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Abstract:
In this paper, we study the problem of task reallocation for load-balancing in distributed data pro-
cessing models that tackle vast amount of data. In this context, we propose a novel strategy based
on cooperative agents used to optimize the rescheduling of tasks for multiple jobs submitted by
users in order to be executed as soon as possible. It allows an agent to determine locally the next
task to process and the next task to delegate according to its knowledge, its own belief base and its
peer modelling. The novelty of our strategy lies in the ability of agents to identify opportunities and
bottleneck agents, and afterwards to reallocate some of the tasks. Our contribution is that, thanks to
concurrent bilateral negotiations, tasks are continuously reallocated according to the local percep-
tion and the peer modelling of agents. In order to evaluate the responsiveness of our approach, we
implement a prototype testbed and our experimentation reveals that our strategy reaches a flowtime
which is close to the one reached by the classical heuristic approach and significantly reduces the
rescheduling time.

1 INTRODUCTION

Data science involves the processing of large vol-
umes of data which requires distributed file sys-
tem and parallel programming. This emerg-
ing distributed computing topic brings new
challenges related to task allocation and load-
balancing. This paper is concerned with a class
of practical applications where (a) some jobs, i.e.
sets of tasks, are concurrently submitted by users
in order to be executed as soon as possible, and
(b) some of the resources, e.g. data, required to
successfully execute a task are distributed at dif-
ferent network nodes.

In this class of applications, we consider
here MapReduce (Dean and Ghemawat, 2004)
which is the most prominent distributed data
processing model for tackling vast amount
of data on commodity clusters as with
Hadoop (The Apache Software Foundation,
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2020) or Spark (Zaharia et al., 2012). MapRe-
duce jobs are divided into a set of tasks that
are distributed on nodes ; the division labour
should capitalize upon the way resources are
distributed in the system. Indeed, as several
resources are necessary to perform a task, any
initial allocation inevitably requires fetching
some of these resources from other nodes, thus
incurring an extra time cost for task execution.

In order to tackle the problem of load-
balancing and task reallocation in applications
such as those that motivate this work, multi-
agent technologies have received a lot of atten-
tion (Jiang, 2016). Most of the existing works
adopting the market-based approach (Walsh and
Wellman, 1998; Shehory and Kraus, 1998; An
et al., 2010; Turner et al., 2018) model the load-
balancing problem as a non-cooperative game.
By contrast, in line with (Baert et al., 2019), we
assume that agents are cooperative, viz.: they
share the same objective and there is no shared
knowledge, including any knowledge about the
whole task allocation. Beyond (Baert et al., 2019),
we consider here several jobs which are divided



into a set of tasks that can be performed by any
multi-task agent. The agents aim at minimizing
the mean flowtime of several concurrent jobs,
i.e. the average completion time of these jobs.
The main difficulty lies in the fact that task re-
allocation does not only change the workload of
each agent but also their own scheduling. For
this purpose, we propose a negotiation strategy
which is composed of a consumption strategy
and a delegation strategy. While the consump-
tion strategy allows agents to decide the next
tasks to execute, the delegation strategy decides
which deal is suggested or accepted. The latter
is based on peer modelling and determines the
agent behaviour at each point of choice for the
negotiation protocol: (a) the offer strategy selects
a potential delegation, i.e. a task and a receiver;
(b) the acceptability rule determines whether the
agent accepts or declines a delegation. Inspired
by our practical application, the experiments on
our testbed evaluate the responsiveness of our
approach.

Specifically, our contributions are as follows:

• We formalize the multi-agent situated task al-
location problem with concurrent jobs where
tasks have different costs for different agents
due to the resource locality.

• We design a multi-agent strategy which al-
lows the agents to continuously identify
opportunities and bottleneck agents within
a current unbalanced allocation. After-
wards, concurrent and bilateral negotiations
amongst agents are triggered to locally del-
egate some of the tasks. Tasks reallocations
occur continuoulsy according to the local per-
ception and the peer modelling of agents.

• We conduct extensive experiments which
show that our method reaches a flowtime
which is close to the one reached by the clas-
sical heuristic approach and significantly re-
duces the rescheduling time.

The paper is structured as follows. After
an overview of the related work in Sec. 2, we
formalize the multi-agent situated task alloca-
tion problem with concurrent jobs in Sec. 3.
Sec. 4 describes the operations of consump-
tion/delegation and the negotiation process.
Sec. 5 specifies the consumption strategy, i.e.
how agents choose the scheduling order of their
own bundle. Sec. 6 details the delegation strat-
egy, i.e. how agents choose which task to negoti-
ate with whom. Our empirical evaluation is de-
scribed in Sec. 7. Finally, Sec. 8 summarizes our

contribution and outlines our future work.

2 RELATED WORK

Classical scheduling problems are constrained
optimization problems that can be approximated
by different heuristics such as hill climbing or
simulated annealing (See (Pinedo, 2008) for a
survey). The limitations of these approaches for
task reallocation in distributed systems are due
to the following aspects:

• Decentralization: global control causes a per-
formance bottleneck as it must collect status
information of the entire system in real time.
By contrast, agents can take local decisions
over an existing allocation in order to im-
prove the load-balancing.

