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Abstract

We introduce the (a, b)-monochromatic transversal game where Alice and
Bob alternately colours a and b vertices of a hypergraph, respectively. Alice,
who colours the vertices with red, wins the game if she obtains a red transver-
sal and Bob wins it if he does not let it happen. Both players are enabled
to start the game and they play optimally. We analyze the game played on
clique-hypergraphs of powers of cycles and we show many strategies that,
depending on the choice of the parameters, allow a specific player to win the
game.

Keywords: Combinatorial games, hypergraphs, powers of cycles,
transversal.

1. Introduction

The concept of hypergraphs has been extensively studied in many areas.
It generalizes the definition of graphs allowing edges to have more than two
incident vertices. Hypergraph theory is also applied as techniques that are
used in modern mathematics and related research fields. For example, in
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ergodic theory, the Furstenberg-Katznelson’s theorem was proven using hy-
pergraph methods as showed in [10]. Özturan [12] also used hypergraphs to
model chemical reaction networks.

A transversal in a hypergraph is a set of vertices intersecting every hy-
peredge [3]. A maximal clique of a graph is a subset of vertices of this graph,
which induces a complete graph, and it is not properly contained in any
other clique. A clique-hypergraph of a graph G is a hypergraph with the
same vertex set of G and whose hyperedges are the maximal cliques of G.

The study of clique-hypergraphs was firstly presented in 1991 by Duffus
et al. [7], where the authors asked what is the smallest number of colours
needed to colour the vertices of a clique-hypergraph such that no pair of ad-
jacent vertices is monochromatic (clique-chromatic number). Later, Gravier
et al. [9] showed that given a fixed graph F , there exists an integer f(F ) such
that the clique-hypergraph of any F -free graph can be f(F )-colored if and
only if all components of F are paths. In 2013, the answer to Duffus’ question
in the case of clique-chromatic number of powers of cycles was presented by
Campos et al. [6], where the authors showed that such number is equal to
2, except for odd cycles of size at least 5 where the answer is 3. After that,
in 2014, Bacsó et al. [1] proved that this number is 3 for almost all perfect
graphs.

Classic problems in graph theory, like coloring [11] or labeling [8], have
been studied from the perspective of Combinatorial games. Combinatorial
games [2] are alternating finite two-player games of pure strategy in which
all the relevant information is public to both players, as well as no random-
ness is allowed. A combinatorial game using the concept of tranversals in
hypergraphs is the transversal game, presented by Bujtás et al. [4, 5]. In this
game, two players, Edge-hitter and Staller, take turns choosing a vertex from
H. Each chosen vertex must hit at least one edge not hit by the vertices pre-
viously chosen. The game ends when the set of selected vertices becomes a
transversal in H. The strategy of the Edge-hitter is to minimize the number
of chosen vertices, while Staller wishes to maximize it. The authors defined
the game transversal number of H as the number of vertices chosen when
Edge-hitter starts the transversal game and both players play optimally. Us-
ing this definition, they showed that the 3

4
-Game Total Conjecture is true

over class of graphs with minimum degree at least 2, and compared this
parameter with its transversal number.
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In this work, we introduce a combinatorial game over hypergraphs: the
(a, b)-monochromatic transversal game. In this game, Alice and Bob alter-
nately colour a and b vertices of a hypergraph, respectively. Alice, who
colours the vertices with red, wins the game if she obtains a red transversal
and Bob wins it if he obtains a monochromatic blue hyperedge. Both players
are enabled to start the game and they play optimally. We consider the game
played on clique-hypergraphs of complete graphs, powers of cycles and paths.
For each of these graphs, we show strategies and bounds to the parameters
a and b so that one of the players wins the game.

We organize the paper as follows. First, in Section 2, we introduce the
game and present standard definitions and notation. In Section 3, we start
playing the game where Alice and Bob colour a single vertex at a time. We
illustrate this with complete graphs and powers of cycles, showing that Alice
has advantage on this type of hypergraphs. We also show an example of the
game played on paths. In Sections 4 and 5, we exhibit results for the case
where Bob is allowed to colour more vertices than Alice, looking for cases
where Alice’s advantage disappears. Finally in Sections 6 and 7, we present
our conclusions and acknowledgments.

