On a fast and nearly division-free algorithm for the characteristic polynomial
Résumé
We review the Preparata-Sarwate algorithm, a simple $O(n^{3.5})$ method for computing the characteristic polynomial, determinant and adjugate of an $n \times n$ matrix using only ring operations together with exact divisions by small integers. The algorithm is a baby-step giant-step version of the more well-known Faddeev-Leverrier algorithm. We make a few comments about the algorithm and evaluate its performance empirically.
Origine | Fichiers produits par l'(les) auteur(s) |
---|