• Adaptation: classical scheduling problems
are static. The inaccurate estimation of tasks
execution time and the disruptive phenom-
ena (task consumption, job release, etc.), may
require major modifications in the existing al-
location to stay optimal. Agents can act in dy-
namic environments that evolve over time.

These are the reasons why multi-agent
scheduling has received significant attention for
load-balancing problems in distributed systems
(See (Jiang, 2016) for a recent survey). Baner-
jee and Hecker propose in (Banerjee and Hecker,
2017) a general distributed resource allocation
protocol for load-balancing coarse-grained jobs
on a massively distributed system. They empha-
size that the local interactions between agents
lead to some complex high-level emergent prop-
erties. By contrast, Selvitopi et al. investi-
gate in (Selvitopi et al., 2019) the simultaneous
scheduling of fine-grained tasks in order to im-
prove the data locality and balance the work-
loads. Their approach is based on graph and hy-
pergraph models which make use of application-
specific knowledge. Our study aims at bridg-
ing this granularity gap by the reassignment of
independent tasks within multiple jobs in an
application-agnostic way.

Schaerf et al. investigate in (Schaerf et al.,
1995) the adaptive behaviour of agents for effi-
cient load-balancing using multi-agent reinforce-
ment learning. Turner et al. combine in (Turner
et al., 2018) supervised classification learning
with an internal decision-making process for
task assignments. Conversely, we do not assume
any prior model of the data/environment since



it is not relevant considering the class of practical
applications we are concerned with.

In (Jiang and Li, 2011), the authors distin-
guish two kinds of vicinity: the locality of the re-
sources which are needed to perform the tasks,
and the neighbourhood of the agents. On this
latter point, we assume a fully connected so-
cial network with uniform communication costs.
In (Zaharia et al., 2010), the authors are con-
cerned with data locality. In the context of the
scheduling problem of MapReduce jobs com-
posed of multiple tasks, they try to place com-
putations near their input data in order to maxi-
mize the system throughput. In this paper, we
abstract away from the practical applications,
but we address a similar challenging problem by
considering task consumption, job release and
slowing down nodes as unexpected events in a
dynamic environment.

On one hand, most of the existing works
adopting the market-based approach model the
load-balancing problem as a non-cooperative
game. For instance, An et al. propose in (An
et al., 2010) a distributed negotiation mecha-
nism where selfish agents negotiate over re-
sources both a contract price and a decommit-
ment penalty. On the other hand, most of the
solving algorithms for the distributed constraint
optimization problems (See (Fioretto et al., 2018)
for a recent survey) try to optimize a single-
objective function which is assumed to be util-
itarian (a sum of costs to be minimized). More
recently, (Baert et al., 2019) targets an egalitar-
ian objective which is the minimization of the
maximum completion time of the tasks to per-
form (i.e. the makespan). In this paper, we
consider the problem of coordinating agent de-
cisions to find a globally optimal solution for
multi-objective functions. The agents try to min-
imize the mean flowtime of several concurrent
jobs, i.e. the mean of the maximum completion
times of the tasks in these jobs.

3 SITUATED TASKS

We formalize here the multi-agent situated task
allocation problem with concurrent jobs.

A job is a set of independent, non divisible
and non preemptive tasks without precedence
order. The execution of each task requires re-
sources which are distributed at different nodes.
We consider that the resources are transferable
and non consumable.

Definition 1 (Distributed system). A system is a
triple D= 〈N,E,R〉 where:

• N = {ν1, . . . ,νm} is a set of m nodes;
• E is an acquaintance relation, i.e. a binary and

symmetric relation over N;
• R = {ρ1, . . . ,ρk} is a set of k resources having a

size (e.g. |ρi|). The locations of the resources,
which are possibly replicated, are determined by
the function:

l : R→ 2N (1)

For simplicity, we assume that there is exactly
one agent per node (the set of agents is N) and all
the resources are accessible by any agent.

The execution of a job (without deadline) con-
sists of the performance of a set of independent
tasks which require resources to produce an out-
come.

Definition 2 (Job/Task). Let D be a distributed
system and Outcome be the space of outcomes. We
consider the set of ` jobs J = {J1, . . . , J`}. Each job
Ji is a set of ki tasks Ji = {τ1, . . . ,τki

} associated
to the release date t0

Ji
where each task τ is a func-

tion which links a set of resources to an outcome:
τ : 2R 7→ Outcome.

T =
⋃

1≤i≤` Ji denotes the set of the n tasks of
J and Rτ ⊆ R is the set of the resources required
for the task τ. For the sake of brevity, we denote
job(τ) the job containing the task τ. We assume
that the number of jobs is negligible with respect
to the number of tasks, |J| << |T|.

The task cost estimates its runtime on a node.

Definition 3 (Task cost). Let D be a distributed sys-
tem and T be a set of tasks. the cost function is s.t.:

c : T ×N 7→R∗+ (2)

The cost of the task τi for the node νj is a strict positive
real number denoted c(τi,νj).

