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Abstract

We introduce the (a, b)-monochromatic transversal game where Al-
ice and Bob alternately colours a vertices in red and b vertices in blue
of a hypergraph, respectively. Both players are enabled to start the
game. Alice wins the game if she obtains a red transversal; other-
wise, Bob wins if he obtains a monochromatic blue hyperedge. We
analyze the game played on clique-hypergraphs of powers of cycles
and we show many strategies that, depending on the choice of the
parameters, allow a specific player to win the game.

1 Introduction

The concept of hypergraphs has been extensively studied in many areas.
It generalizes the definition of graphs allowing edges to have more than two
incident vertices. Hypergraph theory is also applied in modern mathemat-
ics and related research fields, such as Furstenberg-Katznelson’s theorem in
ergodic theory was proven using hypergraph modeling [10]. zturan [14] also
used hypergraphs to model chemical reaction networks.
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A transversal in a hypergraph is a set of vertices intersecting every hyper-
edge [3]. A maximal clique of a graph is a subset of its vertices that induces
a complete graph, and it is not properly contained in any other clique. A
clique-hypergraph of a graph G is a hypergraph with the same vertex set of
G and whose hyperedges are the maximal cliques of G.

The study of clique-hypergraphs was firstly presented in 1991 by Duffus
et al. [9], where the authors asked what is the smallest number of colours
needed to colour the vertices of a clique-hypergraph such that no pair of
adjacent vertices is monochromatic (clique-chromatic number). Later, in
2003, Gravier et al. [12] showed that, given a fixed graph F , there exists
an integer f(F ) such that the clique-hypergraph of any F -free graph can
be f(F )-colored if and only if all components of F are paths. After that, in
2004, Bacs et al. [2] proved that this number is 3 for almost all perfect graphs.
In 2013, the answer to Duffus’ question in the case of the clique-chromatic
number of powers of cycles was presented by Campos et al. [7], where the
authors showed that such number is equal to 2, except for odd cycles of size
at least 5 where the answer is 3.

Classic problems in graph theory, like coloring [11], labeling [1] and dom-
ination [8], have been studied from the perspective of Combinatorial games.
Combinatorial games [4] are alternating finite two-player games of pure strat-
egy in which all the relevant information is public to both players, as well as
no randomness or luck is allowed. A combinatorial game using the concept
of tranversals in hypergraphs is the transversal game, presented by Bujts
et al. [5, 6]. In this game, two players, Edge-hitter and Staller, take turns
choosing a vertex from H. Each chosen vertex must hit at least one edge
not hit by the vertices previously chosen. The game ends when the set of
selected vertices becomes a transversal in H. The strategy of Edge-hitter is
to minimize the number of chosen vertices, while Staller wishes to maximize
it. The authors defined the game transversal number of H as the number
of vertices chosen when Edge-hitter starts the transversal game and both
players play optimally. Using this definition, they showed that the 3

4
-Game

Total Domination Conjecture is true over the graph classes with minimum
degree at least 2, and compared this parameter with its transversal number.

In this work, we introduce a combinatorial game over hypergraphs: the
(a, b)-monochromatic transversal game. In this game, Alice and Bob alter-
nately colour a vertices in red and b vertices in blue of a hypergraph, respec-
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tively. Both players are enabled to start the game. Alice wins the game if
she obtains a red transversal while Bob wins if he obtains a monochromatic
blue hyperedge. We consider the game played on clique-hypergraphs of com-
plete graphs, powers of cycles and paths. For each of these graphs, we show
strategies and bounds to the parameters a and b so that one of the players
wins the game.

We organize the paper as follows. First, in Section 2, we introduce the
game and present standard definitions and notation. In Section 3, we start
playing the game considering that Alice and Bob colour a single vertex at a
time on complete graphs, powers of cycles and paths. In Section 4, we exhibit
results when Alice and Bob are allowed to colour more vertices on powers
of cycles, and show that Alice has advantage on the game played on the
hypergraphs of these graphs when a ≥ b and n > 3k. In Section 5, we prove
that for n sufficiently large Bob wins the game when b > a. In Section 6, we
show how “small” n must be in order to guarantee Alice’s victory. Finally,
in Sections 7 and 8, we present our conclusions and acknowledgments.

