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E-mails: liliana@mate.unlp.edu.ar, Sylvain.Gravier@ujf-grenoble.fr,

linhares@lia.ufc.br, fabio@ic.uff.br, gravenna@mate.unlp.edu.ar

ABSTRACT. The clique graph K(G) of G is the intersection graph of the family of

maximal cliques of G. For a family F of graphs, the family of clique-inverse graphs of F

is defined as K−1(F) = {H | K(H) ∈ F}. Let Fp be the family of Kp-free graphs, that

is, graphs with clique number at most p − 1, for an integer constant p ≥ 2. Deciding

whether a graph H is a clique-inverse graph of Fp can be done in polynomial time; in

addition, for p ∈ {2, 3, 4}, K−1(Fp) can be characterized by a finite family of forbidden

induced subgraphs. In [ F. Protti and J. Szwarcfiter, Clique-inverse graphs of K3-free

and K4-free graphs, J. Graph Theory 35 (2000) 257–272 ], the authors propose to extend

such characterizations to higher values of p. A natural conjecture that then arises is:

Is there a characterization of K−1(Fp) by means of a finite family of forbidden induced

subgraphs, for any p ≥ 2 ? In this note we show that this conjecture is true.

Keywords: clique graph, clique-inverse graph.

1. Introduction

The clique graph K(G) of G is the intersection graph of the family of maximal
cliques of G, i.e., vertices of K(G) correspond to maximal cliques of G, and an
edge exists between two vertices in K(G) if and only if the corresponding maximal
cliques in G intersect [5]. In the literature, K is often viewed as a unary operator
that maps a graph G into its clique graph K(G) [11]. Clique graphs have been
studied in several aspects, such as: structural characterizations [5, 16], complexity
of algorithmic recognition [3], images of graph families under the clique operator
[2, 6, 17], convergence/divergence of the clique operator [6, 7, 10], and theoretical
aspects of clique-inverse graphs [9, 13, 14, 15], to name just a few. Several results
on clique graphs can be found in the survey [18].

A graph G is a clique-inverse graph of a graph H if K(G) = H. Not every graph
H admits a clique-inverse graph; this occurs precisely when H is not a clique graph.
However, if H admits a clique-inverse graph G then H admits other clique-inverse
graphs (for instance, any graph obtained from G by the addition of a simplicial
vertex is also a clique-inverse graph of H). Thus, the family K−1(H) = {G |
K(G) = H} (the clique-inverse graphs of H) either is empty or contains infinitely
many graphs.
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For a family F of graphs, the family of clique-inverse graphs of F is defined as
K−1(F) = {G | K(G) ∈ F}. For an integer p ≥ 2, denote by Fp the family of
Kp-free graphs, that is, graphs with clique number at most p− 1. The problem of
deciding whether a graph G is a clique-inverse graph of Fp, when p is part of the
input, is clearly in Co-NP, but it is still an open question to know whether it is
Co-NP-complete. On the other hand, if p is a constant, the problem can be solved
in polynomial time [14]. This can be easily seen by observing that if G ∈ K−1(Fp)
then each vertex of G is in at most p− 1 maximal cliques, i.e., G contains at most
(p − 1)n maximal cliques. Then, if p is a constant, K(G) can be determined in
polynomial time by using any polynomial-delay algorithm for the generation of
the maximal cliques of a graph, e.g. [12]. In addition, checking whether the clique

number of K(G) is at most p−1 amounts to analyzing all the
(
n′

p

)
subsets of K(G)

with p vertices, where n′ = | V (K(G)) |.
The family K−1(Fp) can be characterized by a finite family of forbidden induced

subgraphs for p ∈ {2, 3, 4}. Note that a graph in K−1(F2) is a disjoint union of
cliques, and thus G ∈ K−1(F2) if and only if G contains no P3 as an induced
subgraph. The cases p = 3 and p = 4 are described below. K1,3 is the graph with
vertices a, b, c, d and edges ab, ac, ad. The gem is the graph with vertices a, b, c, d, e
and edges ab, ac, ad, ae, bc, cd, de. The 4-wheel is the graph with vertices a, b, c, d, e
and edges ab, ac, ad, ae, bc, be, cd, de.

Theorem 1. [13] A graph G is in K−1(F3) if and only if G does not contain as
an induced subgraph any of the following graphs: K1,3, gem, 4-wheel.

