N
N

N

HAL

open science

Integration of Theorem-proving and Constraint
Programming for Software Verification

Hélene Collavizza, Mike Gordon

» To cite this version:

Hélene Collavizza, Mike Gordon. Integration of Theorem-proving and Constraint Programming for
Software Verification. [Research Report] Laboratoire 13S. 2009. hal-03015714

HAL Id: hal-03015714
https://hal.science/hal-03015714
Submitted on 20 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03015714
https://hal.archives-ouvertes.fr

Integration of Theorem-proving and Constraint
Programming for Software Verification

Hélene Collavizzal and Mike Gordon?

! Université de Nice-Sophia-Antipolis — 13S/CNRS, 930, route des Colles
B.P. 145 06903 Sophia-Antipolis, France. helen@polytech.unice.fr
2 University of Cambridge Computer Laboratory William Gates Building, 15 JJ
Thomson Avenue Cambridge CB3 0FD, UK Mike.Gordon@cl.cam.ac.uk

Abstract. A novel approach to program verification combining con-
straint programming methods with theorem proving is proposed.
Starting from an initial symbolic state and precondition, a program is
symbolically executed along all feasible paths and then a post-condition
is proved or refuted on the final states. Symbolic execution is by mecha-
nised reduction of a formal semantics applied to the program. The con-
straint solver incrementally prunes execution paths by testing if condi-
tions are feasible in the current state. At the end of each path, deductive
theorem proving and constraint solving are tried in sequence. If the theo-
rem prover fails, the constraint solver provides a decision procedure for a
finite subset of integers. It can also efficiently compute counter-examples.
There is a flexible trade-off between speed and assurance. Oracles may
be employed as solvers to boost efficiency, but slower formal tools (au-
tomatic or interactive) can be used when higher assurance is needed, or
the proof requires manual guidance. Theorems proved with oracles are
tagged, so the weakest link in a verification is apparent.

The approach has been successfully applied to textbook algorithms and
first results show that it is quite efficient. On simple examples most of the
proofs are done by the theorem prover, the constraint solver is mainly
used to compute counter-examples and check non-linear expressions.

1 Introduction

Our aim is to link together two different and complementary approaches to
program verification: (i) constraint solving applied to symbolic execution paths
(bounded model checking) and (ii) theorem proving applied to formal semantic
specifications (proof of functional correctness).

There is a spectrum of degrees of formality. At one end everything is coded
without any mechanical link to formal specifications (e.g. in Java). The formal
semantics is just documentation and the only link between it and the verifier
code is in the mind of the programmer. At the other extreme everything is me-
chanically deduced from a formalisation of the programming language semantics.
In the middle — this is the approach described in this paper — lies a mixture of
trusted code and theorem proving. Our aim is to explore efficiency/assurance
trade-offs obtained by using formal theorem proving tools within a larger verifi-
cation framework.

2 Hélene Collavizza and Mike Gordon

The rest of the paper is structured as follows: first a simple example is used to
illustrate key ideas. Next we explain our heuristics for combining constraint solv-
ing with theorem proving. We then discuss how theorems derived from a formal
semantics are used to generate symbolic execution paths. Finally, experimental
results are given (including comparisons with previous work).

2 Example: AbsMinus

Consider the Java class AbsMinus in Figure 1. This computes the absolute value
of the subtraction of inputs i and j. Lines 2-4 give its specification in JML (Java
Modelling Language [14]), where ensures is the postcondition and \result rep-
resents the value returned by the program. The JML specification of AbsMinus
is first parsed into a Hoare triple. The translation is not formal, so it is necessary
to trust that it faithfully extracts the Java semantics.

The representation resulting from the initial parsing phase contains three
parts: a precondition, a program and a postcondition, which are arguments to a
predicate RSPEC that specifies the meaning of the Hoare triple (see Figure 2):

FVpcr.RSPECpcr = Vsy So. p Sy A EVAL C S So = T 81 S

EVAL ¢ s1 s2 (see Section 4.1) is true if executing ¢ in an initial state s; re-
sults in a final state sy. The JML precondition is parsed to a predicate on the
initial state, represented by a A-expression. Since there is no explicit precon-
dition in AbsMinus, the parser returns the always-true predicate (A. T). The
program is represented using conventional abstract syntax constructors: Seq is
the sequential execution of instructions, Cond is the conditional and Skip is the
null instruction. The meaning of these constructors are specified in the defini-
tion of EVAL. The postcondition is a relation between the initial and final states,
represented as “As1 s2. --- 7. Such VDM-style relational postconditions reduce
the need for ghost (auxiliary) variables and can neatly represent JML’s \old
construct. States are finite maps from strings to values. Values may be scalars
(currently just integers) or arrays (finite maps from indexing numbers to values).
Details concerning arrays are omitted from this paper. We will write finite maps
in the form [z1 +— v1;...;2, — v,] and the result of looking up a variable x
in a map m as m”~z (the actual notations used in the theorem prover are more
cumbersome as they explicitly indicate whether values are scalars or arrays).
The symbolic execution of AbsMinus proceeds as follows:

A. Compute an initial symbolic state:
["i" = 45" — j; "k" — k; "Result" — Result; "result" — result]

In this initial state, ¢, 7, k, Result and result are integer variables, represent-
ing the symbolic value in the state of the strings (corresponding to program
variables) with the same name. Result is the value returned by the program
and represents both \result of the JML specification and the expression
returned by the Java program.