2 Description of the game

In this work, the graphs considered are all undirected and simple. A hy-
pergraph H is a pair (V , E) where V is a finite vertex set, and E is a family of
nonempty subsets of V called hyperedges. The (a, b)-monochromatic transver-
sal game is an avoider-enforcer combinatorial game where two players, Alice
and Bob, alternately colour the vertices of a hypergraph H = (V , E). Both
players are enabled to start the game and, in each turn, Alice colours a ≥ 1
vertices in red and Bob colours b ≥ 1 vertices in blue. Alice wins the game
if she obtains a red transversal, that is, a subset of vertices in V that has a
nonempty intersection with every hyperedge of H. Bob wins the game if he
prevents it by obtaining a monochromatic blue hyperedge of E . The game
presents properties as the following:

Remark 2.1. If there exists a strategy that allows Alice (resp. Bob) to win
when Bob (resp. Alice) starts playing the (a, b)-monochromatic transversal
game on a given hypergraph, then there exists a strategy that allows Alice
(resp. Bob) to win when she (resp. he) starts playing the game on that
hypergraph.
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Remark 2.2. If there exists a strategy that allows Alice (resp. Bob) to win
the (a0, b0)-monochromatic transversal game played on a given hypergraph,
independently of who starts it, then for any a > a0 (resp. b > b0) there exists
a strategy that allows Alice (resp. Bob) to win the (a, b0)-monochromatic
transversal game (resp. (a0, b)-monochromatic transversal game) played on
that hypergraph, independently of who starts it.

The clique-hypergraph H(G) = (V, E) of a graph G = (V,E) is a hyper-
graph such that V is the vertex set of G, and the hyperedge set E is the
set of all maximal cliques in G, that is, E is the set of all maximal subsets
of V whose vertices induce a complete graph. In this work, we consider
clique-hypergraphs of powers of cycles.

A k-th power of cycle of length n, Ck
n, for k ≥ 1, is a graph on n vertices

whose vertex set is V (Ck
n) = {vi : i ∈ Zn}, and whose edges {vi, vj}, i, j ∈ Zn

have the property that i = j ± r (mod n) for some r ∈ {1, 2, . . . , k}. We
take (v0, . . . , vn−1) to be a cyclic order on the vertex set of Ck

n, and always
perform arithmetic modulo n on vertex indexes. The neighborhood of a vertex
v, denoted by N(v), is the set of all the vertices adjacent to v. The reach
of an edge {vi, vj} is defined as dij = min{(i − j) mod n, (j − i) mod n}.
Observe that, with the previous definition, C1

n is a cycle Cn, and for k ≥
!
n
2

"

is isomorphic to the complete graph.

A k-th power of a path of order n, P k
n , for k ≥ 1, is a graph on n vertices

whose vertex set is V (P k
n ) = {v0, v1, . . . , vn−1} and whose edges {vi, vj} ∈

E(P k
n ) if and only if |i − j| ≤ k. Note that, P 1

n ≃ Pn and P k
n ≃ Kn for

n ≤ k + 1. In a power of a path P k
n , we take (v0, v1, . . . , vn−1) to be a linear

order on the vertex set.

According to [7], the maximal cliques of powers of cycles Ck
n can be clas-

sified into two types: an external clique, whose vertex set is composed by
k+ 1 vertices with consecutive indexes vx, . . . , vx+k (mod n)

for some x ∈ Zn,

and an internal clique that has non-consecutive vertex indexes. Figure 1
illustrates powers of cycles with and without internal maximal cliques.

We observe that if b > k, then the (a, b)-monochromatic transversal game
played on clique-hypergraphs of powers of cycles becomes trivial because
at his first turn Bob colours all the vertices of a maximal external clique
Similarly, if a ≥

#
n

k+1

$
, and Ck

n has no internal maximal cliques, then Alice
colours all the vertices of a transversal.
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Figure 1: Graphs C2
6 , with internal maximal cliques in orange and green, and

C2
7 , without internal maximal cliques.

Furthermore, observe that if Bob can not colour a clique of size k′ while
playing the (a, b)-monochromatic transversal game on a clique-hypergraph
H(Ck′

n ), then he can not colour a clique of size k for k > k′. By this obser-
vation we obtain the following remark:

Remark 2.3. Let Ck
n be a power of cycle with no internal maximal cliques

and 2 ≤ k′ < k. If there exists a strategy that allows Alice to win the (a, b)-
monochromatic transversal game played on the clique-hypergraph H(Ck′

n ),
then there exists a strategy that allows Alice to win the game played on the
clique-hypergraph H(Ck

n).