2. Description of the game

A hypergraph H is a pair (V , E) where V is a finite vertex set and E is a
family of non-empty subsets of V called hyperedges. The (a, b)-monochromatic
transversal game is an avoider-enforcer game where two players, Alice and
Bob, alternately colour the vertices of a hypergraphH = (V , E). Alice colours
a vertices in red at each turn and Bob colours b vertices in blue at each turn.
Alice wins the game if she obtains a red transversal, that is, a subset of
vertices in V that has a nonempty intersection with every hyperedge of H.
Bob wins the game if he obtains a monochromatic blue hyperedge of E . The
game presents properties as the following:

Remark 2.1. If there exists a strategy that allows Alice (resp. Bob) to win
when Bob (resp. Alice) starts the (a, b)-monochromatic transversal game on
a given hypergraph, then there exists a strategy that allows Alice (resp. Bob)
to win when she (resp. he) starts the game on that hypergraph.

Remark 2.2. If there exists a strategy that allows Alice (resp. Bob) to win
the (a0, b0)-monochromatic transversal game played on a given hypergraph,
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independently of who starts it, then for any a > a0 (resp. b > b0) there exists
a strategy that allows Alice (resp. Bob) to win the (a, b0)-monochromatic
transversal game (resp. (a0, b)-game) on that hypergraph, independently of
who starts it.

The clique-hypergraph H = (V, E) of an undirected simple graph G =
(V,E) is a pair H = (V, E) such that V is the vertex set of G and the
hyperedge set E is the set of all maximal cliques in G, that is, E is the set
of all maximal subsets of V whose vertices induce a complete graph. In this
work we consider clique-hypergraphs of powers of cycles. A k-th power of
cycle of length n, Ck

n, for k ≥ 1, is a undirected simple graph on n vertices
whose vertex set is V (Ck

n) = {vi ; i ∈ Zn} and whose edges {vi, vj}, i, j ∈ Zn

have the property that i = j±r (mod n) for some r ∈ {1, 2, . . . , k}. Observe
that, with the previous definition, C1

n is simply a cycle Cn. Furthermore, Ck
n

(with k ≥
⌊
n
2

⌋
) is isomorphic to the complete graph on n vertices Kn and for

this reason we also consider the game played on clique hypergraphs of these
graphs but we differ them according to this event.

According to [6], the maximal cliques of powers of cycles Ck
n can be classi-

fied into two types: an external clique, whose vertex set is composed by k+1
vertices with consecutive indexes vx, . . . , vx+k (mod n)

for some x ∈ Zn, and

an internal clique, whose vertex set contains vertices with non-consecutive
indexes.

We observe that if b > k or a ≥
⌈

n
k+1

⌉
then the (a, b)-monochromatic

transversal game on clique-hypergraphs of powers of cycles becomes trivial.
For that purpose, along this work we always assume that b ≤ k and a ≤⌈

n
k+1

⌉
− 1. Furthermore, observe that if Bob can not colour a clique of

size k′ while playing the (a, b)-monochromatic transversal game on a clique-
hypergraph H(G), then he can not colour a clique of size k for k > k′. By
this observation we obtain the following remark:

Remark 2.3. Let Ck
n be with no internal maximal cliques and 2 ≤ k′ < k.

If there exists a strategy that allows Alice to win the (a, b)-monochromatic
transversal game in H(Ck′

n ), then there exists a strategy that allows Alice to
win the game in H(Ck

n).
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3. The (1, 1)-monochromatic transversal game

In this section we obtain a complete analysis of the (1, 1)-monochromatic
transversal game played on clique-hypergraphs of powers of cycles, and before
we do so, we show simple strategies that can be used when k has either its
smallest or largest possible value, that is, Cn (when k = 1) or Kn (k ≥

⌊
n
2

⌋
).

3.1. Playing on clique-hypergraphs of complete graphs, cycles and paths

In order to make the reader familiar with the game, we start playing it
on clique-hypergraphs of complete graphs Kn and on clique-hypergraphs of
cycles Cn, on n vertices.