B. Evaluate the precondition on this initial state: T.

C. Start with an initial path that contains no condition and thus is equal to T.

Theorem-proving and Constraint Programming for Software Verification 3

class AbsMinus {
/*Q@ ensures

(i < j) ==> (\result == j-i))
&& ((i >= j) ==> (\result == i-j)); @*/

int result;

int k = 0;

if (i <= j) k = k+1;

if (k == 1 && i !'= j) result = j-i;
10 else

1
2
3
4
5 int absMinus (int i, int j) {
6
7
8
9

result = i-j; // ERROR: result = j-i;

12 return result;}}

Fig. 1. AbsMinus program in Java

D. Symbolically execute a path in the program

(a)

The first instruction (line 4 in Figure 2) is (Assign "result" (Const 0))).
The new state is computed directly from a small-step semantics that has
been formally verified (by interactive proof) to correspond to the big-step
reference semantics (see part 4.1). The new state is:
["i" = 45" — j; "k" — k; "Result" — Result; "result" — 0]
The next instruction (line 6) is executed in the same way to get state:
["i" +— ;""" — J; "k" +— 0; "Result" — Result; "result" — 0]
The conditional instruction (line 8) is executed using a heuristic that
combines the theorem prover (HOL4) and constraint solver to test if
the path is feasible (see part 3.2). The condition is first evaluated on
the current state, using the semantics of Boolean operations defined for
the language (see part 4.1). The result is: i <= j. We then test if this
condition is possible according to the precondition (which is T) and the
current path (which is also T). First the constraint solver is called to
solve the constraint system: i[-128..127] <= j[-128..127]. It trivially
finds solution (i,-128) (j,-128) (note that the integer format has been
fixed to 8 bits here using the heuristic described in 3.2). So condition
i <= j is added into the current path and execution continues on the
‘then’ part of the conditional instruction (line 10).
(Assign "k" (Plus (Var "k") (Const 1))) (line 10) is executed to get:
["i" = ;""" — §; "k" — 1;"Result" — Result; "result" — 0]
The next instruction (line 13) is a conditional branching on:
(And (Equal (Var "k") (Comnst 1)) (Not (Equal (Var "i") (Var "j")))).
This is is evaluated on the current state to —(i = j) using the semantics
of Boolean expressions. The constraint solver is called to test if this con-
dition is possible on the current path. The constraint system is:
i[-128..127] <= j[-128..127] not (i[-128..127] = j[-128..127])
which has a trivial solution. So i=j is added into the current path and
execution continues on the ‘then’ part (line 16).
The two last instructions on the path (line 16 and line 18) are executed
and the end of the path “i<=j A =(i=5)” is reached with symbolic state:
["i" = ;""" — J; "K" — 1; "Result" — j—i; "result" — j—i].

© 00 ~NO O W N = I’

= e
= O

I e e = S S SN S Y
O O 0 NO O WN

Hélene Collavizza and Mike Gordon

RSPEC
(As. T)
(Seq
(Assign "result" (Const 0))
(Seq
(Assign "k" (Const 0))
(Seq

(Cond
(LessEq (Var "i") (Var "j"))
(Assign "k" (Plus (Var "k") (Comst 1)))
Skip)
(Seq
(Cond
(And (Equal (Var "k") (Const 1))
(Not (Equal (Var "i") (Var "j™))))
(Assign "result" (Sub (Var "j") (Var "i")))
(Assign "result" (Sub (Var "i") (Var "j"))))
(Assign "Result" (Var "result"))))))
(As1 s2. (s17"i" < s17"j" ==> s2""Result" = s1°"j" - s1~"i") A
(s17"i" >= s17"j" ==> s27"Result" = s17"i" - s17°"j"))

Fig. 2. Relational specification of AbsMinus program

Now we compute the postcondition relation between the initial and final
states by (-reducing the application of the A-expression (lines 19-20) to the
symbolic initial and final state, resulting in:® ¢ >= j ==> (j - i = i - j).
We then show that the precondition and the path imply the postcondition:
(i<=j A =(i=f)) ==> (i >=j ==> (j - i =14 -).

This is easily proved using simplification in the theorem prover (see part 3.3).

. The next step is to backtrack to the previous conditional instruction to ex-

plore another path in the program. Execution goes to step D.(e) and tests
if the negation of the condition is possible. Since it is possible, execution
continues on the ‘else’ part which gives a correct path.

The next backtrack goes to step D.(c). Condition —(i <= j) is possible so
symbolic execution continues on the Skip instruction (line 11), which does
not modify the current state. Then the conditional on line 13 is reached.
Since the value of "k" in the current state is 0, the condition:

(And (Equal (Var "k") (Const 1)) (Not (Equal (Var "i") (Var "j"))))

is evaluated to false and so only the ‘else’ part is explored. This again gives
a correct path.

The symbolic execution returns a conditional term that represents the paths

that have been successively explored. Each possible value of this term is an
outcome which gives the final value of the state. This outcome is preceded by

RE

3

SULT when the path is correct, and by ERROR when the path contains an error or

Note that the first part of the conjunction in the lambda expression has been eval-

uated to true because Result = j-i

Theorem-proving and Constraint Programming for Software Verification 5

if i <= j then
(if —(i = j) then
RESULT["i"—i; "j"—j; "k"—1; "Result"j—i; "result"—j—i]
else
RESULT["i"—1i; "j"—j; "k"—1; "Result"—i—j; "result"—i—j])
else
RESULT["i"—1i; "j"—j; "k"—0; "Result"—i—j; "result"—i—j]

Fig. 3. Result of symbolic execution of AbsMinus

if i <= j then
(if —(i = j) then
RESULT["i"—1i; "j"—j; "k"—1; "Result"—j—i; "result"—j—i]
else
RESULT["i"+—1i; "j"+—j; "k"—1; "Result"r—j—i; "result"r—j—i])
else
ERROR["k"—0; "Result"—j—i; "result"rj—i; "i"+—(—32767); "j"—(—32768)]

Fig. 4. Result of symbolic execution of AbsMinus program with an error

TIMEOUT if symbolic execution failed to reach the end of the program for the given
number of steps (see 4.2). Figure 3 shows the result of the symbolic execution
of AbsMinus program.