The difficulty lies in the specification of this
function in order to have a good estimation of
the runtime. As the fetching time of resources
is supposed to be significant, the cost function
must verify that the task τ is cheaper for νi than
for νj (c(τ,νi) ≤ c(τ,νj)) if the required resources
are ”more local” to νi than to νj. We postpone the
full specification of the task cost function to the
experimental setup (Sec. 7).

A multi-agent situated task allocation prob-
lem with concurrent jobs consists of assigning
several jobs to some nodes according to the un-
derlying task costs.



Definition 4 (MASTA+). A multi-agent situated
task allocation problem is a quadruple MASTA+ =
〈D,T,J, c〉 where:
• D = 〈N,E,R〉 is a distributed system with m

nodes;
• T = {τ1, . . . ,τn} is a set of n tasks;
• J= {J1, . . . , J`} is a set of ` jobs, i.e. a partition of

tasks s.t.

(T =
⋃

1≤i≤`
Ji) ∧ (Ji ∩ Ji = ∅ with 1≤ i 6= j ≤ `)

(3)
• c : T ×N 7→R∗+ is the task cost function.

A task allocation is a distribution of sorted
bundles at different nodes.
Definition 5 (Allocation). Let MASTA+ be a task
allocation problem. An allocation is a vector of
m sorted task bundles. ~A = ((B1,≺1), . . . , (Bm,≺m))
where each bundle (Bi,≺i) is the set of tasks (Bi ⊆ T)
assigned to the node νi associated with a scheduling
order, i.e. a strict and total order (≺i⊆ T × T) s.t.
τj ≺i τk means that if τj,τk ∈ Bi then τj is performed
before τk by νi. The allocation ~A is s.t.:

∀τ ∈ T, ∃νi ∈ N, τ ∈ Bi (4)
∀νi ∈ N,∀νj ∈ N \ {νi}, Bi ∩ Bj = ∅ (5)

All the tasks are assigned (Eq. 4) and each
task is assigned to a single node (Eq. 5). For
brevity, we denote:

• ~Bi = (Bi,≺i), the sorted bundle of νi;
• min≺i Bi, the next task to perform by νi:
• jobs(Bi), the set of jobs assigned to νi, i.e. the

jobs having at least one task in Bi;

• ν(τ,~A), the node responsible for τ in ~A.
The sum of the task costs in a bundle estimates
its runtime. Formally, The workload of νi for ~A is:

wi(~A) = ∑
τ∈Bi

c(τ,νi) (6)

In order to evaluate a task allocation, we con-
sider the flowtime, which measures the time be-
tween the release date of the jobs and their com-
pletion dates, and the makespan which is the
completion time of all the jobs.
Definition 6 (Flowtime/Makespan). Let
MASTA+ be a task allocation problem and ~A be
an allocation. We define:

• the delay of τ for νi,

t(τ,νi) = ∑
τ′∈Bi |τ′≺iτ

c(τ′,νi) (7)

• the completion time of τ ∈ T for ~A,

Cτ(~A) = t(τ,ν(τ,~A)) + c(τ,ν(τ,~A)) (8)

• the completion time of J ∈ J for ~A,

CJ(~A) = max
τ∈J
{Cτ(~A)} (9)

• the completion date of J ∈ J for ~A,

tE
J (~A) = t0

J + CJ(~A) (10)

• the mean flowtime of J for ~A,

C(~A) =
1
` ∑

J∈J
CJ(~A) (11)

• the makespan of J for ~A,

Cmax(~A) = max
J∈J

tE
J (~A) (12)

• the local availability ratio of ~A,

L(~A) = ∑
τ∈T

∑ρ∈Rτ, ν(τ,~A)∈l(ρ) |ρ|
∑ρ∈Rτ

|ρ| (13)

The delay of a task for a node estimates the
runtimes (costs) of the previous tasks in the bun-
dle (Eq. 7) since we assume the nodes are never
inactive. The completion time of a task is the
sum of the delay before the task is started plus
its runtime (Eq. 8). Contrary to the cost of the
task, its delay and its completion time depend on
the scheduling order over the bundle. Accord-
ing to Eq. 9, a job is finished for all the agents
when they have performed all the tasks in this
job. The completion date of a job is the finishing
date (Eq. 10). The mean flowtime is the mean
completion time of the jobs (Eq. 11). Since the
makespan measures the maximum completion
time of the jobs (Eq. 12), it is the maximum work-
load of the nodes:

Cmax(~A) = max
νi∈N
{wi(~A)} (14)

Contrary to the makespan, the flowtime depends
on the scheduling order. The local availability ra-
tio measures the proportion of locally processed
resources (Eq. 13).
Example 1 (MASTA+). We consider D= 〈N,E,R〉
where:
• 3 nodes N = {ν1,ν2,ν3} are fully connected E =
{(ν1,ν2), (ν1,ν3), (ν2,ν3)};

• 9 resources R = {ρ1,ρ2,ρ3,ρ4,ρ5,ρ6,ρ7,ρ8,ρ9}
are replicated over 2 nodes (Fig. 1a). For instance,
ρ1, with |ρ1| = 6, is over ν1 and ν2 but not over
ν3.
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Figure 1: The resource distribution and the allocation sorted by the LCJF strategy

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9
c(τ,ν1) 3 5 0.5 3 2 6 4 2 1
c(τ,ν2) 3 5 0.5 3 1 12 4 1 2
c(τ,ν3) 6 10 1 6 1 6 8 1 1

Table 1: The cost of the tasks for the nodes

We also consider MASTA+ = 〈D,T,J, c〉 with:
• 9 tasks T = {τ1,τ2,τ3,τ4,τ5,τ6,τ7,τ8,τ9}. Each

one requires the corresponding resource, e.g. ρ1 is
required for τ1 ;

• 3 jobs J = {J1, J2, J3}, s.t. J1 = {τ1,τ2,τ3}, J2 =
{τ4,τ5,τ6} and J3 = {τ7,τ8,τ9}.