Proposition 3.1. If Kn is a complete graph with n ≥ 2, then there exists a
strategy that allows Alice to win the (1, 1)-monochromatic transversal game
played on the clique-hypergraph H(Kn), independently of who starts playing
the game.

Proof. Firstly, by Remark 2.1, we may assume that Bob starts playing the
game. Next, observe that the clique-hypergraph H(Kn) of the complete
graph on n vertices contains a unique hyperedge with n vertices. Therefore,
Alice obtains a red transversal in her first turn.

Now we analyze the game played on the clique-hypergraph of a cycle.
Since C3 is isomorphic to K3 (whose result is contained in Proposition 3.1),
we consider the case n ≥ 4.

Proposition 3.2. Let Cn be a cycle of length n ≥ 4. There exists a strategy
that allows Bob to win the (1, 1)-monochromatic transversal game on the
clique-hypergraph H(Cn), independently of who starts playing the game.

Proof. Firstly, observe that the hyperedges of H(Cn) are the edges of Cn. By
Remark 2.1 we may assume that Alice starts the game. Let vj denote the
vertex that is coloured red in Alice’s first turn. If Bob colours blue a vertex
vk that is not adjacent to vj then, independently of which vertex Alice colours
red in her next move, in Bob’s next turn there exists an uncoloured vertex
vl, l ∈ {k − 1 (mod n) , k + 1 (mod n)}, that is adjacent to vk. Colouring vl
with blue, Bob obtains a monochromatic blue hyperedge {vk, vl} and wins
the game.
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Remark 3.3. The game played on clique-hypergraphs of paths is not much
different. Indeed, P2 is isomorphic to K2 (whose result is contained in Propo-
sition 3.1). If 3 ≤ n ≤ 5 then there exists a strategy that allows the player
who had the first turn to win the game. Colouring vertex vbn

2
c at their first

turn, at the second turn of that player they must colour vbn
2
c−1 or vbn

2
c+1 if it

is Bob, or colour a vertex that is adjacent to Bob’s last coloured vertex if it
is Alice. In the case of H(Pn), n ≥ 6, an argument analogous to the proof of
Proposition 3.2 shows that there exists a strategy that allows Bob to win the
game, independently of who starts playing the game.

3.2. Playing on clique-hypergraphs of powers of cycles

Since graphs C2
n are isomorphic to the complete graphs Kn on n vertices

whenever n ≤ 5, and these graphs have been analyzed in Proposition 3.1,
we consider the second powers of cycles C2

n with n ≥ 6. We recall that the
maximal cliques in clique-hypergraphs powers of cycles can be classified in
external or internal cliques. It can be quickly verified that the unique hyper-
graph H(C2

n) which contains these internal maximal cliques is the H(C2
6) and

therefore we start with the analysis of the game played on this hypergraph.

Proposition 3.4. There exists a strategy that allows Bob to win the (1, 1)-
monochromatic transversal game played in the clique-hypergraph H(C2

6), in-
dependently of who starts playing the game.

Proof. By Remark 2.1, we may assume that Alice starts playing the game.
Before we exhibit Bob’s strategy, let us label the hyperedges of H(C2

6) as
follows: e1 = {v0, v2, v4}, e2 = {v1, v3, v5} , e3 = {v5, v0, v1}, e4 = {v2, v3, v4},
e5 = {v4, v5, v0}, e6 = {v1, v2, v3}, e7 = {v0, v1, v2} e e8 = {v3, v4, v5}. Ob-
serve that e1 and e2 are the unique internal maximal cliques.

Without loss of generality, we may assume that Alice colours the vertex
v0 with the colour red at her first turn. Since v0 is adjacent to every vertex
in V (C2

n) except v3, it makes v3 be the vertex whose adjacent hyperedges
have no red vertex. Therefore, Bob’s best option is to colour v3 blue. Thus,
by the symmetry of C2

n, Alice has two options for her second turn: she can
either colour v1 (or v5) or v2 (or v4).