AbsMinus program with an error

We now consider another version of AbsMinus where a ‘copy-paste’ error results
in j-i being returned instead of i-j (see line 11 in Figure 1).

When taking path i>j (line 8, Figure 1) in the program, the symbolic execu-
tion ends with final state:
["i" > 4;"j" > §; "k" — 1; "Result" — j—i; "result" — j—i]
The relational postcondition is then evaluated toi >= 57 ==> (5 - 7 = 7 - 7) but
the theorem prover fails to show that i > j ==> (i >= j ==> (j - i =4 - j)) so
the constraint solver is called and it trivially finds a first solution (i,-32767) and
(j,—-32768). This provides a counterexample to the correctness of the program.
Figure 4 shows the result of the symbolic execution of AbsMinus with this error.

3 Integrating theorem prover and constraint solver

Before presenting the algorithm of symbolic execution in more detail, we first
explain how our theorem prover and constraint solver can be integrated. The
goal is to get benefit of both: the theorem prover is good for proving theorems
on (infinite precision) integers, but is not able to provide values that satisfies
an existentially quantified formula.* On the other hand, constraint solvers can
efficiently find witnesses for existential quantifications over finite domains and
can be slow when the system has no solution, since a complete search through
the data domain could be performed.

4 There are theorem provers that can produce counterexamples, but not ours.

6 Hélene Collavizza and Mike Gordon

We first briefly explain constraint programming, then describe some tools
implemented in our theorem prover (HOL4) and finally describe our heuristics
to combine constraint solving and theorem prover to test the feasibility or cor-
rectness of program execution paths.

3.1 Constraint programming

Principles Constraint programming is a method for solving hard search prob-

lems. Applications include complex scheduling, sequencing, timetabling, routing

and dispatching [9]. Constraint programming solvers are based on a branch and

prune algorithm that combines local consistencies and efficient search heuristics.
A Constraint Satisfaction Problem (CSP) is defined as:

— a set of variables X = {x1,...,xn},

— a finite set D; of possible values for each variable z;, called domain,

— a set of constraints C = {cy, ..., cp,} where ¢; expresses a relation between
some variables

A solution of a CSP is an assignment of a value from its domain to every
variable that satisfies all the constraints.

Arc—consistency [16, 3] is the local consistency used for pruning CSP with
finite domains. Let X; denotes the set of variables that occur in constraint c;.
Constraint c; is arc-consistent if for any variable x; in X}, each value in domain
D; has a support in the domains of all other variables of X.

We illustrate arc—consistency based branch and prune to solve the CSP:
C={c;:21+x2 < 2,00 : 22 +23 <4,Dy ={0,1,2,3}, Dy = {0,1,2,3}}.
The pruning step starts by checking if constraint c; is arc—consistent. If value
0 is assigned to x; then value 1 for x4 satisfies constraint ¢q (i.e. value 1 in Do
is a support for value 0 in Dy). In the same way, value 1 has support 0 in Ds.
But values 2 and 3 have no support in Dy so ¢q is not arc—consistent and the
filtering step removes values 2 and 3 from domain D;. For the same reasons,
values 2 and 3 are removed from Dy. Then arc—consistency of constraint c, is
checked. It is arc—consistent for the new domain. Thus, after the filtering step,
the domain is: Dy = {0,1}, Dy = {0,1}. Then the search step is enabled. Value
0 is first selected for variable 27 and solutions (0, 0), (0, 1) are found. Then value
1 is selected for variable x; to get the last solution (1,0).

Calling the solver from the HOL4 theorem prover. Theorem proving
tools are implemented as functions written in Standard ML (“ML” for “meta-
language”). The HOL4 system provides many predefined functions for proving
theorems (e.g. various decision procedures, first-order resolution solvers, com-
mands for user-guided interactive proof search). We have augmented these by
defining an ML function extSolv to invoke an external constraint solver. Invoking
“extSolv tm to f” returns a tagged theorem, where the tag (which is propagated
whenever the theorem is used) indicates how the theorem was proved. The first
argument, tm, iS an existentially quantified term whose satisfiability is to be
checked, the second argument, to, is a timeout used to stop the search and the
third argument, £, is the integer format used to set the domains of variables in
the constraint system. The tagged theorem is built as follows:

Theorem-proving and Constraint Programming for Software Verification 7

— If the constraint solver does not find any solution, then the theorem F (tm=F)
tagged with the string CSPSolver:f is returned. This means that external
constraint solver has shown that there exists no value in [-2/71 2/=1 — 1]
that satisfies tm and thus that —tm is true for integers coded on f bits.

— If the constraint solver finds a solution, then this solution is used to instan-
tiate the existentially quantified variables in tm and the theorem F (tm=T) is
proved. This theorem is not tagged as externally generated since its proof
has been done inside HOL4 using the witness from the solver.