3 First plays

We begin this section analyzing the (1, 1)-monochromatic transversal
game played on clique-hypergraphs of powers of cycles Ck

n. First, we show
strategies that can be used when k has either its smallest or largest possible
value, that is, Cn (when k = 1) or Kn (when k ≥

!
n
2

"
).

Proposition 3.1. If Kn is a complete graph with n ≥ 2, then there exists a
strategy that allows Alice to win the (1, 1)-monochromatic transversal game
played on the clique-hypergraph H(Kn), independently of who starts playing
the game.

Proof. Suppose that Bob starts playing the game. We observe that the
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clique-hypergraph H(Kn) of the complete graph on n vertices, Kn, contains a
unique hyperedge with n vertices. Therefore, Alice obtains a red transversal
in her first turn. The result follows by Remark 2.1.

Now we analyze the game played on the clique-hypergraph of a cycle.
Since C3 is isomorphic to K3 (whose result is contained in Proposition 3.1),
we consider the case n ≥ 4.

Proposition 3.2. If Cn is a cycle of length n ≥ 4, then exists a strategy that
allows Bob to win the (1, 1)-monochromatic transversal game played on the
clique-hypergraph H(Cn), independently of who starts playing the game.

Proof. First, we observe that the hyperedges of H(Cn) are the edges of Cn.
Suppose that Alice starts the game and colours red the vertex vi. Bob wins
the game colouring blue a vertex vj that is not adjacent to vi. Indeed,
independently of which vertex Alice colours red in her next move, Bob obtains
a monochromatic blue hyperedge coloring vertex vl adjacent to vj, with l ∈
{j − 1 (mod n) , j + 1 (mod n)}. The result follows by Remark 2.1.

The game played on clique-hypergraphs of paths, H(Pn), n ≥ 3, is similar
to the game over H(Cn), n ≥ 4. If n = 2, since P2 is isomorphic to K2,
then the result follows by Proposition 3.1. If 3 ≤ n ≤ 5, then there exists
a strategy that allows the player who had the first turn to win the game.
Indeed, if Bob starts playing, he colours blue vertex v⌊n

2
⌋. Now, Alice must

colour v⌊n
2
⌋−1 or v⌊n

2
⌋+1. On his next turn, Bob obtains a blue hyperedge

colouring v⌊n
2
⌋+1 or v⌊n

2
⌋−1. If Alice starts playing, she colours red vertex

v⌊n
2
⌋. On the next turns, independently of which vertex Bob colours blue,

Alice wins the game colouring red the vertex adjacent to Bob’s last coloured
vertex, and prevent him to make any monochromatic blue P2. If n ≥ 6, an
argument analogous to the proof of Proposition 3.2 shows that there exists
a strategy that allows Bob to win the game, independently of who starts
playing the game.

4 Alice’s dream

Now, we consider the (a, b)-monochromatic transversal game played on
the clique-hypergraph H(Ck

n). We recall that the maximal cliques of powers
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of cycles can be classified into external or internal cliques. The next result
presents a lower bound to the size of n that guarantees the non-existence of
internal maximal cliques.

Lemma 4.1. If n > 3k and k ≥ 2, then Ck
n has no internal maximal clique.

Proof. Let K be a maximal clique of Ck
n. Without loss of generality we may

assume that v0 ∈ K. Let i, j ∈ N∗, i ∕= j, where: (1) i ≤ k and j ≥ k are
largest as possible and such that (2) vn−j, vi ∈ K. Since n > 3k, and by
(2), the reach between the vertices vn−j and vi is dn−j,i = i+ j ≤ k. By (1),
vs ∕∈ K for each s ∈ ]i, k + 1[ and vn−s ∕∈ K for each s ∈ ]k + 1, j[. Moreover,
for each s ∈ [k + 1, n− (k + 1)], since v0 ∈ K and d0,s > k, we have that
vs ∕∈ K. Now, since the subgraph H induced by {vn−j, . . . , v0, . . . , vi} is a
clique, it follows that K = H and i+ j = k.

Now, the following theorem shows that the condition a ≥ b ensures that
Alice wins the game when Ck

n has no internal cliques.