• the cost function which is represented in Tab. 1.
We assume that the cost of a task is proportional
to the resource size and two times more important
if the resource is remote.

The allocation represented in Fig. 1b is s.t. ~B1 =

(τ1,τ4,τ7), ~B2 = (τ5,τ8,τ2) and ~B3 = (τ3,τ9,τ6).
The makespan and the mean flowtime are Cmax(~A) =

10 and C(~A) = 8.33, respectively.
In summary, we consider heterogeneous

nodes because the cost of tasks depend on the
processing nodes due to the locality of the under-
lying resources. Our objective is to minimize the
mean flowtime of the concurrent jobs containing
several tasks:

Rm|ΣJ∈J max
τ∈J

Cτ(~A)

4 CONSUMPTION AND
DELEGATION PROCESS

We describe here the operations of consump-
tion/delegation and we sketch the negotiation
protocol.

The addition/removal of the task τ in the
bundle ~Bi modifies not only the set of tasks but

also the scheduling order over the bundle. For-
mally,

• if τ /∈ Bi then
−−−→
Bi ⊕ τ denotes the bundle which

contains the set of tasks Bi ∪ {τ} sorted with
≺i ;

• if τ∈ Bi then
−−−→
Bi 	 τ denotes the bundle which

contains Bi \ {τ} sorted with ≺i.
These operations imply a rescheduling of the
bundle. As we will see in Sec. 5, the consump-
tion strategy specify the scheduling order.

A task consumption is a disruptive event
which modifies not only the allocation of tasks
but also the underlying problem.
Definition 7 (Consumption). Let MASTA+ =

〈D,T,J, c〉 be a task allocation problem and ~A be an
allocation. The consumption of τ by νi with a non-
empty bundle (Bi 6= ∅) leads to the allocation ~A′ =
γ(νi,~A) for the problem MASTA′ = 〈D,T′,J′, c〉
where:

T′ = T \ {min
≺i

Bi} (15)

J′ =


J \ {job(min≺i Bi)}

if job(min≺i Bi) = {min≺i Bi}
J else

(16)

In the latter case:

J′j =

{
Jj \ {min≺i Bi} if job(min≺i Bi) = Jj
Jj else

(17)

and

~B
′
j =

{−−−−−−−−→
Bi 	min≺i Bi if j = i
~Bj else

(18)



The task is removed from the set of tasks
(Eq. 15) and from the corresponding job (Eq. 17).
The latter is removed if it only contains τ
(Eq. 16). The task is removed from the allo-
cation (Eq. 18). Obviously, a task consump-
tion can increase neither the makespan nor the
flowtime but it decreases the local makespan
(wi(γ(νi,~A)) < wi(~A)) and the local flowtime
(ΣJ∈jobs(Bi)

CJ(γ(νi,~Bi)) < ΣJ∈jobs(Bi)
CJ(~Bi)). The

sequence of consumptions, which consists of an
iteration of MASTA+ problems, removes one by
one all the tasks from the initial allocation to the
empty one.

A task delegation is a disruptive event which
changes the current allocation, i.e. a reallocation.

Definition 8 (Delegation). Let MASTA+ =

〈D,T,J, c〉 be a task allocation problem and ~A =

(~B1, . . . ,~Bm) be an allocation. If the task τ is assigned
to the donor νi (τ ∈ Bi), then the delegation to the re-
cipient νj leads to the allocation δ(τ,νi,νj,~A) with the
m bundles δ(τ,νi,νj,~Bk) such as:

δ(τ,νi,νj,~Bk) =


−−−→
Bi 	 τ if k = i
−−−→
Bj ⊕ τ if k = j
~Bk else

(19)

A task delegation must reduce the local
makespan and the local flowtime.

Definition 9 (Socially rational delegation). Let
MASTA+ = 〈D,T,J, c〉 be a task allocation problem,
~A be an allocation and δ(τ,νi,νj,~A) the allocation af-
ter the delegation of τ by νi to νj. This delegation is
socially rational:

• with respect to the makespan if and only if the lo-
cal makespan decreases

wj(~A) + c(τ,νj) < wi(~A) (20)

• with respect to the flowtime if and only if the local
flowtime decreases

ΣJ∈jobs(Bi∪Bj)
max(CJ(

−−−→
Bi 	 τ),CJ(

−−−→
Bj ⊕ τ)) <

ΣJ∈jobs(Bi∪Bj)
max(CJ(~Bi),CJ(~Bj))

(21)

An allocation is stable if none of the agents
have socially rational delegations. In a stable
allocation with respect to the makespan, agents
cannot locally improve the makespan.

