322. We choose the values W = 0.5 nm,
which is a physically realistic value for microscopically
rough interfaces in metallic alloys40, and σ = 0.4J/m2,
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which is the value for the solid-liquid surface free energy
of germanium at 650 K reported in Ref.41. From the
values of W and σ the constants K and H can be calcu-
lated. It should be noted that in the present formulation,
all interfaces have the same energy, which is certainly not
true in the real system. However, in the absence of more
detailed information, we adopt this approximation since
it optimizes the model performance. This choice could
easily be modified in future work following the lines of
Ref.22.

The next parameter to be discussed is the phase-field
relaxation rate Γ, or equivalently the phase-field relax-
ation time τ . It is related to the interface kinetics. No
information about the interface kinetics in germanium-
rich GST is available to our knowledge; however, for the
stoichiometric 225 compound, the crystallization rate has
been measured for a large range of temperatures by ul-
trafast calorimetry32. We use these data in the follow-
ing way. In the absence of coupling to the composition,
the driving force for phase transformation depends only
on temperature. For the standard Allen-Cahn equation,
the relation between the driving force (which is the free
energy difference ∆f in the absence of composition cou-
pling) and interface velocity is known42 and can be in-
verted to deduce the relaxation time from the interface
velocity:

τ =
∆f

vσ
W 2. (25)

The driving force can be evaluated for GST 225 by the
model of Thompson and Spaepen28,32,

∆f =
∆Gm
Vm

=
∆Hm(T − Tm)

VmTm

2T

T + Tm
, (26)

where ∆Gm, Vm, ∆Hm et Tm are the molar Gibbs free
energy difference, the molar volume, the latent heat of
fusion and the melting temperature, respectively. The
numerical values used for these quantities are listed in
table II at a temperature of 673 K. This calculation is
repeated for several temperatures, with the values of the
interface velocity tabulated from Ref.32 and listed in ta-
ble III. For other temperatures, the data points were
linearly interpolated.

W 5 × 10−10 m
∆Hm 12 × 103 J/mole
Tm 900 K
σ 0.4 J/m2

v 2.8 m/s
∆f 1.68 J/m3

TABLE II: Values needed for the evaluation of τ
through Eq. (25) at 673 K.

Concerning the equation for the concentration, the mo-
bility needs to be determined. Data for the diffusion co-
efficients of germanium in the crystalline and amorphous

Température T (K) Velocity v (m/s)
400 10−7

450 10−2

500 0.45
550 1.1
600 2.5
650 2.75
700 2.6
750 2.5
800 2
850 0.9
900 0

TABLE III: Interface velocity of GST 225 for different
temperatures. Data extracted from Orava et al.32.

phases has been published in Ref.43. They can be well
fitted by Arrhenius laws,

D1(T ) = D2(T ) = 10[−4.62−0.22 eV/(kBT )] cm2/s, (27)

D3(T ) = 10[−3.73−0.094 eV/(kBT )] cm2/s, (28)

where kB is Boltzmann’s constant. Note that the or-
der of magnitude for the diffusivities around 700 K is
10−12m2/s for the crystalline phases and 10−9m2/s for
the liquid.

The mobility and the diffusion coefficients are related
by the well-known relation44 D = M∂µ/∂c. In the
grand-potential framework, we define the susceptibility
function χ = ∂c/∂µ, and find that M = Dχ. The sus-
ceptibility function for each phase can be found from the
free-energy functions. The diffusion coefficient and the
susceptibility are then interpolated according to

D(p) = g(p1)D1 + g(p2)D2 + g(p3)D3, (29)

χ(p, µ) = g(p1)χ1(µ) + g(p2)χ2(µ) + g(p3)χ3(µ).(30)