Theorem 4.2. Let n > 3k and k ≥ 2. If a ≥ b and b < k, then there exists
a strategy that allows Alice to win the (a, b)-monochromatic transversal game
played on the clique-hypergraph H(Ck

n), independently of who starts playing.

Before proving this result, we present a new way of seeing the evolution
of the game throughout the turns. Let H = (V , E) be a hypergraph and set
V0 = V and E0 = E . For each t ≥ 1, Bt (resp. V \ Vt) is the set of blue (resp.
red) vertices after t turns. We assume that B0 = ∅. Let St ⊆ (Vt−1 \ Bt−1)
be the set of vertices coloured in turn t.

Definition 4.3. A hypergraph Ht = (Vt, Et) is the hypergraph at turn t,
where Vt and Et are obtained according following rules:

1. If turn t is played by Alice then Vt = Vt−1 \ St, Et is the subset of
hyperedges e in Et−1 such that e ∩ St = ∅, and Bt = Bt−1.

2. If turn t is played by Bob then Vt = Vt−1, Et = Et−1, and Bt = Bt−1∪St.

The game ends at some t∗ such that Vt∗ = Bt∗ . Finally, Alice wins if and
only if Et∗ = ∅.
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For example, let t = 0 and consider the clique-hypergraphH0 = H(C2
10) =

(V0, E0), where V0 = {v0, v1, . . . , v9}, and E0 = {e1, e2, . . . , e10} such that
e1 = {v0, v1, v2}, e2 = {v1, v2, v3}, e3 = {v2, v3, v4}, e4 = {v3, v4, v5}, e5 =
{v4, v5, v6}, e6 = {v5, v6, v7}, e7 = {v6, v7, v8}, e8 = {v7, v8, v9}, e9 = {v8, v9,
v0}, and e10 = {v9, v0, v1}. Note that, B0 = ∅. We refer to Figure 2.

Suppose that, in t = 1, Bob colours blue vertices v3 and v4, thus V1 = V0,
E1 = E0, and B1 = B0∪S1 = ∅∪{v3, v4} = {v3, v4}. Therefore, H1 = (V1, E1)
and B1 = {v3, v4}.

Now, in t = 2, if Alice colours red vertices v2 and v5 then S2 = {v2, v5},
V2 = V1 \ {v2, v5}, and E2 = {e7, e8, e9, e10}, since ei ∩ S2 = ∅ for i ∈
{7, 8, 9, 10}. Therefore, H2 = (V2, E2) and B2 = B1 (see Figure 2).

v0
v9

v8

v7

v6
v5

v4

v3

v2

v1

H0

v0
v9

v8

v7

v6
v5

v4

v3

v2

v1

H1

v0
v9

v8

v7
v6

v4

v3

v1

H2

Figure 2: Hypergraphs H0 = C2
10, H1 after Bob colours blue v3 and v4 in H0,

and H2 after Alice colours red v2 and v5 in H1.

Now, we are ready to prove our result.

Proof of Theorem 4.2. Suppose that Bob starts playing. Bob’s turns consists
in colouring blue ℓ disjoint paths Pj (j = 1, ..., ℓ; ℓ ≤ a) in the cycle Cn. By

definition, we have that
%ℓ

j=1 |Pj| ≤ b < k. Alice’s strategy consists in
applying the following rules:

1. If Pj has one vertex, say vi, then Alice colours red vi+1 if is not coloured
yet; otherwise she colours red vi−1.

2. If Pj has two distinct extremities vi and vs with i < s, then Alice
colours vertices vi−1 and vs+1, if they are not coloured yet.
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First, observe that Alice colours at most a ≥ b vertices by turn. Second, to
check that these rules ensure that Alice wins the game, it is enough to verify
that, after each Alice’s turn 2t ≥ 2, the hypergraph H2t is a disjoint union of
k-power of paths having the following property (P): each connected compo-
nent of H2t contains at most one blue vertex. Moreover, if there exists one
such blue vertex then it is the right extremity (clockwise) of this component.

It is easy to see thatH2t, 2t > 2, satisfies (P). Suppose thatH2t−2 satisfies
(P), we prove that H2t satisfies (P) whenever Alice apply the rules above.