K1,4 is the graph with vertices a, b, c, d, e and edges ab, ac, ad, ae. The pyramid
is the graph with vertices a, b, c, d, e, f and edges ab, ac, bc, bd, be, ce, cf , de, ef .
The 4-broom is the graph with vertices a, b, c, d, e, f and edges ab, bc, bd, be, bf ,
cd, de, ef . The 5-wheel is the graph with vertices a, b, c, d, e, f and edges ab, ac,
ad, ae, af , bc, bf , cd, de, ef . The 5-fan is the graph with vertices a, b, c, d, e, f and
edges ab, ac, ad, ae, af , bc, cd, de, ef . The graph H∗0 is the graph obtained from
the pyramid by replacing edge ac by edge ae. Finally, the graph Q2 is the graph
with vertices a, b, c, d, e, f, g where a is a universal vertex and the remaining edges
are bc, be, cd, ce, cf , df , dg, ef , fg.

Theorem 2. [13] A graph G is in K−1(F4) if and only if G does not contain as
an induced subgraph any of the following graphs: K1,4, pyramid, 4-broom, 4-wheel,
5-wheel, 5-fan, H∗0 , Q2.

Let G ∈ K−1(Fp), for p ≥ 2, and let H be an induced subgraph of G. Clearly,
every maximal clique of H is contained in some maximal clique of G. Suppose
that there are p distinct, pairwise intersecting maximal cliques C1, . . . , Cp in H,
and let C ′i be a maximal clique of G such that Ci ⊆ C ′i, 1 ≤ i ≤ p. If C ′i = C ′j
for distinct indices i and j, then Ci and Cj are completely adjacent, because H
is an induced subgraph of G; but then Ci and Cj are not maximal cliques in H.
Thus, C ′1, . . . , C

′
p are distinct and pairwise intersecting maximal cliques in G, i.e.,

ω(K(G)) ≥ p. This is a contradiction. Therefore, no family of p distinct and
pairwise intersecting maximal cliques can exist in H, and thus ω(K(H)) ≤ p− 1,
that is, H ∈ K−1(Fp). This shows that being a member of K−1(Fp) is an induced-
hereditary property, and therefore (see [8]) K−1(Fp) can be characterized by a
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family of vertex-minimal graphs G such that ω(K(G)) ≥ p. Such vertex-minimal
graphs are also called forbidden induced subgraphs or minimal obstructions.

In [13] the authors propose to extend the characterizations in Theorems 1 and
2 to higher values of p. A natural conjecture that then arises is: Is there a charac-
terization of K−1(Fp) by means of a finite family of minimal obstructions, for any
p ≥ 2? More formally, let Forb(K−1(Fp)) denote the family of minimal obstruc-
tions for a graph G to have ω(K(G)) ≤ p− 1.

Conjecture 3. For every p ≥ 2, Forb(K−1(Fp)) is finite.

In this note we show that the above conjecture is true by means of counting
arguments on certain subsets of a maximum clique of a graph G ∈ Forb(K−1(Fp)).

The remainder of this paper is organized as follows. In Section 2 we present the
main result, in Section 3 an application of the main result to hypergraphs, and in
Section 4 our conclusions.

2. The main result

In this section, the term clique always means a maximal clique. We say that G
is a clique-critical graph if K(G) 6= K(G − v) for all v ∈ V (G). In what follows
G is a clique-critical graph. Let C(G) be the set of cliques of G. By [1], for every
vertex v ∈ V (G), there exist C and C ′ in C(G) such that either {v} = C \ C ′ or
{v} = C ∩ C ′.

Let C1 be a clique of G with at least 4 vertices. Given C2, . . ., Cp cliques of
G intersecting C1 (not necessarily all the cliques of G intersect C1), we define the
following subsets of C1:

I = {x ∈ C1 : ∃ i, j ∈ {2, . . . , p} s.t. Ci ∩ Cj = {x}};
D = {x ∈ C1 \ I : ∃ i, j ∈ {2, . . . , p} s.t. Ci \ Cj = {x}};
I ′ = {x ∈ (C1 \ I) \D : ∃ j ∈ {2, . . . , p} s.t. C1 ∩ Cj = {x}};
D′ = {x ∈ ((C1 \ I) \D) \ I ′ : ∃ j ∈ {2, . . . , p} s.t. C1 \ Cj = {x}}.

Lemma 4. Let G be a graph in Forb(K−1(Fp)) and let F = {C1, C2, ..., Cp} be a
pairwise intersecting subfamily of C(G). Then C1 = I ∪D ∪ I ′ ∪D′.

Proof. Suppose in order to obtain a contradiction that there exists x ∈ C1 \ (I ∪
D ∪ I ′ ∪D′).