Finally, we also need to fix the parameters related to
the orientation fields. The coupling constant in the ori-
entational energy, Eq. (21), Cθ, determines the grain
boundary energies. The latter depends on the misori-
entation between the two neighboring grains. We mea-
sure the angles on a scale between 0 and 1 and fix
Cθ/H = 1.3 × 10−21m2, which yields a grain-boundary
energy for high-angle grain boundaries (with the maxi-
mal misorientation of 0.5) comparable to the interfacial
energies. This entails that finite contact angles are ob-
served at the intersections between grain boundaries and
interfaces. The evolution equations for the orientation
fields also contain relaxation rates. Those are set to high
values, so that the orientation fields are able to relax over
the entire crystal-amorphous interface before crystalliza-
tion is completed and no “disorder trapping” occurs45,46.
We define relaxation times for the orientation fields by
relations analogous to Eq. (16) and set τθ1 = 10−7τ(T )
and τθ2 = 5× 10−7τ(T ).
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FIG. 4: Joule heating simulation of the Wall Structure.
The domain in which the phase-field simulations are
carried out is the rectangle delimited by the white

frame.

F. Coupling with an electrothermal solver

An electrothermal simulation is realized for a PCM
Wall structure including bottom and top electrodes,
heater and surrounding oxides. Ambient temperature is
imposed on the bottom electrode which is a thick metal-
lic layer located under the heater and on the top elec-
trode. The top electrode is grounded and a current is
imposed on the bottom electrode to supply a given cur-
rent in the structure. Insulation boundary conditions are
applied on the lateral sides of the structure. Joule heat-
ing is simulated in the whole structure and a restriction
of the temperature field to the active domain is used in
the multi-phase-field simulation (see Fig. 4). An ohmic
model approach is used to simulate the electrical behavior
of the PCM cell. The electro-thermal solver relies on the
coupled system of partial differential equations formed by
the charges conservation equation and the heat transfer
equation.

∇ · (−σ∇V ) = 0 (31)

ρCp
∂T

∂t
+∇ · (−kth∇T ) = σ(∇V )2 (32)

where σ, ρ, Cp and kth stand for the materials electrical
conductivity, density, heat capacity and thermal conduc-
tivity. Electrical and thermal conductivity of the Ge rich
GST are modeled as function of temperature:

σpcm =
σ0
2

(
tanh(BeT + Ce) +De

)
(33)

kth,pcm =
k0th
2

(
tanh(BthT + Cth) +Dth

)
(34)

A set of parameters for electrical and thermal conductiv-
ity for Ge-rich GST was fixed (see Table IV) in order to
obtain current-voltage curves close to experimental re-
sults. The density and heat capacity used for Ge-rich

TABLE IV: Parameters for Ge-rich GST electrical and
thermal conductivity

σ0 Be Ce De

2.8 · 104S/m 0.0022K−1 −1.8 1

k0th Bth Cth Dth

2.566W/K/m 0.0051K−1 −48.359 1.418

GST are those of GST, taken from Ref.47: ρ = 6350
kg/m3 and Cp = 24.9 J/(mole K). They are taken at 300
K and considered as independent of temperature.

This calculation of the thermal field does not take into
account the release of the latent heat of crystallization.
Using the value of the latent heat from Table II, the adi-
abatic temperature defined by TQ = L/Cp is estimated
as 482 K. This is the temperature range associated with
the phase transition. It is significantly smaller than the
temperature changes of the order of 1000 K obtained by
the Joule heating in the simulation (see Fig. 4). In a full
two-way coupling between phase-field and electrothermal
model, it would be straightforward to include in the ther-
mal model a source term for the release of latent heat,
which is proportional to the change with time of the
phase fields. However, due to the very different diffu-
sivities of heat and chemical components, this results in
a problem which is numerically exceedingly stiff. There-
fore, we have chosen not to include this effect for the time
being.

This system of equations is discretized using the Finite-
Element method with the Partial Derivative Equation in-
terface of COMSOL multiphysics R©. In PCM materials,
electrical and thermal conductivities depend on the tem-
perature. This leads to a strongly coupled and nonlinear
set of equations which is solved self-consistently using a
nonlinear Newton solver.