The set B2t−1 \B2t−3 corresponds to the vertices coloured by Bob at turn
2t − 1 which induces a disjoint union of paths Pj (j = 1, ..., ℓ) in the cycle
Cn. Remark that each Pj must belong to one connected component Oj of
H2t−2. We analyse two cases:

1. Pj has one vertex, say vi: if Alice colours red vi+1 then Oj \ {vi+1} in-
duces two disjoint paths satisfying (P); else, Alice colours red vi−1 that
is either it is an extremity of Oj or the neighbor of the blue extremity
of Oj. In both cases, Oj \ {vi−1} induces the disjoint union of a path
of length |Oj| − c, with c = 1 or 2, satisfying (P) plus c isolated blue
vertices.

2. Pj has two distinct extremities vi and vs with i < s: if Alice colours
red vertices vi−1 and vs+1, then Oj \ {vi−1, vs+1} induces s− i + 1 ≤ b
isolated blue vertices and at most two disjoint paths satisfying (P). In
the other cases, it means that Pj is closed to the extremities of Oj. The
worst case occur when vs+1 ∈ B2t−2, thus colouring vi−1 (if it exists in
V2t−2), Alice splits Oj into at most one connected component satisfying
(P) (the one containing vertices of Oj with index smaller than i − 2)
plus s− i+ 1 + 1 ≤ b+ 1 vertices which are isolated since b < k.

The result follows by Remark 2.1.

5 Bob is the winner

In the previous sections, we have shown that Alice has advantage with
respect to Bob when they play the (a, b)-monochromatic transversal game
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with a ≥ b on clique-hypergraphs of powers of cycles H(Ck
n). In this section,

we consider 1 ≤ a < b and define conditions so that Bob wins the (a, b)-
monochromatic transversal game played on these hypergraphs.

Theorem 5.1. Let 1 ≤ a < b and k ≥ 2. Let p = ⌊ b
a+1

⌋ and α ∈ N∗ such
that b + (α − 1)p < k + 1 ≤ b + αp. If n ≥ (a + 1)α(k + 1), then Bob wins
the (a, b)-monochromatic transversal game played on the clique-hypergraph
H(Ck

n), when he starts playing.

Proof. Let a, b, n, k ∈ N∗ with a < b and k ≥ 2. Let p = ⌊ b
a+1

⌋ and α ∈ N∗

such that b+ (α− 1)p < k + 1 ≤ b+ αp.

We describe Bob’s strategy on a well chosen subset of hyperedges of
H(Ck

n). Let H0 = H(Ck
n). Let W0 be a set of (a + 1)α disjoint hyper-

edges of H(Ck
n). Since the size of the hyperedge in H(Ck

n) is k + 1 and
n ≥ (a + 1)α.(k + 1), such a set W0 exists. For each hyperedge e ∈ W0,
we associate a weight w(e). Before Bob’s first turn, we set w(e) = 0 for all
e ∈ W0. We say that Bob marks a hyperedge e if he adds 1 to w(e).

We prove that Bob wins the game in at most (a+1)α−1
a

turns. First, we
introduce additional definitions. Let Ti = [i−, i+], 1 ≤ i ≤ α, be the interval
of indices that represents the partition of the turns played by Bob where

i− = 1 +
%α−1

j=α−(i−1)(a+ 1)j and i+ =
%α−1

j=α−i(a+ 1)j.

We define 1− = 1. Remark that |Ti| = i+ − i− + 1 = (a + 1)α−i. Also,

note that α− = α+ = (a+1)α−1
a

. Now, let Wi ⊆ W0 ∩ E2.i+ , for all i ∈ [1, ..,α],
be the set of hyperedge in W0 which has p.i+ blue vertices and no red vertex
after 2.i+ turns, i.e., the set of the hyperedges coloured by Bob in a turn in
T2i+1.

Let t ∈ N∗ such that ⌈ t
2
⌉ ≤ (a+1)α−1

a
. Let αt ∈ N∗ such that ⌈ t

2
⌉ ∈ Tαt ,

i.e., the index of the set Ti for which Bob is playing. Since Bob starts playing
the game, in order to describe his strategy we focus on odd turns:

(1) If αt < α, then Bob selects a + 1 hyperedges e in Wαt−1 with weight
w(e) = αt − 1. Bob marks all these hyperedges and for each one that
does not have a red vertex, Bob colours blue p vertices in e.