Property 1 (Termination). Let MASTA+ =

〈D,T,J, c〉 be a task allocation problem and ~A be a
non-stable allocation with respect to the makespan.

There is always a finite path of socially rational
delegations with respect to this criterion, which leads
to a stable allocation with respect to makespan.

The property derives from Theo. 7 in (Endriss
et al., 2006). By contrast, a sequence of socially
rational delegations with respect to the flowtime
does not necessarily lead to a stable allocation for
this criterion.

Agents operate in multiple bilateral single-
round negotiations for task delegations. Each
negotiation, which is based on the alternating of-
fers protocol (Rubinstein, 1982), includes three
decision steps: (a) the offer strategy of the pro-
poser (Sec. 6) which selects a potential delega-
tion, i.e. a task in its bundle and a recipient,
(b) the acceptability rule (Sec. 6) allows the re-
sponder to determine whether it rejects or ac-
cepts such a delegation, and (c) in the latter case,
the delegation is confirmed or withdrawn by
the proposer depending on the interleaved con-
sumptions.

5 CONSUMPTION STRATEGY

We describe here the consumption strategy
adopted by an agent to select the next task to
perform, i.e. a scheduling order over its bundle
based on its local knowledge.

We consider a task allocation problem
MASTA+ = 〈D,T,J, c〉 and an allocation ~A. Each
agent νi ∈N which knows the problem and has a
local perception of the allocation, i.e. its bundle
~Bi, can deduce the following metrics:

• its workload (Eq. 6);
• the delay of the tasks in its bundle (Eq. 7);
• the completion time of these tasks (Eq. 8);
• the completion time of the jobs for the node,

CJ(~Bi) =

{
maxτ∈J∩Bi{Cτ(~Bi)} if J ∈ jobs(Bi)

0 else
(22)

• the job costs for the node,

c(J,νi) = Στ∈J∩Bi c(τ,νi) (23)

It is worth noticing that the mean completion
time of the jobs for an agent depends on the
scheduling order over its bundle.

A consumption strategy is defined by a
scheduling order, i.e. a strict total order over the
bundle. Since we aim at minimizing the com-
pletion time of jobs rather than tasks we focus



on job-oriented consumption strategies. Such a
strategy is a lexicographic order which consists
of sorting first jobs, and then the tasks inside the
same job.

Definition 10 (Job-oriented strategy). Let �i and
�i two strict total order relations over T and J, re-
spectively. A job sorting strategy based on (�i,�i)
sorts the bundle Bi according to the strict total order
relation ≺i defined by:

∀τj,τk ∈ Bi τj ≺i τk⇔
job(τj)�i job(τk) ∨ (job(τj) = job(τk) ∧ τj �i τk)

(24)

J1�iJ2 means that the tasks in J1 are prior to
the tasks in J2. The tasks in the same job are con-
secutive in the bundle.

The job-oriented consumption strategy we
consider in this paper aims at minimizing the
completion times of jobs by sorting them accord-
ing to their costs.

Definition 11 (LCJF). Let �i a strict total order on
T. A job sorting strategy based on (�i,�i) is said
”Locally Cheapest Job First” (LCJF) if and only if the
relation �i over the jobs satisfies :

∀Jj, Jk ∈ J, Jj �i Jk⇔
c(Jj,νi) < c(Jk,νi) ∨ (c(Jj,νi) = c(Jk,νi) ∧ Jj < Jk)

(25)

where < denotes the order over the jobs induced by
the natural order over their identifiers.

This strategy executes the tasks in the cheap-
est jobs before the tasks in the expensive ones.

The relation over the jobs �i is based on
the knowledge of the agent about the MASTA+
problem and its own bundle. This scheduling or-
der is strict and total since < discriminates the
ties. Since we assume a strict total order over the
tasks �i (e.g. arbitrary the natural order over the
task identifiers), ≺i is also strict and total.

A LCJF strategy allows νi to locally minimize
the completion time of jobs. None permutation
of jobs in the bundle can strictly decrease the lo-
cal flowtime.

Lemma 1 (LCJF). Let ≺i be a LCJF strategy based
on (�i,�i).

∀σ ∈ S(jobs(Bi)),

ΣJ∈jobs(Bi)
CJ(~Bi) ≤ ΣJ∈jobs(Bi)

CJ(σ(~Bi))
(26)

where S(jobs(Bi)) denotes the set of all the permuta-
tions of the jobs assigned to νi.

The lemma derives from Theo. 3.1.1 in
Chap. 3 of (Pinedo, 2008).