G. Implementation and simulation setup

We perform our phase-field calculations in two dimen-
sions, and focus on a domain that corresponds to the
PCM active domain visible in Fig. 4. This corresponds
to a cut through the thin film of phase-change material
perpendicular to the heater electrode and larger than the
blue hemicircle in the sketch of Fig. 1. The domain size
is 150 nm × 100 nm. The evolution equations for the
phase-fields, the concentration field and the orientation
fields are discretized using the finite-differences method
on a regular Cartesian grid of grid spacing ∆x = 0.25 nm
(in total, 601 × 401 grid points). All the equations are
time-stepped using a simple explicit Euler scheme with
time step ∆t = 7.8×10−13 s. In the lateral directions, pe-
riodic boundary conditions are applied; in the vertical di-
rection, zero-gradient Neumann boundary conditions are
used. Three different situations are considered: isother-
mal heat treatment, for which the temperature is set to
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a constant, and the SET and RESET operations. Heat
maps calculated by the electrothermal solver are stored
for each grid point at regular time intervals of 50 ns for
the SET pulse and 5 ns for the RESET pulse. Time
sampling is different for the pulses due to their different
duration (5.4 µs for the SET pulse and 110 ns for the RE-
SET pulse). These temperature fields are then used to
evaluate all free energies and mobilities in the phase-field
calculations, with linear interpolation of the temperature
for times in between two stored maps.

III. SIMULATION RESULTS

A. Isothermal crystallization of an amorphous thin film

The first situation that has been simulated is the crys-
tallization of an initially amorphous Ge-rich GST layer.
The model presented in the previous section is deter-
ministic and does not include nucleation events. There-
fore, in order to initialize crystallization, nucleation has
to be explicitly modeled. A nucleation scenario deduced
from experimental results30,31 has been used. In this sce-
nario, the Ge phase appears first and starts to grow. The
growth of the germanium grains decreases the Ge con-
centration in the surrounding amorphous phase, which
makes the nucleation of the GST phase possible. The
(homogeneous) nucleation rates of GST can be evaluated
from classical nucleation theory. This yields rates that
depend very strongly on the composition of the amor-
phous matrix and that increase with decreasing Ge con-
centration. The probability for nucleation within one
time step becomes unity for c < 0.35; therefore, we ini-
tialize nucleation of the GST phase as soon as the concen-
tration falls below this threshold, under condition that
there is no crystalline phase in the neighborhood of the
freshly introduced nucleus.

Snapshot pictures of the structural order are repre-
sented in figure 5. Initially (a), a set of randomly
placed nuclei with random orientation of Ge phase are
introduced simultaneously. After 590 ns (b), the Ge
grains have grown and impoverished in Ge the amor-
phous phase. After 830 ns (c), some GST nuclei have
appeared and grown. After those nucleation events, both
crystalline phases grow at the expense of the amorphous
phase; this is still ongoing at 1.6 µs (d). At 1.9 µs, the
amorphous phase has disappeared. But this does not
mean that the structural evolution has stopped : small
grains tend to dissolve into bigger ones due to Ostwald
ripening, and grain boundaries between Ge grains tend
to be eliminated (f). In this stage, since the amorphous
phase, which has the fastest diffusion kinetics, has dis-
appeared, it was possible to increase the timestep by a
factor of 1000. Nevertheless, the maximal simulated time
remains much shorter than typical annealing times in ex-
periments.

FIG. 5: Snapshot pictures of the crystalline
microstructure at times 0 s (a), 590 ns (b), 830 ns (c),

1.6 µs (d), 1.9 µs (e), and 5.7 ms (f) in a 2D simulation
of an initially amorphous layer of Ge-rich GST.

Amorphous areas are represented in black. Ge and GST
crystalline phases are respectively represented in
pink/red and green/blue. The different shades of
pink/red and green/blue stand for the different

orientations of nuclei.