(2) Else, Bob colours all the noncoloured vertices of a hyperedge in Wα.
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Observe that by the definition of Wαt , any hyperedge e in this set with
no red vertex has exactly p ·αt blue vertices. Now, since b+(α−1)p < k+1,
then, when αt < α, the hyperedge e has more than b noncoloured vertices.
Since 1 ≤ a < b follows that b > p. So, Bob colours p noncoloured vertices
of e. Moreover, by rule (1), Bob selects a + 1 hyperedges of Wαt , thus he
colours at most (a + 1)p vertices, which is less than b. So, Bob can apply
rule (1).

Second, we claim that Bob’s strategy provides the following property:

Claim 5.2. For all i ∈ [0, ...,α], we have that |Wi| ≥ (a+ 1)α−i.

Proof. Our proof works by induction on i. By definition, we have that |W0| ≥
(a + 1)α. Now suppose, for some j > 0, that |Wi| ≥ (a + 1)α−i holds for
all i < j. Observe that Wj ⊂ Wj−1. During the turns between (j − 1)−

and (j − 1)+, i.e. the turns in Tj−1, Bob applies rule (1) which guarantees
that a marked hyperedge with no red vertex has exactly pj blue vertices.
Moreover, he marked |Tj−1|(a + 1) = (a + 1)α−j+1 hyperedges while Alice
could not colour red more than |Tj−1|a = a(a+1)α−j hyperedges. Therefore,
|Wj| ≥ (a+ 1)α−j+1 − a(a+ 1)α−j = (a+ 1)α−j.

The previous claim shows that |Wα| ≥ 1. Moreover, any hyperedge in Wα

has αp blue vertices and contains no red one. So, when Bob applies rule (2)
on such hyperedge, he colours exactly k + 1− αp vertices which is less than
b by the hypotheses.

Corollary 5.3. Let 1 ≤ a < b and k ≥ 2. Let p = ⌊ b
a+1

⌋ and α ∈ N∗ such
that b+ (α− 1)p < k+1 ≤ b+αp. If n ≥ a(a+1)α(k+1), then there exists
a strategy that allows Bob to win the (a, b)-monochromatic transversal game
played on the clique-hypergraph H(Ck

n), independently of who starts playing.

Proof. By Theorem 5.1, it is enough to consider the case when Alice starts.
Since n ≥ a(a + 1)α(k + 1), after Alice’s turn, there exists a connected
component of H1 having at least (a+1)α(k+1) vertices. Applying the same
strategy described in the proof of Theorem 5.1, in this component, ensures
Bob’s victory. The result follows by Remark 2.1.

For fixed α, the bound for n given in Corollary 5.3 may be improved. For
instance, a slight modification of the proof (not given here) allows to show
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that, for α = 2, the bound n ≥ 2(a+ 1)(k+ 1) is enough to guarantee Bob’s
victory whenever he starts.

6 Alice’s revenge

From previous results, the only way for Alice to win is to consider a
“small” n. But how “small” n can be? The following results give an element
of the answer.

Theorem 6.1. Let 1 ≤ a ≤ b < k+1 and β = ⌈k+1
b
⌉ ≥ 2. If n ∈ N∗ such that

3k < n ≤ a(β−1)(k+1), then there exists a strategy that allows Alice to win
the (a, b)-monochromatic transversal game played on the clique-hypergraph
H(Ck

n), independently of who starts playing.

Proof. Suppose that Bob starts playing and assume that n ≤ a(β−1)(k+1).
Let Ht be the hypergraph as in Definition 4.3. We recall that S2t is the set of
vertices coloured red by Alice in the turn 2t; and B2t−1 is the set of vertices
coloured blue by Bob after 2t − 1 turns, for t ≥ 1 (Bob plays in the odd
turns). Without loss of generality, one may assume that v0 ∕∈ B1.

At turn 2t and 1 ≤ t < β, Alice’s strategy consists in colouring red a
vertices obtaining a partition the hypergraph H2t−1 into ta − 1 connected
components of length at most k, and one connected component with the
remaining vertices Rt of length at most n− (ta(k + 1)− tb).

Therefore, at turn 2t with 1 ≤ t < β, Alice colours red the vertices
vi ∈ S2t with i ∈ {i(t−1)a, . . . , ita−1} defined by :

(i) i0 = 0 and i(t−1)a is the smallest index i > i(t−1)a−1 such that vi ∕∈ B2t−1.

(ii) For all 1 ≤ j < a, the integer i(t−1)a+j is the largest index i ≤ i(t−1)a +
j(k + 1) such that vi ∕∈ B2t−1.