For every i ∈ {1, 2, ..., p}, either Ci \ {x} is a clique of G − x or Ci \ {x} is
contained in some other clique of G. In the former case, we let C ′i be Ci \ {x}
(notice that in this case C ′i is a clique of G− x but it is not a clique of G); and, in
the latter, we let C ′i be the clique containing Ci \ {x} ( in this case, C ′i is both a
clique of G− x and a clique of G, but it does not belong to {C1, C2, ..., Cp}).

We claim that if i 6= j then C ′i 6= C ′j. Indeed, assume they are equal and say
C = C ′i = C ′j. If C is not a clique of G then C ′i = Ci \{x} and C ′j = Cj \{x}, hence
Ci = Cj, a contradiction. If C is a clique of G then Ci \{x} ⊆ C and Cj \{x} ⊆ C
which implies Ci ∪ Cj is a clique of G, a contradiction.

It follows that C ′1, C
′
2, ..., C ′p are p cliques of G−x, thus, by hypothesis, they are

not pairwise intersecting. Let C ′i and C ′j have empty intersection. Since Ci∩Cj 6= ∅,
we have that Ci ∩ Cj = {x}, which contradicts the fact that x 6∈ I. �
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Lemma 5. In the conditions of Lemma 4,

| V (C1) |≤
(
p− 1

2

)
+ 1.

Proof. By Lemma 4, C1 = I ∪D ∪ I ′ ∪D′.
For every vertex x ∈ I (resp. x ∈ D) choose a pair of elements i, j ∈ {2, . . . , p}

such that Ci ∩ Cj = {x} (Ci \ Cj = {x} resp.) and let Ix = {i, j} ( Dx =
{i, j}, resp.).

For every vertex x ∈ I ′ (resp. x ∈ D′) chose an element j ∈ {2, . . . , p} such that
C1 ∩ Cj = {x} (C1 \ Cj = {x} resp.) and let I ′x = {j} ( D′x = {j}, resp.).

Then the following statements easily hold.

(1) If x and y belong to I then Ix 6= Iy.
(2) If x and y belong to D then Dx 6= Dy. In fact, if Dx = Dy = {i, j} then
{x} = Ci \ Cj and {y} = Cj \ Ci. Therefore Ci \ {x} ⊆ Cj and so y is
adjacent to all the vertices of Ci \ {x}. Since, in addition, y is adjacent to
x because both vertices belong to C1, we have that Ci ∪ {y} is a clique of
G, contradicting the fact that Ci is a clique.

(3) If x ∈ I and y ∈ D then Ix 6= Dy. In fact, if Ix = Dy = {i, j} then
{x} = Ci ∩ Cj and {y} = Ci \ Cj, and so Ci = {x, y}, which implies the
contradiction Ci ⊆ C1.

(4) If x and y belong to I ′ then I ′x 6= I ′y. Let I ′x = {i} and I ′y = {j}. Then there
is no vertex z ∈ I such that Iz = {i, j}, and there is no vertex w ∈ D such
that Dw = {i, j}, because Ci ∩ Cj ∩ C1 = ∅, x ∈ Ci \ Cj, and y ∈ Cj \ Ci.

(5) If x and y belong to D′ then D′x 6= D′y. Let D′x = {i} and D′y = {j}.
Then there is no vertex z ∈ I such that Iz = {i, j}, and there is no vertex
w ∈ D such that Dw = {i, j}, because |Ci ∩ Cj| > 1 (otherwise, |C1| = 3),
x ∈ Cj \ Ci, and y ∈ Ci \ Cj.

(6) If x ∈ I ′ and y ∈ D′ then I ′x 6= D′y. In fact, if I ′x = D′y = {i} then
{x} = C1 ∩ Ci and {y} = C1 \ Ci, and so C1 = {x, y}, which implies the
contradiction | C1 |= 2 < 4.

Let I ′x = {i} and D′y = {j}. Then there is no vertex z ∈ I such that
Iz = {i, j}, and there is no vertex w ∈ D such that Dw = {i, j}, because
x ∈ Ci ∩ Cj; C1 ∩ (Ci \ Cj) = ∅ and Cj \ Ci ≥ 2.

Therefore, if the cardinality of the sets I, D, I ′ and D′ are denoted by nI , nD,
nI′ and nD′ , respectively, we have the following.

By (1), (2), and (3),

nI + nD ≤
(
p− 1

2

)
. (2.1)

And adding (4), (5), and (6):

nI + nD ≤
(
p− 1

2

)
−
(
nD′

2

)
−

(
nI′

2

)
− nI′nD′ . (2.2)

Let
(
a
b

)
= 0 whenever a < b.