FIG. 6: Electric current (arbitrary units) as a function
of time for the RESET and SET operations,

respectively associated with the red and blue curves.

B. RESET operation

The final state of the isothermal simulation is a poly-
crystalline two-phase material that can be used as an
initial condition to study the effect of PCM operations
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on the microstructure. We use the coupled approach de-
scribed previously. First, we simulate the RESET oper-
ation, which corresponds to a short intense current pulse
followed by rapid cooling that brings the material in its
amorphous state.

The time profile of the current pulse used for the RE-
SET operation is plotted in figure 6 as the red line. The
thermal fields obtained with the electrothermal model are
represented for various times in figure 7.

FIG. 7: Thermal fields at times 5 ns (a), 30 ns (b),
100 ns (c), and 110 ns (d) obtained from the
electrothermal model for the RESET pulse.

Snapshot pictures of the phase-field simulations are
displayed in figure 8. In the initial part of the RESET
operation, the active region of the PCM material melts.
As was the case for the nucleation of the solids in the
isothermal simulation, the liquid phase does not appear
spontaneously. Rather, the melting is initialized by in-
troducing a liquid area around the hottest point in the
structure, which is located at the interface between the
PCM layer and the heater electrode (figure 8(a)). The
liquid is introduced by just changing the phase fields,
without modification of the concentration field. After 32
ns (b), the liquid area is growing: the GST phase melts
first, followed by the grains of Ge phase. At 100 ns, when
the current stops, the size of the molten area is maximal.
When the temperature starts to fall, recrystallization oc-
curs. However, the drop in temperature leads to a drop
in the interface mobility, and despite the increasing driv-
ing force, the interfaces soon get arrested (110 ns, (d)),
and a large amorphous area persists in the center of the
active region.

C. SET operation

The characteristic current for the SET operation,
which leads to crystallization of the memory cell, is rep-
resented in blue in figure 6. Snapshot pictures of the
phase-field simulations are displayed in figure 9. The ini-
tial state (a) is the same as for the RESET operation:

FIG. 8: Snapshot pictures of the crystalline
microstructure at times 0 s (a), 32 ns (b), 100 ns (c),

and 110 ns (d) during the RESET operation. The color
code is the same as in Fig. 5.

it is obtained by introducing a liquid area at the con-
tact with the heater. At t=100 ns, the current starts to
decrease, and consequently the temperature starts to de-
crease in the cell. At this time, the size of the liquid area
is maximal. After 320 ns (b), the size of the liquid area is
still large, but the regrowth of Ge and GST phases is on-
going. For quite some time, the Ge and GST phases grow
together, approximately at the same speed. After 1.6 µs
(d), a new regime can be observed : only the GST phase
grows and engulfs the Ge phase. In this stage, the GST
phase releases Ge into the molten area. This enrichment
in Ge causes new Ge grain to appear spontaneously at
grain boundary grooves around 2.2 µs (e). After 2.8 µs
(f), the recrystallization is complete.

Drastic changes in the microstructure can be noticed:
after the SET operation, larger grains of Ge have been
formed along the border of the area that has been molten;
an area where only GST phase is present is also observed,
and long and narrow grains have been formed close to the
heater electrode.

These pictures indicate that the Ge distribution in the
cell has been modified. In order to quantify this modifica-
tion, the average germanium concentration as a function
of distance from the heater electrode has been calculated
by integrating the concentration field over annuli cen-
tered on the middle of the heater electrode. In order
to reduce the statistical error linked to the small sys-
tem size (limited number of grains), the result of seven
simulations with identical parameters but different seeds
for the random number generator were averaged. Figure
10 shows the difference between the initial and the final
state. A clear impoverishment in Ge of the active zone
can be seen, especially in the distance range from 30 to
55 nm from the center of the active zone.
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FIG. 9: Snapshot pictures of the crystalline
microstructure at times 5 ns (a), 320 ns (b), 930 ns (c),

1.6 µs (d), 2.2 µs (e), and 2.8 µs (f) during the SET
operation. The color code is the same as in figure 5.