If she colours v1 (resp. v5) red then Bob colours vertex v4 (resp. v2)
blue, making her choose one of the vertices v2 and v5 (resp. v1 and v4).
Hence, in her next turn, she intersects only one of the hyperedges e4 and e8
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(resp. e4 and e6) and so, Bob wins the game obtaining a monochromatic blue
hyperedge. Similarly, if Alice colours v2 (resp. v4) red at her second turn,
Bob will colour vertex v5 (resp. v1) making her colour one of the vertices v1
and v4 (resp. v2 and v5), which forbids her to intersect both hyperedges e2
and e8 (resp. e2 and e6) and so, Bob wins the game again.

Now we analyze the game played on the hypergraphs H(C2
n) for n > 6:

Theorem 3.5. Let n > 6. There exists a strategy that allows Alice to win
the (1, 1)-monochromatic transversal game played on the clique-hypergraph
H(C2

n), independently of who starts playing the game.

Proof. Recall that all hyperedges of H(C2
n), n > 6, are external. In order

to obtain his monochromatic hyperedge, Bob must colour blue 3 consecutive
vertices. Therefore, Alice wins the game playing according to the following
rules which are stated in decreasing importance (she only follows rule (j) if
its not possible to follow any rule (i) for i < j with i, j ∈ {1, 2, 3, 4}): (1)
she colours vertex vk−1 whenever there are two blue vertices v

k (mod n)
and

v
k+1 (mod n)

; (2) she colours vertex vk whenever there are two blue vertices

v
k−1 (mod n)

and v
k+1 (mod n)

; (3) if Bob coloured vertex v
k (mod n)

then Alice

colours vertex v
k+1 (mod n)

; (4) if Bob coloured vertex v
k (mod n)

then Alice

colours vertex v
k−1 (mod n)

.

Now we use Remark 2.3 to extend the validity of Theorem 3.5 for the case
when the game is played on H(Ck

n), with k ≥ 3. In order to do so, we need
to identify which are the powers of cycles that contains internal maximal
cliques. The next lemma tells us when H(Ck

n) has internal maximal cliques.

Lemma 3.6. Let K = {va1 , va2 , . . . , vak+1
} be a clique of Ck

n. K is an internal
maximal clique of Ck

n, if and only if, k is even, n = 2(k+1) and |aj+1−aj| = 2
for every j ∈ {1, ..., r − 1}.

Proof. Assume that there exists i, j ∈ {1, . . . , k} such that i 6= j and |ai+1−
ai| 6= |aj+1−aj|. Thus, since v` and vr are adjacent for every ` < r with r−` ≤
k, K is contained in an external clique which is not maximal. Therefore, if
K is an internal maximal clique of Ck

n, then k + 1 divides n, that is, there
exists q ∈ N such that n = q (k + 1). Now we will prove that q = 2. Indeed,
assume that q > 2 and without loss of generality, let us also assume that
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v0 ∈ K. Since we are not dealing with a complete graph, it is not possible
to have vn/2 ∈ Ck

n. Therefore, k must be even and the vertices of K which
maximizes their distances with respect to v0 are v−q (k/2) (mod n)

and vq (k/2).

Since both v0 and vq (k/2) belongs to K, they share a common edge and
therefore k ≥ q (k/2), which contradicts the hypothesis q > 2. The converse
is immediate.

Theorem 3.7. Let n > 6. Let k ≥ 2. If Ck
n does not contain internal

maximal cliques, i.e., n > 2(k + 1), then there exists a strategy that allows
Alice to win the (1, 1)-monochromatic transversal game played in H(Ck

n).

Proof. It follows from Remark 2.3, Lemma 3.6 and Theorem 3.5.

4. The (a, a)-monochromatic transversal game on H(Ck
n)

In this section we consider the (a, a)-monochromatic game played on
H(Ck

n) for any a ≥ 2. The following result generalizes Theorem 3.7 for
these new choices on the parameters, showing the advantage of Alice playing
on this hypergraphs:

Theorem 4.1. Let n > 6. Let k ≥ 2. Assume that Ck
n does not contain

internal maximal cliques, i.e., n > 2(k+1). Let a < min
{
bk/2c+ 1,

⌈
n

k+1

⌉}
.

Thus, there exists a strategy that allows Alice to win the (a, a)-monochromatic
transversal game played in H(Ck

n).