3.2 Heuristics for testing feasibility of paths

A key point of symbolic execution, compared to bounded model checking meth-
ods, is that only semantically feasible paths are explored. But this is an improve-
ment only if feasibility testing is very fast. Our heuristic for testing feasibility
first uses the faster external solver and then, if necessary, slower theorem proving
facilities provided by the HOL4 system are tried.

Let @ be the formula to test, where & = Ji. pre(i) A path(i) A test(i) and @
represents input data, pre is the precondition, path is the current path (i.e con-
junction of decisions that have been previously taken) and test is the Boolean
expression test occurring in a conditional branch. The following two-stage heuris-
tic method is used to decide feasibility of ®.

1. Evaluate test on the current state by symbolically executing the semantics
Boolean expressions of the language (see 4.1). If it is true or false then return
the corresponding value and stop.

2. Call the constraint solver with a small timeout and a small integer format.
(a) If there is a solution, then return true.
(b) It there is no solution, or a timeout, use HOL4’s simplification and integer
decision procedures to try to decide the satisfiability of ®.

Symbolic evaluation (1) is quite efficient and is usually successful when the cur-
rent state implies the condition. The constraint solver (2) is also efficient because
the domains are small and a timeout is used. Furthermore, if the path is possi-
ble for a value inside [-2/71,2/=1 — 1] it is a fortiori true for a larger domain.
The timeout is useful when the path is not possible. In this case, the constraint
solver could be very slow to show that there is no solution, since a complete
search could be necessary. In this case theorem proving can be faster.

3.3 Heuristic for testing correctness of paths

While efficiency is the key point when testing feasibility of paths, soundness is a
priority when testing their correctness. So the theorem prover is called first and
only if that fails the constraint solver is called using a large timeout and large
integer format. If the solver succeeds then a tagged theorem is returned. If the
timeout is reached, or if higher assurance than that provided by the solver is
required, then interactive proof can be done.

8 Hélene Collavizza and Mike Gordon

(Vs. EVAL Skip s s)
A (Vs v e. EVAL (Assign v e) s (s+(v,(neval e s))))
(Vs v. EVAL (Dispose v) s (s-v))
A (Vcl c2 s1 s2 s3. EVAL c1 s1 s2 A EVAL c2 s2 s3
= EVAL (Seq cl c2) sl s3)
A (Vcl c2 s1 s2 b. EVAL cl1 s1 s2 A beval b si
= EVAL (Cond b c1 c2) si1 s2)
A (Vcl c2 s1 s2 b. EVAL c2 s1 s2 A —(beval b s1)
= EVAL (Cond b c1 c2) si1 s2)
A (Vc s b. —beval b s = EVAL (While b c) s s)
A (Vc sl s2 s3 b.
EVAL ¢ s1 s2 A EVAL (While b c) s2 s3 A beval b si
= EVAL (While b c) s1 s3)
A (Ve sl s2 v.
EVAL c s1 s2
= EVAL (Local v c¢) s1 (if v € sl1 then s2+(v,(s1°v)) else s2-v))
A (Vs p. p s = EVAL (Assert p) s s)

>

Fig. 5. Big-step semantics

4 Symbolic execution

We represent programs and specifications as terms in higher order logic and
use derived rules and tactics from the HOL4 system to perform parts of the
computation, but other parts are programmed directly in ML and Java.

In earlier work (see [8]), semantics preserving transformations, e.g. converting
pre and postconditions to a form suitable to submitting to a constraint solver,
were performed by unverified Java programs. We have replaced many of these
with formal rewriting or custom derived rules®. The implementations of such
truth preserving term manipulations is straightforward, so is not elaborated
here.

4.1 Operational semantics

We use mechanised proof to compute symbolic single steps when executing a
path (see Point D in Section 2). The formal representation of programs shown
in Figure 2 has a standard big-step operational semantics [5] shown in Figure 5.
The relation EVAL is the least relation satisfying the conjunction of rules shown
in the semantics. A term EVAL c¢ s; s2 means that executing command c¢ in an
initial state s; terminates in a state sy (a more standard notation is (¢, s1) | s2);
neval e s is the value of integer expression e in state s; beval b s is the value
of Boolean expression b in s; s+(v,n) is the state obtained from s by making
variable v have value n; s~v is the value of v in s, v € s means v is defined in s
and s-v is the result of removing v from s.

® Example: converting formulas of the form =((41 = Bi) A -+ A (A, = By) At) to
(A1 A=B1)V---V(An A=By)V—t), or converting \forall JML statements to finite
conjunctions.

Theorem-proving and Constraint Programming for Software Verification 9

(STEP1 ([], s) = ([], ERROR s))
(STEP1 (Skip :: 1, s) = (1, RESULT s))
(STEP1 (Assign v e :: 1, s) = (1, RESULT(s+(v, (neval e s)))))
(STEP1 (Dispose v :: 1, s) = (1, RESULT(s-v)))
(STEP1 (Seq c1 ¢2 :: 1, s) = (cl :: ¢2 :: 1, RESULT(s)))
(STEP1 (Cond b cl1 c2 :: 1, s) =

if beval b s then (cl1 :: 1, RESULT s) else (c2 :: 1, RESULT s))
A (STEP1 (While b c :: 1, s) =

if beval b s then (¢ :: While b ¢ :: 1, RESULT s)

else (1, RESULT s))

A (STEP1 (Local v c :: 1, s) =

if v € s then (c :: Assign v (Const(s"v)) :: 1, RESULT s)

else (c :: Dispose v :: 1, RESULT s))