FIG. 10: Average Ge concentration after the SET
operations as a function of the distance from the center

of the active zone.

D. Interface states

In order to get a more comprehensive view of the in-
terface states upon recrystallization during the RESET
and SET operations, we have extracted the interface tem-
perature as a function of time on the intersection of the
crystal-amorphous interfaces with a vertical line located

FIG. 11: Temperature at the intersection between a a
vertical line separating the cell in two equal parts and

the interface between crystal and liquid phases.

in the middle of the heater electrode, that is, in the cen-
ter of the simulation domain. The results are displayed
in Fig. 11. The blue curve, associated with the RESET
operation, is represented only for the first ten nanosec-
onds after the stop of the electric currrent. After this
short time, the temperature in the cell keeps decreasing,
but the crystal-liquid interface no longer moves.

The red curve associated to the SET operation shows a
decrease from 800 K to 680 K, followed by a sudden rise.
This is due to the fact that there is a change in the phase
that occupies the fixed lateral position of our scan line
on the growing interface: in the first part of the curve,
the recorded temperature is the one of the Ge-amorphous
interface, whereas later on it is the one of the GST phase.

These data can be plotted in a different way, which
is analogous to the time-temperature-transformation
(TTT) diagrams used in materials science to determine
whether a certain phase will appear. In the standard
TTT diagram, the temperature-time curve is compared
to the characteristic waiting time for nucleation to occur.
Here, we have to compare the characteristic time for re-
crystallization to the cooling time. A limiting curve can
be obtained using the data for GST 225: in Fig. 12, we
plot for each temperature the time it would take an in-
terface in the stoichiometric compound to advance by 1
µm. One can observe that, indeed, the curve for the RE-
SET operation never enters the region delimited by this
estimate. On the other hand, the curve for the SET pulse
ends up inside that region.

IV. CONCLUSION AND PERSPECTIVES

In conclusion, we have developed a coupled model for
crystallization and segregation during the operations of
phase-change memories that use GST enriched in germa-
nium. This model takes into account the thermodynam-
ics of GST, the available data on interface kinetics, and
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FIG. 12: Analog of a time-temperature-transformation
diagram using GST225 data. The green curve indicates
the time required for a GST225 crystal-liquid interface

to propagate over 1µm at a given temperature.

the polycrystalline structure of the material. The model
qualitatively describes the spontaneous emergence of a
two-phase polycrystalline material during the annealing
of an as-deposited amorphous film. When simulations
are performed with temperature fields that are typical for
the conditions of device operation, the model reproduces
the redistribution of alloy components that is observed
in post mortem studies of memory points.

The model put forward here is in many respects only
qualitative. In addition to the approximations outlined
in the beginning of section 2, there are many more that
have been mentioned during the exposition of the model.
In addition, the input data that have been used to cali-
brate the model are of limited precision (e.g. the surface
energy, which is a very important parameter).

Despite these caveats, our model gives a reasonable
description of the processes that occur during the opera-
tion of phase-change memories with innovative materials.
Even with its current limitations, the model can be use-
ful to carry out parametric studies, which could help to
better understand the role of the various physical effects
that come into play. This analytic view could also serve
in the future as a guide for new and more quantitative
experimental analyses.

In order to transform this approach into a more quan-
titative tool for the development of devices, various new
alleys of research could be explored. First, the pseudobi-
nary appromixation could be relaxed; then, two concen-
tration equations would need to be handled. Whereas
this is not a problem in principle, much more detailed
thermodynamic (phase diagram) and kinetic (diffusion
coefficients) data would be needed to make simulations
reliable. Second, the energetics of interfaces and grain
boundaries could be made more realistic. In particular,
the grain structure of the polycrystalline material indi-
cates that strong interfacial anisotropy might be present.
While such anisotropies can be easily modeled in the