Remark that, since (β − 1)b < k + 1, then for all 1 ≤ j < a, we have
that i(t−1)a + (j − 1)(k+1) ≤ i(t−1)a+j ≤ i(t−1)a + j(k+1). Hence, H2t−1 can
be partitioned into ta − 1 sets of size iℓ − iℓ−1 ≤ k + 1, for ℓ = 1, ..., ta − 1,
plus a set of vertices Rt having at most n− (ta(k+1)− tb). Hence |Rβ−1| ≤
(β − 1)b < k + 1 since n ≤ a(β − 1)(k + 1). Therefore, Alice wins the game
since the hyperedge set E2(β−1) = ∅. The result follows by Remark 2.1.
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We note that in Theorem 6.1 the bound on n is linear in a despite of the
one of Theorem 5.1 which is in aα. Next result shows that the two bounds
are close whenever α = β − 1 = 1.

Corollary 6.2. Let a, b and k be integers such that b ≥ p.a and k + 1 =
b+p. There exists a strategy that allows Alice to win the (a, b)-monochromatic
transversal game played on the clique-hypergraph H(Ck

n) when Bob starts
playing if and only if n < a(k + 1) + 1.

Proof. First assume that n ≥ a(k+1)+1. Bob’s strategy is a slight improve-
ment of the one given in Theorem 5.1. For i = 0, . . . , a, let ei be the hyperedge
ofH(Ck

n) induced by vertices of indexes {i(k+1), . . . , i(k+1)+k}. Bob’s first
turn consists to colour blue the b vertices of indices {i(k+1), . . . , i(k+1)+p}
for all i = 0, . . . , a. Now, for i = 0, . . . , a, Alice has to colour red at least one
vertex on each ei, otherwise, Bob colours blue all the k + 1 − p remaining
vertices in the third turn. Since there exists a such hyperedges then Alice
colours exactly one vertex on each ei. Let vi(k+1)+ri be the red vertex in ei.

We claim that if 0 ≤ i < j ≤ a then ri ≥ rj. Indeed, it is enough to observe
that if there is some i < a with ri < ri+1, then the subset of vertices with
indexes in {i(k + 1) + ri + 1, . . . , (i + 1)(k + 1) + ri} is an hyperedge e of
H(Ck

n) with no red vertex and containing the p blue vertices of ei+1, so in
the third turn, Bob wins colouring blue the b remaining vertices of e.

Now, since r0 ≥ ra and n ≥ a(k + 1) + 1, then n − r0 > ra. Hence, the set
of vertices with indexes in {n− r0, . . . , 0, . . . , r0} is an hyperedge e of H(Ck

n)
with no red vertex and containing the p blue vertices of e0. So, again, in the
third turn, Bob wins colouring blue the b remaining vertices of e.

Finally, Theorem 6.1 shows that Alice wins whenever n ≤ a(k + 1).

7 Conclusion

Combining Remark 2.2 with Proposition 3.1, Proposition 3.2 and by The-
orem 4.2, it is possible to complete the following table of results:
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Hypergraph Value of a Value of b
Who wins

(indep. of who started)
H(Kn) 1 ≤ a ≤ n− 1 b < n Alice

H(Cn), n ≥ 4 1 b < n Bob
H(Ck

n), n > 3k, k ≥ 2 a ≥ b b < k Alice

Furthermore, by Corollary 5.3 taking p = ⌊ b
a+1

⌋ and α ∈ N∗ such that
b+ (α− 1)p < k + 1 ≤ b+ αp, we have:

Hypergraph Value of a Value of b
Who wins

(indep. of who started)
H(Ck

n), n ≥ a(a+ 1)α(k + 1) 1 ≤ a < b b ≤ k Bob

Also, by Theorem 6.1 taking β = ⌈k+1
b
⌉ ≥ 2 for n ∈ N∗, we have:

Hypergraph Value of a Value of b
Who wins

(indep. of who started)
H(Ck

n), 3k < n ≤ a(β − 1)(k + 1) 1 ≤ a ≤ b b ≤ k Alice

We observe that Theorem 6.1 gives an improvement of Theorem 5.1 when
α = 1. We conjecture that when b is closed to a and far from k, Alice can
win even for “large” n.