Example 2 (LCJF). Let us consider Ex. 1. If the
bundles are B1 = {τ1,τ4,τ7}, B2 = {τ2,τ5,τ8} and,
B3 = {τ3,τ6,τ9}, the allocation sorted with the LCJF
strategy (Fig. 1b) is s.t.:

• ~B1 = (τ1,τ4,τ7) since (c(J1,ν1) = c(τ1,ν1)) <
(c(J2,ν1) = c(τ4,ν1)) < (c(J3,ν1) = c(τ7,ν1));

• ~B2 = (τ5,τ8,τ2) since (c(J2,ν2) = c(τ5,ν2)) =
(c(J3,ν2) = c(τ8,ν2)) < (c(J1,ν2) = c(τ2,ν2))
and J2 < J3;

• ~B3 = (τ3,τ9,τ6) since (c(J1,ν3) = c(τ3,ν3)) =
(c(J3,ν3) = c(τ9,ν3)) < (c(J2,ν3) = c(τ6,ν3))
and J1 < J3.

6 DELEGATION STRATEGY

We describe here the different parts of the del-
egation strategy (peer modelling, acceptability
rule, offer strategy) and we sketch the agent be-
haviour.

The peer modelling is built upon the infor-
mation exchanged by the agents through mes-
sages. In particular, the agent νi informs its peers
about the job costs for it (c(J,νi), ∀J ∈ J) before
the negotiation process and after each delega-
tion in which it is involved. Since the number
of jobs is much smaller than the number of tasks,
the size of theses messages (O(|J|)) is negligible
wrt the task bundle descriptions (O(|T|)). The
peer modelling of the target νj by the subject νi is
based on:

• the belief base of the subject, eventually par-
tial or obsolete, which contains the belief
about the job costs for νj (ci(J,νj) ∀J ∈ J) and
the belief about the workload of νj (wi

j(
~A) =

ΣJ∈Jci(J,νj));

• the consumption strategy of the target as-
sumed by the subject which boils down to the
relation over the jobs adopted by the target,
denoted �i

j.

For readability, we denote ci(J,νi) = c(J,νi) and
wi

i(
~A) = wi(~A). From its beliefs about the tar-

get and the assumed consumption strategy, the
subject can deduce the completion time of the
job J for the target, eventually after the ad-
dition/removal of τ : C i

J (~Bj), C i
J (
−−−→
Bj ⊕ τ) and

C i
J (
−−−→
Bj 	 τ). Then, the subject can deduce the



completion time of a job for the allocation:

C i
J (~A) = max

νj∈N
C i

J (~Bj) where C i
J (~Bi) = CJ(~Bi)

(27)
The subject considers the target as a bottleneck
for the job J (νj = nodeMaxi(~A,J)) if the comple-
tion time of this job for the target is the comple-
tion time for the allocation, i.e. C i

J (~A) = C i
J (~Bj).

The acceptability rule is a local decision by
the recipient of a delegation, which is based on
its knowledge and its peer modelling, to deter-
mine whether a delegation is accepted or de-
clined depending on its perception of the social
rationality of the delegation.
Definition 12 (Acceptability criterion). Let
δ(τ,νi,νj,~A) be the delegation of τ from νi to νj in ~A.
This delegation is acceptable by the recipient :

• with respect to the makespan if and only if the re-
cipient believes that the delegation decreases the
local makespan,

wj(~A) + c(τ,νj) < wj
i(
~A) (28)

• with respect to the flowtime if and only if the re-
cipient believes that the delegation decreases the
local flowtime,

ΣJ∈J max(C j
J (
−−−→
Bi 	 τ),CJ(

−−−→
Bj ⊕ τ)) <

ΣJ∈J max(C j
J (
~Bi),CJ(~Bj))

(29)

While the first criterion is built upon the be-
lief about the workload of the donor (Eq. 28), the
second one is built upon the knowledge about
the completion times of the jobs for the recipient
before/after the delegation and its belief about
the completion times of the jobs for the donor
before/after the delegation (Eq. 29).

In order to reduce the flowtime, the accept-
ability rule consists in checking not only the ac-
ceptability criterion wrt the flowtime but also the
acceptability criterion wrt the makespan which
guarantees the convergence of the negotiation
process (Prop. 1).

The offer strategy of a possible donor νi,
which is based on its knowledge and its peer
modelling, selects a potential delegation: a recip-
ient, a task and so a job. The strategy is divided
in 4 steps:
1. Job selection. According to the principle of

subsidiarity, the goal of the donor is to reduce
the completion time of the jobs it is responsi-
ble for. In order to reduce not only the com-
pletion time of one job for the donor but also

the completion time of the next jobs in~Bi, our
heuristic selects the prior job for which the
donor is a bottleneck,

∀J′ ⊆ J, J∗ = σi(J
′) =

min
�i
{J ∈ jobs(Bi) ∩ J′ | νi = nodeMaxi(~A,J)}

(30)

2. Recipient selection. The jobs assigned to the
recipient which are impacted by the delega-
tion are those after J∗ according to �i

j. Not to
increase the completion times of these jobs,
our heuristic selects the recipient for whom
the sum of the differences between the com-
pletion time for the allocation and the com-
pletion time for this agent is the greatest one,

∀N′ ⊆ N, ν∗ = σi(N
′, J∗) =

min
<
{argmax

νj∈N′
∑

J∗�i
jJ

(C i
J (~A)−C i

J (~Bj))} (31)

where < denotes the order over the nodes in-
duced by the natural order over their identi-
fiers.