In order to prove the above theorem, we introduce a new proof technique
for the game. More precisely, we see the evolution of the game along the turns
through a different perspective when it is played on a hypergraphH = (V , E).
Indeed, let V0 = V and let E0 = E . For each t ≥ 1 let St ⊂ V denote the
set of vertices that were coloured at turn t. For each t ≥ 1 let Et denote the
set of hyperedges in Et−1 that are intercepted by vertices in St, i.e., for any
e ∈ Et there exists a vertex v ∈ St with v ∈ e. For each hyperedge e ∈ Et let
ẽ be the set e \ {e ∩ St}. Define Ẽt := {ẽ ; e ∈ Et}. Now, for each t ≥ 1 let
us define Vt and Et according to the following rules:

• if turn t is played by Alice then Vt = Vt−1 \ St and Et = Et−1 \ Et;

• if turn t is played by Bob then Vt = Vt−1 and Et = {Et \ Et} ∪ Ẽt.
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Above, we have defined a process {(Vt, Et) ; t ≥ 0} which, at each turn,
changes the structure of the hypergraph. Precisely, after Alice’s turns, we
remove all the vertices that she coloured and all hyperedges incident to them,
while after Bob’s turns, the vertex set remains the same but we remove the
vertices that he coloured from the hyperedges of the previous hypergraph.

Observe that the process above defined allows the existence of empty
hyperedges, that is, limt→|V| P (∅ ∈ Et) > 0. Furthermore, through this per-
spective, Alice wins the game if there exists t ∈ N such that Et = ∅, which
is equivalent to obtain a monochromatic transversal on H; and Bob does
it whether there exists t ∈ N such that ∅ ∈ Et, which is equivalent to ob-
tain a monochromatic hyperedge on H. Now we are finally ready to prove
Theorem 4.1:

Proof of Theorem 4.1. By Remark 2.1 we assume that Bob has the first turn.
Thus, Alice can only play at even turns. Recall that Bob’s strategy is to
obtain a monochromatic induced path on Cn of length k + 1 and that for
each t ≥ 0, S2 t+1 denotes the set of vertices that Bob coloured at turn 2 t+1.
Since Alice colours |S2 t+1| vertices per turn (with a possible exception if it is
the last turn), for each v ∈ S2 t+1 she can colour at least one vertex w = w(v)
such that v and w are adjacent, at turn S2 t+2. Moreover, if S2 t+1 is a path
or a finite number of paths, she tries to colour the endpoints of these paths.
At turn 2 t + 3, Bob must try to either decrease the number of vertices that
belong to the edges in Ẽ2 t+1∩E2 t+2, otherwise he restarts his initial strategy.
However, since a ≤ bk/2c, Bob will not be able to make Ẽ2 t+1 ∩ E2 t+2 = ∅
because he obtains a monochromatic path on the induced Cn of length at
most 2 a. At Alice’s next turn, she colours the other endpoint of that path
and makes him start his strategy again.

5. Helping Bob to win the game on H(Ck
n)

In the previous section we have shown that Alice has a strong advantage
with respect to Bob when they play the game on clique-hypergraphs of powers
of cycles H(Ck

n). In this section, we show for which how large b must be with
respect to a so that Bob wins the (a, b)-monochromatic transversal game on
these hypergraphs. We prove the following:

Theorem 5.1. Let n > 6. Let k ≥ 2. Assume that Ck
n does not contain

internal maximal cliques, i.e., n > 2(k + 1). Let a < b be two positive
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integers. Define the function f : N× N→ N by

f(a, b) :=

⌊
b⌈

a
2

⌉
+ 1

⌋
+ b.

If f(a, b) > k then there exists a strategy that allows Bob to win the (a, b)-
monochromatic transversal game on H(Ck

n), independently of who has the
first turn.

Proof. Let us assume that Alice starts the game and f(a, b) > k. We show
that there exists a strategy that allows Bob to win the game in this regime,
and by Remark 2.1, the result is the same if he starts playing. Let r =

⌈
n
a

⌉
.