>>>> >

A (STEP1 (Assert p :: 1, s) = if p s then (1, RESULT s) else (1, ERROR s))

Fig. 6. Small-step semantics

The big-step semantics is not efficient to execute directly,® so we defined a
small-step semantic function STEP1 (see Figure 6) and interactively proved that
this corresponds to EVAL [17]. Define a small-step transition relation by:

SMALL_EVAL (11,s1) (12,s2) = (STEP1 (11,s1) = (12,RESULT s2))
where 11 and 12 are lists of commands ([] is the empty list and [c] is the
singleton list containing c). A routine mechanical proof then establishes:

FVc sl s2. EVAL ¢ s1 s2 = TC SMALL_EVAL ([cl,s1) ([1,s2)

where TC SMALL_EVAL is the transitive closure of SMALL EVAL

The function STEP1 is efficiently executed inside HOL4 using a call-by-value
reduction engine due to Barras [2]. If STEP1(11,s1) = (12,r) then executing one
step of the command at the head of 11 in state s1 results in (12,r), where 12 are
the remaining commands to be executed and r is the result, which can either
be RESULT(s2) if the step succeeds or ERROR(s2) if there is an assertion failure.
There is a third kind of result, TIMEOUT (s2), which is not generated by STEP1 but
can arise when executing sequence of steps (see below).

4.2 Symbolic execution algorithm

Symbolic execution is by depth first search of feasible paths. A user-specified pa-
rameter count bounds the number of steps. (e.g. when programs contain loops).
Let pre, path, s1, s2, post be terms as follows:

— pre: precondition (predicate on states represented as a A-expression)

path: current path (conjunction of decisions taken so far)

— s1: initial state before program execution

— Sg: current state after execution of the current path

post: postcondition (predicate on pairs of states represented as a M\-expression)

5 There are methods of executing inductive relations using techniques adapted from
Prolog interpreters, but our theorem prover does not support these.

10 Hélene Collavizza and Mike Gordon

The initial state s1is automatically built from the program, with logical vari-
ables representing the symbolic values of the program variables. Let 1 be the
list of terms that represent the instructions of the program (initially this will
be [c], where c is the program being symbolically executed). Let valPre be the
precondition evaluated on s;, and valPost be the postcondition evaluated on
the pair (s1, s2). We assume that we have two functions:

— testPath tests if condition b is feasible on the current path ie if
val Pre A path A b has a solution,

— verifyPath tests the correctness of the path i.e if val Pre A path A —val Post
has no solution”. This function returns the outcome (RESULT s) if the pro-
gram is correct along the path and otherwise returns the outcome (ERROR Serr)
where s.,., contains the error that has been found.

These two functions call the constraint solver and the theorem prover according
to the heuristics described in part 3.2 and 3.3.

The symbolic execution algorithm is detailed in Figure 7. If the last instruc-
tion has been reached (point 1) then the correctness of the path is tested. If
the maximum number of steps (count) reaches zero (point 3) then an outcome
TIMEOUT(s) is generated. If the first instruction is not a conditional (point 5),
then next state is computed and execution continues on the next instruction. If
the first instruction is a conditional instruction (point 6) then the feasibility of
the condition and the feasibility of the negation of the condition are tested. Note
that backtracking is performed when the instruction is a conditional instruction
or a While-instruction because the two possible paths are explored (i.e points 6
and 13 are both executed).

5 Experimental results

In this section, we report experimental results for a set of textbook algorithms.
All experiments were performed on an Intel(R) Pentium(R) M processor 1.86GHz
with 1.5G of memory. The theorem prover used is HOL4 and the constraint solver
is constraint-programming tool Ilog JSOLVER. Parser from Java to internal syn-
tax is built on Eclipse JDT (Java Development Tool).

We first introduce the whole set of examples, then illustrate the main points
of our approach and finally discuss related work.

5.1 Set of programs

Tritype Our first example is not a textbook algorithm, however we selected
it because it illustrates programs that do not contain loops but have complex
conditional statements. This kind of control structure is frequently found in
command and control systems. Tritype is a standard benchmark in test case
generation since it contains numerous non-feasible paths. This program takes
three positive integers as inputs (the triangle sides) and returns a value that
determine the type of the triangle (the Java program is given in Appendix 1).
This example illustrates how unfeasible paths are cut.

7 this means that valPre A path A —walPost is false for each input value and so that
valPre A path = val Post is true

Theorem-proving and Constraint Programming for Software Verification 11

execSymb(pre, path,l, s1, s2, count, post) =
1. If 1=[] the end of a path is reached so result is verifyPath(pre, path, s1, sz, post)
2. else
3. if count = 0 then the program can’t be executed with the given number
of execution steps, so the result is (TIMEOUT s2).
4. else let 1 = [c,1’]
5. if ¢ is not a control instruction (Cond or While) then call STEP1
to compute the next state s’ according to the small-step semantics,
then recursively call execSymb(pre, path,l’, s1,s’, count—1, post)
to continue symbolic execution.
6. else let b be the condition of ¢, then call testPath(pre, s1, path,b)
to know if the condition is possible on the current path
7. if b is possible, take the corresponding path in the program.
8. If c is the conditional (Cond b Cinen Ceise) then
recursively call execSymb(pre, (path A b), [Cihen, '], 51, 2, count, post)
to execute the then part.
9. If ¢ is the loop instruction (While b cyhite) then recursively call
execSymb(pre, (path A b), [(While b cyhite),l'], 81, 82, count, post)
to enter the loop.
10. if b is not possible, take the corresponding path in the program.
11. If c is the conditional (Cond b Cihen Ceise) then
recursively call execSymb(pre, (path A =c), [ceise, '], $1, S2, count, post)
to execute the else part.
12. If c is the loop instruction (While b cyhie) then recursively call
execSymb(pre, (path A —b),l’, s1, s2, count, post)
to exit the loop.
13. Call testPath(pre, s1, path,—b) to know if the
negation of the condition is possible on the current path
and take the corresponding path as explained above.