phase-field approach, the problem is again the lack of
data. Such data could be obtained either from more
fundamentally oriented experiments, or eventually from
atomistic simulations, as has already been accomplished
in metallurgy48. Third, mechanical constraints could also
be taken into account, for the prize of adding a new equa-
tion (the equation for elastic displacements). Fourth, the
coupling of the phase-field model and the electrothermal
solver could also be improved by making it two-way: the
microstructure of the material modifies the electric cur-
rents through the phase-change material and therefore
also the temperature distribution. In order to include
such heterogeneities, the equations for electric and heat
conduction need to be resolved with the same spatial res-
olution as the phase-field model, with conductivities that
depend on the phase fields49. Such a description on the
microstructural scale would also permit to take into ac-
count the release of latent heat during interface motion
in the calculation of the temperature field. Finally, it
would also be interesting to simulate the long-term evo-
lution of memory point microstructres during repeated
writing cycles. This would, however, require consider-
able computational resources since many successive runs
of the model would be nessessary.

ACKNOWLEDGMENTS

This work was financially supported by the Association
Nationale Recherche Technologie (ANRT), France, and
STMicroelectronics through the CIFRE contract number
2016/1237.

DATA AVAILABILITY

The data that support the findings of this study, and
in particular the simulation code, are available from the
corresponding author upon reasonable request.

1A. Chen, “A review of emerging non-volatile memory (NVM)
technologies and applications,” SOLID-STATE ELECTRONICS
125, 25–38 (2016).

2H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. Goodson, “Phase change memory,”
Proceedings of the IEEE 98, 2201–2227 (2010), cited By 978.

3M. Wuttig and N. Yamada, “Phase-change materials for rewrite-
able data storage,” Nature Materials 6, 824–832 (2007).

4S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in
Disordered Structures,” Physical Review Letters 21, 1450–1453
(1968).

5N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and
M. Takao, “High Speed Overwritable Phase Change Optical Disk
Material,” Japanese Journal of Applied Physics 26, 61 (1987).

6N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao,
“Rapid phase transitions of GeTe-Sb2Te3 pseudobinary amor-
phous thin films for an optical disk memory,” Journal of Applied
Physics 69, 2849–2856 (1991).

7G. Servalli, “A 45nm generation phase change memory technol-
ogy,” (2009) pp. 5.7.1–5.7.4.

8I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig,
“Structural transformations of [formula omitted] films studied by



13

electrical resistance measurements,” Journal of Applied Physics
87, 4130–4134 (2000).

9F. Arnaud, P. Zuliani, J. Reynard, A. Gandolfo, F. Disegni,
P. Mattavelli, E. Gomiero, G. Samanni, C. Jahan, R. Berth-
elon, O. Weber, E. Richard, V. Barral, A. Villaret, S. Kohler,
J. Grenier, R. Ranica, C. Gallon, A. Souhaite, D. Ristoiu,
L. Favennec, V. Caubet, S. Delmedico, N. Cherault, R. Beneyton,
S. Chouteau, P. Sassoulas, A. Vernhet, Y. Le Friec, F. Domengie,
L. Scotti, D. Pacelli, J. Ogier, F. Boucard, S. Lagrasta, D. Benoit,
L. Clement, P. Boivin, P. Ferreira, R. Annunziata, and P. Cap-
pelletti, “Truly innovative 28nm fdsoi technology for automo-
tive micro-controller applications embedding 16mb phase change
memory,” (2019) pp. 18.4.1–18.4.4.

10H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Bre-
itwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek,
A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A High
Performance Phase Change Memory with Fast Switching Speed
and High Temperature Retention by Engineering the GexSbyTez
Phase Change Material,” in 2011 IEEE INTERNATIONAL
ELECTRON DEVICES MEETING (IEDM) (IEEE; IEEE Elec-
tron Devices Soc (EDS), 2011) IEEE International Electron De-
vices Meeting (IEDM), Washington, DC, DEC 05-07, 2011.