Since Alice wants to maximize the number of hyperedges of H(Ck
n) that

she obtains per turn, she starts colouring vertices v0, vr, . . . , v(a−2)r and an
a-th vertex between v(a−2) r and v0. In this way, she spreads her colouring
uniformly along the hypergraph. Observe that when Bob colours a vertex, or
a path on the cycle, Alice immediately colours the vertices which are adjacent
to the endpoints of that path. Thus, for each path coloured by Bob along the
cycle, Alice must spend 2 of her vertex choices to prevent that Bob increases
the lengths of those paths. For that purpose, take ` =

⌈
a
2

⌉
+ 1 and L =

⌊
b
`

⌋
.

Notice that b > ` and therefore L ≥ 1. Now, for each j ∈ {0, 1, . . . , ` − 1}
let Pj be the path on the cycle which is between vertices vj r and v(j+1) r. In
his turn, for each j ∈ {0, 1, . . . , `− 1} Bob colours the L vertices of Pj which
are furthest from vj r and v(j+1) r, and the remaining vertices elsewhere. In
her second turn, Alice tries to preclude Bob to increase his ` paths of length
L. However, since 2 ` > a, she is not able to do so. Thus, in his second
turn, Bob may colour b adjacent vertices next to a survivor path, making a
path of length f(a, b) on the cycle. Notice that this is possible due to the
fact that f(a, b) < r. Hence, since f(a, b) > k, Bob got his monochromatic
hyperedge.

Now, one might immediately ask themselves whether Bob loses if f(a, b) ≤
k. Trying to give an answer for this question, we prove the following result,
which asserts that it is true if a ≥ 2.

Theorem 5.2. Let n > 6. Let k ≥ 2. Assume that Ck
n does not contain

internal maximal cliques, i.e., n > 2(k + 1). Let 2 ≤ a < b be two positive
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integers. Define the function f : N× N→ N by

f(a, b) :=

⌊
b⌈

a
2

⌉
+ 1

⌋
+ b.

If f(a, b) ≤ k then there exists a strategy that allows Alice to win the (a, b)-
monochromatic transversal game on H(Ck

n), independently of who has the
first turn.

Proof. The proof is very similar to the one of Theorem 5.1. Indeed, by
Remark 2.1 we assume that Bob starts the game. If he colours b consecutive
vertices v0, . . . , vb−1 then, since a ≥ 2 and b ≤ k, Alice colours the vertices
vn−1 and vb, and he has to restart his strategy with an inferior number of
possibilities. Therefore, in his first turn, Bob must colour disjoint paths
on the cycle such that Alice cannot colour the endpoints of these paths.
Moreover, as shown in the proof of last theorem, he must colour ` =

⌈
a
2

⌉
+ 1

paths of length L =
⌊
b
`

⌋
. At her first turn, Alice colours the endpoints

of these paths with exception of one among them. Let P be such path.
Thus, at his second turn, even if Bob increases the length of this path with
other b vertices, the fact that f(a, b) ≤ k does not allow him to obtain
a monochromatic hyperedge. Therefore, he must keep creating this paths.
Meanwhile, Alice continues preventing their growth, prioritizing the largest
ones. The prove follows from the fact that, at each t turns, t ≤ 3, all the
paths which were coloured by Bob in the two previous turns have already
been forbidden to grow by Alice’s colouring.

6. Conclusion

Combining Remark 2.2 with Proposition 3.1, Proposition 3.2 and Theo-
rem 4.1, it is possible to complete the following table of results:
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Hypergraph Value of a Value of b
Who wins

(indep. of who started)
H(Kn) a ∈ N b < n Alice
H(Cn)
n ≥ 4

1 b ≤ n Bob

H(Ck
n)

k ≥ 2
without

internal hyperedges

a ≥ b b ≤ bk/2c Alice

Furthermore, the combination of Remark 2.2 with Theorem 5.1 and The-
orem 5.2 completes the second table:

Hypergraph

Who wins if b > a
and⌊

b

da2e+1

⌋
+ b > k

Who wins if b > a ≥ 2
and⌊

b

da2e+1

⌋
+ b ≤ k

H(Ck
n)

k ≥ 2
without

internal hyperedges

Bob Alice

From the above tables, one can conclude that it is done a thorough
analysis about the (a, b)-monochromatic transversal game played on clique-
hypergraphs of powers of cycles without internal maximal cliques, H(Ck

n),
for every k ≥ 2.
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