Fig. 7. Symbolic execution algorithm

Sum of the n first integers computes the sum of the n first integers. The
specification is that it returns n x (n + 1)/2 (where n is the data input). This
illustrates how loops are handled and how symbolic execution sets a constant
value to n and thus avoids getting a non-linear term at the end of the path.

Sum of integers from P to N computes the sum of the integers from p to
n where p and n are input data (see Appendix 2). The precondition is that p is
less or equal to n and the postcondition is that the value returned is n x (n +
1)/2 — (p—1) x p/2. This example illustrates how the constraint solver is called
when the term to be verified at the end of the path is non-linear.

Binary search is the well known binary search program that determines if a
value z is present in a sorted array a. We also consider an incorrect version of
this program where a copy-paste error has been inserted (see Appendix 3).

Bubble sort with precondition is a bubble sort algorithm where a precondi-
tion sets the values of the array to be sorted in decreasing order and to contain
the values from a.length — 1 to 0. This example is from Mantovani et al. [1].

12 Hélene Collavizza and Mike Gordon

name |#cond|#condEval|#cut|#path|#verifHOL|#verifCSP|HOLtime|CSPtime
Tritype 27 15 16 10 10 0 39.410s | 0.481s
Sum 12 0 1 11 0 11 17.433s | 0.119s
SumPtoN 12 0 1 11 0 11 344.878s | 13.501s
Bsearch 51 31 21 21 21 0 237.071s| 0.315s
BsearchKO| 25 13 13 7 7 0 119.499s | 0.514s
BubbleSort| 109 109 10 1 1 0 526.989s | 0.0s

Table 1. Experimental results

5.2 Discussion

Table 1 shows statistics on the solving process for our set of examples. In this
table, #cond (resp. #condEval and #cut) is the number of conditions reached
in the program (resp. that have been decided using simplification in HOL4 and
that have been proven false). #path is the number of feasible paths. #verifHOL
(resp. #verifCSP) is the number of paths that that have been verified using
HOLA4 (resp. using the constraint solver). HOLtime (resp. CSPtime) is the time
spent by HOL4 for proofs and symbolic execution (resp. with the CSP solver).
For Sum and SumPtoN, we verified all numbers of loop steps from 0 to 10, and
for Bsearch and BubbleSort program, the length of the array has been set to 10.

Tritype As shown in table 1, half of the conditions were decided by evaluating
the condition on the current state. This is due to the fact that many tests in
the Tritype program (see Appendix 1) are on a local variable which is assigned
constant values, according to the number of triangle sides which are equal.

Sum of the n first integers This example illustrates how loops are handled.
Our symbolic execution algorithm is bounded by the maximum number of in-
structions that can be executed, which provides a bound for loop unwinding. All
paths through the loop containing less than this maximum number are explored.

For the Sum example, adding loop entrance and exit conditions (see points 9
and 12 in figure 7) sets a constant value to variable n. For example, when the
loop has been entered 5 times, the term to be verified is:
In.(n>0)A0<nAL<nA2<nA3<nAL<nA=(5<n))A=(10=n*x(n+1)/2).
Since n must satisfy both 4 < n and —(5 < n) it follows that n = 4, so the
postcondition —(10 = n * (n + 1)/2) trivially holds.

The results in Table 1 show that 11 paths have been explored (entering 0,
1, 2, ..., 10 times into the loop) and that all the paths were solved with the
constraint solver. This is because simplification in HOL4 doesn’t handle non
linear terms. However, since the value of n is constant as explained above, the
constraint solver efficiently verifies this term.

Sum of integers from p to n If we now start the sum with input data p, the
decisions taken to enter the loop, or not, won’t set the value of n, since it will
depend on p. For example, the term below is the term to be verified when the
loop has been entered 5 times:
Inp.m>0Ap>0Ap<n)AP<nAPp+1<nAp+2<nAp+3<nAp+4A
~(p+5<n)A-p+ P+ +(+2)+@+3)+(p+4) =n*(n+1)/2—(p—1)xp/2)

Theorem-proving and Constraint Programming for Software Verification 13

The conditions on the path imply that n = p + 4, but this does not set any
constant value for n. The results in Table 1 show that execution time for HOL4
is 20 times slower than time for the Sum program. This is due to the fact that
simplification rules take more time trying to simplify the term before they finally
fail. Also, the constraint solver takes 100 more times than for the Sum program
because here, the term to be verified is not instantiated.

Binary search Table 1 shows that all paths were solved with the theorem-
prover and that more time was spent with the constraint solver for the Bsearch
with an error since it was called to find the errors.

Two errors were found in the incorrect Bsearch program (Appendix 3). The
first for path ~(as=z) Az<as A—(a1=z) A—(x<a;) for data input x = -32768 and
a = [-32768,-32768,-32768,-32767,-32766,-32766,-32766,-32766,-32766,-32766]. Value x
is first searched on the left part of the array, so index le ft = 0 and right=3. Then
it is searched on the right part, but the error in the program set the right index
instead of the left one and so left = 0 and right=0. Since the array is initially
sorted, ag < a; and the condition —~(z < a1) in the path implies that ay < x.
Thus the value is then searched on the right. Again the error in the program
modifies the right index to get left = 0 and right = —1. So the execution stops
with result = —1 while value -32768 is in the array.