3. Task selection. In order to reduce the com-
pletion times, the donor selects a distant task
whose delegation reduces its cost since it
is locally executed. For this purpose, our
heuristic selects the task in the job J∗ or in the
prior jobs in ~Bi with the highest payoff. In
case of tie, the prior task is chosen,

∀T′ ⊆ T, τ∗ = σi(T
′,ν∗, J∗) =

min
�i
{ argmax

τ∈T′∩Bi∩{J|J=J∗∨(J�iJ∗)}
c(τ,νi)− c(τ,ν∗)}

(32)

4. Validation. By symmetry with the accept-
ability criterion (Def. 12), the trigger criterion
is a local decision by the donor to determine
whether a delegation is perceived as socially
rational. In order to warranty the conver-
gence of the negotiation process, the trigger
rule is a conjunction of the trigger criterion
wrt the makespan and the trigger criterion
wrt the flowtime. If the trigger rule is not
satisfied, then another task (T′ = T′ \ {τ∗} in
step 3) or another recipient (N′ =N′ \ {ν∗} in
step 2), eventually another job (J′ = J′ \ {J∗}
in step 1) is chosen. In case of failure, no del-
egation is proposed and the agent enters in
pause until its belief base is updated and a
new opportunity (i.e. a potential delegation)
is found.



In our approach, the task reallocation is the
outcome of negotiations between agents adopt-
ing the same behaviour: they alternatively play
the roles of proposer, responder and contractor.
The agents execute this behaviour according to
their knowledge and beliefs. The agent behav-
ior is specified in (Beauprez and Morge, 2020) by
a deterministic finite state automaton1. In order
to avoid deadlock, the proposals are associated
with deadlines.

It is worth noticing the reception of the mes-
sage from the peers updates the belief base of the
agent and none proposal is sent when the agents
believes that the allocation is stable.

Example 3 (Delegation strategy). Let us consider
the MASTA+ instance and the allocation ~A of Ex. 1.
We assume that the agents have up-to-date beliefs and
that they know that all of them adopt the LCJF strat-
egy. Contrary to ν1 and ν2, the agent ν3 can make a
proposal since it selects:
1. the job for which it is a limiting factor (Eq. 30),

J∗ = J2 ;
2. the less bottleneck agent for the impacted jobs

(Eq. 31) which are the jobs J3 for ν1 and the jobs
J1 and J3 for ν2:

∑
J∗�3

1J

(C 3
J (~A)− C 3

J (~B1)) = 0 (33)

∑
J∗�3

2J

(C 3
J (~A)− C 3

J (~B2)) = 8 (34)

Therefore, ν∗ = ν2;
3. the prior task with the highest payoff (Eq. 32) in

J2 or in the prior jobs, i.e. J1 and J3:

(c(τ6,ν3)− c(τ6,ν2)) = 6− 12 = −6
(c(τ9,ν3)− c(τ9,ν2)) = 1− 2 = −1
(c(τ3,ν3)− c(τ3,ν2)) = 1− 0.5 = 0.5

(35)

Therefore, τ∗ = τ3 ;
4. the delegation is triggerable since the trigger cri-

terion wrt the flowtime is satisfied,

ΣJ∈J max(CJ(
−−−−→
B3 	 τ3),C 3

J (
−−−−→
B2 ⊕ τ3)) = 16.5 <

ΣJ∈J max(CJ(B3),C 3
J (B2)) = 17.0

(36)

and the trigger criterion wrt the makespan is sat-
isfied,

w3
2(~A) + c(τ,ν2) = 7.5 < w3(~A) = 8.0 (37)

1https://gitlab.univ-lille.fr/maxime.morge/
smastaplus/-/tree/master/doc/specification

The donor ν3 delegates the task τ3 to the agent ν2 to
reach~A

′
= δ(τ3,ν3,ν2,~A) s.t. ~B

′
1 = {τ1,τ4,τ7},~B

′
2 =

{τ5,τ8,τ3,τ2} and ~B
′
3 = {τ9,τ6}. The allocation is

stable.

7 EMPIRICAL EVALUATION

We consider as a practical application the dis-
tributed deployment of the MapReduce design
pattern in order to process large datasets on a
cluster, as with Hadoop (The Apache Software
Foundation, 2020) or Spark (Zaharia et al., 2012).
We focus here on the reduce stage of MapReduce
jobs. This can be formalized by a MASTA+ prob-
lem where several jobs are concurrently submit-
ted and the cost function is s.t.:

ci(τ,νj) = ∑
ρj∈Rτ

ci(ρj,νj)

with ci(ρj,νi) =

{
|ρj| if νi ∈ l(ρj)

κ × |ρj| else

(38)

where we empirically calibrate κ = 2 as a realistic
value.

To our best knowledge, no alive project of
agent platforms provides a logic-based agent
programming language, allowing a direct im-
plementation of concepts such as beliefs and
goals, that supports the development of cogni-
tive agents for large-scale, distributed applica-
tions and services. That is the reason why our
testbed (Beauprez and Morge, 2020) is imple-
mented with the general purpose programming
language Scala and Akka (Lightbend, 2020)
for highly concurrent, distributed, and resilient
message-driven applications. We assume that:
(a) the message transmission delay is arbitrary
but not negligible, (b) the message order per
sender-receiver pair is preserved, and (c) the de-
livery of messages is guaranteed. Experiments
have been conducted on a blade with 20 CPUs
and 512Go RAM.