By Lemma 4 and inequality 2.2, we have:

| V (C1) |= nI + nD + nI′ + nD′ ≤
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p− 1

2

)
−

(
nD′

2

)
−

(
nI′

2

)
− nI′nD′ + nI′ + nD′ =(

p− 1

2

)
+

1

2
(3(nI′ + nD′)− (nI′ + nD′)2).

Since nI′ + nD′ is a nonnegative integer, it is easy to check that 3(nI′ + nD′) −
(nI′ + nD′)2 ≤ 2. Thus the proof is complete. �

Lemma 6. Let G be a graph in Forb(K−1(Fp)). Then a maximum clique of G
contains at most

(
p−1
2

)
+ 1 vertices, and every stable set of G contains at most p

vertices.

Proof. By Lemma 5, any clique of G has size at most
(
p−1
2

)
+ 1, then a maximum

clique satisfies the same bound.
Now suppose that there is a stable set S in G with p + 1 vertices. Since G is

minimal, every vertex of S must belong to one of the cliques C1, C2, ..., Cp. Thus,
two vertices of S belong to the same clique. This is a contradiction. �

Now, consider the Ramsey number r(
(
p−1
2

)
+2, p+1) = k. This means that every

graph with at least k vertices has a clique of size
(
p−1
2

)
+ 2 or a stable set of size

p + 1. In other words, every graph with no such a clique or stable set must have
at most k − 1 vertices. Therefore, by applying the previous lemmas, we conclude
that every graph G ∈ Forb(K−1(Fp)) has at most k − 1 vertices. Therefore:

Theorem 7. For every p ≥ 2, Forb(K−1(Fp)) is finite.

3. On intersecting families of hypergraphs

Let H = (V,C) be a hypergraph whose set of vertices is V and whose set of
hyperedges (or simply, edges) is C = {C1, C2, ..., Cm}. A Sperner or simple hyper-
graph is a hypergraph such that Ci ⊆ Cj implies i = j.

Following the terminology used in [4], we define a 2-section of H, denoted by
[H]2, as the graph G where V (G) = V (H) and

E(G) = {(x, y) | x 6= y and {x, y} ⊆ Ci, for some 1 ≤ i ≤ m}.
A hypergraph H is a conformal hypergraph when every maximal clique of G =

[H2] is an edge of H. Thus, a hypergraph H is Sperner and conformal if and
only if its edges correspond exactly to the family of maximal cliques of the graph
G = [H]2.

The rank of a hypergraph H, denoted by r(H), is the maximum cardinality of
an edge of H. We define an intersecting family to be a subfamily of edges of a
hypergraph H having non-empty pairwise intersection.

We denote by 40(H) the maximum cardinality of an intersecting family of H.
We say that H is 40-minimal when 40(H − x) < 40(H), for all x ∈ H.

Finally, observe that given a vertex-minimal graph G containing p pairwise in-
tersecting maximal cliques C1, ..., Cp, the hypergraph H = (C1, C2, ..., Cp) on V (G)
is simple, conformal and p-minimal (40(H) = p).

Thus, another version of Lemma 6 is:
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Theorem 8. Every simple, conformal, and 40-minimal hypergraph H satisfies

r(H) ≤
(
40(H)− 1

2

)
+ 1.

4. Concluding remarks

We remark that the Ramsey numbers provide loose upper bounds for the num-
ber of vertices of a graph in Forb(K−1(Fp)). For instance, if p = 4 then a
graph G ∈ Forb(K−1(Fp)) must have at least four pairwise intersecting maxi-
mal cliques and its number of vertices is bounded according to the inequalities
|V (G)| ≤ r(

(
4−1
2

)
+ 2, 4 + 1) − 1 = r(5, 5) − 1 ≤ 48. However, by Theorem 2,

each graph in Forb(K−1(F4)) has at most 7 vertices. Hence, an interesting ques-
tion is to obtain better upper bounds for the number of vertices of a graph in
Forb(K−1(Fp)).

Although |Forb(K−1(Fp))| seems to be exponential in p, another interesting
question is to know whether it is possible to devise a systematic method for con-
structing Forb(K−1(Fp+1)) from Forb(K−1(Fp)) by the addition of new structures
to each graph G in Forb(K−1(Fp)) in all possible ways, in order to obtain vertex-
minimal graphs G′ such that ω(K(G′)) ≥ p + 1.
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