The case when Ck
n has internal maximal cliques seems challenging. Next

result illustrates a way to study this case. It consists to give an upper bound
on a transversal. Therefore, if a is larger than this bound, this will ensure
Alice’s winning whenever she starts.

Theorem 7.1. Let n = 3k−ε with k ≥ 3 and 0 ≤ ε < k−1. The hypergraph
H(Ck

n) admits a transversal of size k − ε.

Proof. Set T = K ∪ {v2k−1−ε} with K = {v0, . . . , vk−2−ε}. We prove that T
is a transversal of H(Ck

n). Let K be a maximal clique such that K ∩K = ∅.
Since n = 3k − ε, we have that N(v2k−1−ε) ⊇ V (Ck

n) \ K. Thus, K must
contain the red vertex v2k−1−ε. Therefore, any hyperedge of H(Ck

n) has at
least one vertex belonging to T , i.e., T is a transversal of H(Ck

n) of size

((k − 2 + ε)− (0) + 1)& '( )
vertices in κ

+ (1)&'()
v2k−1−ε

= k − ε.
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For the case n = 3k and k ≥ 2, the gap ε is vanished, i.e., ε = 0, which
proves that this result is optimal.

First, we evoke a key lemma of Meidanis [13]:

Lemma 7.2. [13] Let Ek be the set of edges of Ck
n with reach k. If n = 3k,

k ≥ 2, then the subgraph induced by Ek has k connected components, each of
which a cycle of length 3.

Theorem 7.3. Let n = 3k with k ≥ 2, and let b ≥ 3. There exists a strategy
that allows Alice to win the (a, b)-monochromatic transversal game played on
the clique-hypergraph H(Ck

n) if and only if Alice starts playing and a ≥ k.

Proof. By Lemma 7.2, Ck
3k admits k disjoint triangles. It is easy to prove

that these triangles are internal maximal cliques. Therefore, when b ≥ 3,
Alice loses if a < k or Bob starts. Indeed, wherever Alice plays, she misses at
least one of these triangles, and in both cases, in Bob’s turn, he colours blue
3 vertices of one of the k triangles, which is a maximal clique, that ensures
his victory. The converse follows from applying Theorem 7.1 with ε = 0.

8 Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, CAPES-
PrInt project number 88881.310248/2018-01, CNPq and FAPERJ. This proj-
ect has received funding from the European Research Council (ERC) un-
der the European Unions Horizon 2020 research and innovative programme
(grant agreement N o 715734).

References

[1] S. D. Andres, W. Hochstttler, C. Schallck, The game chromatic index
of wheels, Discrete Appl. Math. 159 (2011) 1660–1665.

[2] G. Bacs, S. Gravier, A. Gyrfs, M. Preissmann, A. Seb, Coloring the
maximal cliques of graphs, SIAM J. Discrete Math. 17(3) (2004) 361–
376.

15



[3] C. Berge, Hypergraphs: Combinatorics of finite sets, first ed., North-
Holland, Amsterdam, 1989.

[4] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning Ways for Your
Mathematical Plays: Volume 1 and 2, first ed., A. K. Peters Press,
Natick, 1981.

[5] C. Bujtás, M. A. Henning, Z. Tuza, Transversal game on hypergraphs
and the 3

4
-conjecture on the total domination game, SIAM J. Discrete

Math. 30(3) (2016) 1830–1847.

[6] C. Bujtás, M. A. Henning, Z. Tuza, Bounds on the game transversal
number in hypergraphs, Eur. J. Combin. 59 (2017) 34–50.

[7] C. N. Campos, S. Dantas, C. P. de Mello, Colouring clique-hypergraphs
of circulant graphs, Graphs Combin. 29 (2013) 1713–1720.

[8] P. Dorbec, M. A. Henning, Game total domination for cycles and paths,
Discrete Appl. Math. 208 (2016) 7–18.

[9] D. Duffus, B. Sands, N. Sauer, R. E. Woodrow, Two-colouring all two-
element maximal antichains, J. Combin. Theory Ser. A 57(1) (1991)
109–116.

[10] H. Furstenberg, Y. Katznelson, An ergodic Szemerdi theorem for com-
muting transformations, J. Analyse Math. 34 (1978) 275–291.

[11] A. Furtado, S. Dantas, C. M. H. Figueiredo, S. Gravier, On Caterpillars
of Game Chromatic Number 4, Electronic Notes in Theo. Comp. Sci.
346 (2019) 461-472.
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