11P. Zuliani, E. Varesi, E. Palumbo, M. Borghi, I. Tortorelli,
D. Erbetta, G. D. Libera, N. Pessina, A. Gandolfo, C. Prelini,
L. Ravazzi, and R. Annunziata, “Overcoming Temperature Lim-
itations in Phase Change Memories With Optimized GeSbTe,”
IEEE Transactions on Electron Devices 60, 4020–4026 (2013).

12P. Zuliani, E. Palumbo, M. Borghi, G. Dalla Libera, and R. An-
nunziata, “Engineering of chalcogenide materials for embedded
applications of Phase Change Memory,” Solid-State Electronics
111, 27–31 (2015).
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laye, A. Persico, A. Roule, M. Bernard, C. Sabbione, D. Blachier,
V. Sousa, L. Perniola, S. Maitrejean, A. Cabrini, G. Torelli,
P. Zuliani, R. Annunziata, E. Palumbo, M. Borghi, G. Reim-
bold, and B. De Salvo, “Trade-off between set and data reten-
tion performance thanks to innovative materials for phase-change
memory,” (2013) pp. 21.5.1–21.5.4, cited By 33.

28C. Thompson and F. Spaepen, “On the approximation of the free
energy change on crystallization,” Acta Metallurgica 27, 1855–
1859 (1979), cited By 337.

29H. Lukas, S. G. Fries, and B. Sundman, Computational thermo-
dynamics: the CALPHAD method (Cambridge University Press,
Cambridge, 2007).

30M. Agati, F. Renaud, D. Benoit, and A. Claverie, “In-situ
transmission electron microscopy studies of the crystallization
of N-doped Ge-rich GeSbTe materials,” MRS Communications
8, 1145–1152 (2018).

31M. Agati, C. Gay, D. Benoit, and A. Claverie, “Effects of surface
oxidation on the crystallization characteristics of Ge-rich Ge-Sb-
Te alloys thin films,” Applied Surface Science 518, 146227 (2020).

32J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E.
Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and
its crystallization by ultrafast-heating calorimetry,” Nature Ma-
terials 11, 279–283 (2012).

33S. G. Kim, W. T. Kim, and T. Suzuki, “Phase-field model for
binary alloys,” Physical Review E , 12 (1999).

34S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase
boundary motion and its application to antiphase domain coars-
ening,” Acta Metallurgica 27, 1085–1095 (1979).

35R. Kobayashi, J. A. Warren, and W. Craig Carter, “A continuum
model of grain boundaries,” Physica D: Nonlinear Phenomena
140, 141–150 (2000).

36R. Kobayashi and J.-A. Warren, “Modeling the formation and
dynamics of polycrystals in 3D,” Physica A 356, 127–132 (2005).

37T. Pusztai, G. Bortel, and L. Gránásy, “Phase field theory of
polycrystalline solidification in three dimensions,” Europhysics
Letters (EPL) 71, 131–137 (2005).

38B. Korbuly, T. Pusztai, H. Henry, M. Plapp, M. Apel, and
L. Gránásy, “Grain coarsening in two-dimensional phase-field
models with an orientation field,” Physical Review E 95, 053303
(2017).

39M. Plapp, “Remarks on some open problems in phase-field mod-
elling of solidification,” Philosophical Magazine 91, 25–44 (2011),
arXiv: 1004.4502.

40J. J. Hoyt, B. Sadigh, M. Asta, and S. M. Foiles, “Kinetic phase
field parameters for the cu-ni system derived from atomistic com-
putations,” Acta Mater. 47, 3181 (1999).

41C. Reina, L. Sandoval, and J. Marian, “Mesoscale computa-
tional study of the nanocrystallization of amorphous Ge via a
self-consistent atomistic phase-field model,” Acta Materialia 77,
335–351 (2014).

42J. S. Langer, “An introduction to the kinetics of first-order phase
transitions,” in Solids far from equilibrium, Edition Aléa Saclay,
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