Note that this example also illustrates our heuristic for testing paths: the
theorem-prover has been called for testing two paths because a time-out was
reached with the constraint solver.

Bubble sort Table 1 shows that we explored the unique feasible path in this
program and that all conditions were decided by evaluating the condition on
the current state. In fact, the precondition set the initial values of the array.
The 10 conditions that were false correspond to the 10 times where condition
Jj < a.length — i — 1 was false (i.e. exiting the inner loop).

5.3 Discussion of related work

We first discuss previous work based on constraint programming for software val-
idation. Then we contrast our symbolic execution algorithm to bounded-model
checking (BMC). And last we discuss other approaches that merge theorem
proving and automatic formal verification methods.

Constraint logic programming was first used for test generation of programs
[12,13,15]. Gotlieb et al. [4] showed how to represent imperative programs as
constraint logic programs and used predicate abstraction and conditional con-
straints within a constraint logic programming framework. This test-generation
methodology was generalised and applied to bounded program verification in [7],
where a hybrid constraint system including Booleans for control and integers for
data was generated and solved. In order to avoid exploring spurious execution
paths, the approach presented in [8] introduces the symbolic execution algorithm
used here which prunes unfeasible paths using constraint-based solvers®.

8 More precisely, this previous approach combined the ILOG CPLEX MIP Mixed Inte-
ger Programming tool which is based on the simplex algorithm with ILOG JSOLVER
we used in this paper

14 Hélene Collavizza and Mike Gordon

This symbolic execution algorithm is similar to bounded-model checking ap-
proaches in the sense that it explores paths of bounded length (see [10] for a
recent survey). But it differs in at least two ways. First, the feasibility of paths
is tested with efficient solvers and thus only feasible paths are explored. Second,
each path is verified separately and thus the formulas to be proven are smaller.
This is better adapted to theorem proving or constraint solving methods, which
are not tailored to handle large formula with a complex Boolean structure.

The alternative BMC method for software consists in building a formula
whose models correspond to program execution paths of bounded length that
violate a property. The satisfiability of this formula is checked by replacing arith-
metic operators by bit-vectors operators to obtain a propositional formula which
is solved using efficient SAT solvers. CBMC [6] is one of the most popular tools
that implements BMC for checking C programs. In recent work [1], Armando et
al. used SMT solvers to verify linear programs with arrays.

A comparison of performances between BMC and our previous approach
that combines symbolic execution and constraint programming is provided in [8].
Performances of the approach presented in this paper are in average two hundred
times slower. But most of the proofs are done within the theorem prover.

Another interesting piece of work that combines theorem proving with au-
tomatic solvers is presented in [11]. The Why/Krakatoa/Caduceus platform is
based on the Why language, which is dedicated to program verification. Both
Java and C programs are translated to Why programs. A tool based on a Weak-
est Precondition calculus generates verification conditions for interactive provers,
such as Coq or Isabelle and automatic provers such as Simplify or SMT solvers
Yces. This approach differs from ours because it doesn’t combine dynamic theo-
rem proving with other automatic solvers. On the contrary, it generates a set of
verification conditions, a subset of which can be checked by a theorem prover.
Experiments with the Why platform, showed that our approach is less efficient
on the tritype program (8.85s with Why and 39.8s for our approach), but that
our approach was applicable to the binary search program while Why approach
was not (unless an invariant is provided).

6 Future work

We mentioned in the introduction that the work reported here lies in the mid-
dle of a verification tool implementation spectrum with unverified tools at one
end and everything computed by deduction inside a theorem prover at the other
end. In the future we plan to explore other points in this spectrum. In particular
we would like to perform the complete symbolic execution and path extraction
within a theorem prover and compare performance and scalability with the ap-
proach described here. Preliminary experiments suggest that this is feasible, but
there are efficiency challenges. However, in applications requiring certification,
having high assurance that verification is sound is valuable, so it is useful to cal-
ibrate the cost of increasing soundness assurance, even if for some applications
the price is too high.

Theorem-proving and Constraint Programming for Software Verification 15

Acknowledgements

We would like to thank Michel Leconte for much help and advice with JSOLVER.
Many thanks also to Andreas Podelski for fruitful discussions on bounded model
checking and for suggesting one of the examples.

References

1.

11.

12.

13.

14.
15.

16.

17.

Armando A., Mantovani J., and Platania L. Bounded Model Checking of C Pro-
grams using a SMT solver instead of a SAT solver. Proc. SPIN’06. LNCS 3925,
Pages 146-162.

. Bruno Barras. Programming and Computing in HOL. Theorem Proving in Higher

Order Logics, 13th International Conference, TPHOLs 2000, Portland, Oregon,
USA, August 14-18, 2000. LNCS 1869: 17-37.

C. Bessiere, E.C. Freuder, and J.-R. Rgin. Using constraint metaknowledge to
reduce arc consistency computation. in Artificial Intelligence 107: 125-148, 1999.

Botella B., Gotlieb A., Michel C. Symbolic execution of floating-point computa-
tions. Software Testing, Verification and Reliability, 16:2:97-121,2006.

Juanito Camilleri and Tom Melham, Reasoning with Inductively
Defined Relations in the HOL Theorem Prover, Technical Re-
port 265, Computer Laboratory, University of Cambridge, 1992.
http://www.comlab.ox.ac.uk/tom.melham/pub/Camilleri-1992-RID.pdf

Clarke E., Kroening D., Lerda F. A Tool for Checking ANSI-C programs. Procs of
TACAS 2004, LNCS 2988: 168-176, 2004

Collavizza H. and Rueher M. Software Verification using Constraint Programming
Techniques. Procs of TACAS 2006, LNCS 3920: 182-196, 2006.

Collavizza H., Rueher M., and van Hentenryck P. A Constraint-Programming
Framework for Bounded Program Verification. Proc. of CP200, LNCS 5202: 327-
341,2008, Springer-Verlag.

Rina Dechter: Constraint Processing. Morgan Kaufmann publisher,2003

. Vijay D’Silva, Daniel Kroening and Georg Weissenbacher. A Survey of Automated

Techniques for Formal Software Verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol 27, N 7, July 2008.

Fillitre J.C., Claude March.The Why/Krakatoa/Caduceus Platform for Deductive
Program Verification Proc. CAV’2007, LNCS 4590: 173-177, 2007.

Gotlieb A., Botella B. and Rueher M : Automatic Test Data Generation using
Constraint Solving Techniques. Proc. ISSTA 98, ACM SIGSOFT (2), 1998.
Daniel Jackson and Mandana Vaziri, Finding Bugs with a Constraint Solver, ACM
SIGSOFT Symposium on Software Testing and Analysis, 14-15, 2000.

JML home page http://www.cs.ucf.edu/ leavens/JML/

Sy N.T. and Deville Y.: Automatic Test Data Generation for Programs with Integer
and Float Variables. Proc of. 16th IEEE ASEO1, 2001.

A. Mackworth : Consistency in networks of relations. Journal of Artificial Intelli-
gence, pages 8(1):99-118, 1977.

Tobias Nipkow. Winskel is (almost) Right: Towards a Mechanized Semantics Text-
book. In Foundations of Software Technology and Theoretical Computer Science,
LNCS 1180, 1996, 180-192.

16 Hélene Collavizza and Mike Gordon

Appendix 1: Tritype program

/** program for triangle classification
* GQreturn 1 if (i,j,k) are the sides of any triangle
* if (i,j,k) are the sides of an isosceles triangle
if (i,j,k) are the sides of an equilateral triangle
if (i,j,k) are not the sides of any triangle */
class Tritype {
/*@ requires (i >= 0 && j >= 0 && k >= 0);
@ ensures
@ (((i+j) <=k || (G+k) <= i || (i+k) <= j)
0 &g ((1((1+3) <=k || (j+k) <=1 || G+k)
0 && ((1((i+j) k |1 (G+k) <= i || (i+k)
@ && ((1(GE+)) <=k |1 (G+k) <= i || (i+k) <= j) && !(i==j && j==k)
ox/
static int tritype (int i, int j, int k) {
int trityp = 0;
if A ==0 1l j==01l k==0) trityp =4
else {
trityp = 0;
if (i == j) trityp = trityp + 1;
if (4 k) trityp = trityp + 2;
if (j == k) trityp = trityp + 3;
if (trityp == 0) {
if ((i+3) <=k || ((G+k) <=1 || (+k) <= j))
trityp = 4;
else
trityp = 1;

N

*

w

*

»

==> (\result == 4))

}
else {
if (trityp > 3) trityp = 3;
else {
if (trityp == 1 && (i+j) > k) {
trityp = 2;
else {
if (trityp == 2 & (i+k) > j) {
trityp = 2;
}
else {
if (trityp
trityp = 2;

3 && (j+k) > i) {

else {
trityp = 4;

return trityp;

Appendix 2: Sum of integers from P to N

/* Computes the sum of integers from p to n.
*/
public class SumFromPtoN{
/*@ requires (n >= 0) & (p >= 0) && (p<=n) ;
@ ensures \result == nx(n+1)/2 - (p-1)*p/2;
ox*/
int sum (int p,int n) {

Appendix 3: Bsearch program

class Bsearch {
/*@ requires (\forall int i; (i >= 0 & i < a.length -1); al[i] <= al[i+1]);
@ ensures
@ ((\result == -1) ==> (\forall int i; (i >= 0 && i < a.length); a[i] != x))
@ && ((\result !'= -1) ==> (a[\result] == x));

Theorem-proving and Constraint Programming for Software Verification

@x/
int binarySearch (int[] a, int x) {
int result = -1;
int mid
int left = 0;
int right = a.length -1;
while (result == -1 && left <= right) {
mid = (left + right) / 2;
if (almid] == x)
result = mid;
else {
if (almid] > x)
right = mid - 1;
else
left = mid + 1; //ERROR: right = mid - 1;

¥
¥

return result;

Appendix 4: Bubble Sort program

/* Bubble sort with a precondition:

* the array contains numbers between 0 and a.length
* sorted in decreasing order
*/

class BubbleSort {
/x@ requires (\forall int i; O<= i & i < a.length; a[i] == (a.length-1)-i);
@ ensures (\forall int i; 0<= i &% i < a.length-1; alil<=a[i+1]);

ox/
static void sort(int[] a) {
int i=0;
while (i<a.length-1){
int j=0;
while (j < (a.length-i)-1) {
if (aljl>alj+1]1) {
int aux = al[jl;
aljl= alj+1];
alj+1] = aux;
}
J=i+L
i=i+1;
}
+

17