We consider three metrics: (1) the mean
flowtime (Eq. 11), (2) the local availability ratio
(Eq. 13), and (3) the scheduling time. We aim
at (i) comparing the allocation reached by our
negociation process with the classical approach,
and (ii) evaluating the acceleration thanks to the
decentralization.

The outcome reached by the general-purpose
solver IBM® ILOG® CPLEX® tackling the un-
derlying non-linear discrete mathematical opti-
mization problem is poor. This is the reason why

https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/master/doc/specification
https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/master/doc/specification


our baseline is a hill climbing algorithm. The
latter and our method both start with the same
randomly generated initial allocation sorted ac-
cording to the LCJF strategy. At each step, the
hill climbing algorithm iteratively selects among
all the possible delegations, the one which min-
imizes the flowtime after the application of the
LCJF strategy.

The MASTA+ problem instances we consider
are such that m ∈ [2;12] nodes/agents, ` ∈ [2;5]
jobs and n = 3× ` × m tasks. We consider one
resource per task. Each resource ρi is repli-
cated 3 times and |ρi| ∈ [0;100]. We generate
10 MASTA+ problem instances, and for each we
randomly generate 10 initial allocations.

The hypothesis we want to test are: (1) the
flowtime reached from our strategy is close to
the one reached by the classical approach and
(2) the decentralization significantly reduces the
scheduling time.

Figures 2a and 2b present the medians of the
flowtime and the scheduling time exhibited by
the methods depending on the number of nodes
and the number of jobs. Figures 2c, 2d and 3 fo-
cus on the medians and the standard deviations
of all the metrics depending on the number of
nodes with ` = 4 jobs. It is worth noticing that
the hill climbing algorithm has been used with
small MASTA+ instances due to its prohibitive
scheduling time. At each step, the hill climbing
algorithm considers all the possible delegations,
thus it reaches an allocation with a better flow-
time than our strategy. Since the overhead of our
strategy is 25%, our delegation strategy seems to
be efficient even if the acceptability criterion wrt
the makespan, which is required to guarantee
the convergence, may lead to discard some dele-
gations which may reduce the flowtime (Sec. 4).
This is due to the fact that the delegation strat-
egy selects the distant tasks whose delegations
reduce their cost in order to improve local avail-
ability ratio which is slightly better than the one
reached by the hill climbing algorithm. More-
over, since the latter evaluates at each step all the
possible delegations, its scheduling time is much
higher than the one of our negociation strategy.
For instance, it is six times higher for 9 agents
and 4 jobs.

It is worth noticing that the gap between the
scheduling times of the two methods increases
exponentially with the number of agents, while
the gap between the flowtimes is roughly con-
stant. We can expect a higher scheduling time if
we adopt a local search method such as the simu-

lated annealing without any warranty about the
optimality of the outcome.

As a result, even if the number of agents is
small, the gain realized on the flowtime by the
hill climbing algorithm will be penalized and
cancelled by the overhead of its scheduling time.
This overhead penalized the time-extented as-
signment in a distributed system which should
be adaptive to disruptive phenomena (task con-
sumption, job release, slowing down nodes).

Finally, we observe that, when it is decen-
tralized on several cores, the acceleration of our
algorithm increases with the number of agents
and jobs. For instance, with a similar flow-
time neglecting the observable nondeterminism
of their executions, the decentralized version
runs 3 times faster than the centralized one for
12 agents and 4 jobs.

8 CONCLUSION

In this paper, we have proposed a multi-agent
system for task reallocation among distributed
nodes based on the location of the required re-
sources in order to minimize the mean flow-
time of concurrent jobs. Our prototype has
been empirically evaluated. Our experiments
show that the flowtime reached by our strat-
egy is close to the one reached by the classi-
cal heuristic approach and it significantly re-
duces the rescheduling time. This is due to
the fact that our negotiation process continu-
ously adapts the allocation in order to improve
the load-balancing by reducing the completion
times of the jobs for the bottleneck agents. On
one hand, the consumption strategy performs
the tasks of the cheapest jobs before the most
expensive ones. On the other hand, the delega-
tion strategy selects a job which can reduce the
completion times of the donor by choosing a re-
ceiver which is not a bottleneck for the impacted
jobs and by choosing a task whose delegation re-
duces its cost since it is locally executed. A sensi-
tivity analysis to study the influence of the repli-
cation factor has been beyond the scope of this
work, but it is certainly worth of further investi-
gation. Obviously, our approach is scalable since
it tackles a large number of tasks due to the local
decisions of agents about the next task to dele-
gate/execute. Moreover, the overhead of the ne-
gotiation is negligible with respect to the benefit
of the load-balancing since no negotiation is trig-
gered when the agents believe that the allocation
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Figure 2: The mean flowtime and the scheduling time for our (centralized and decentralized) negociation strategy
and the hill climbing algorithm.
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Figure 3: The local availability ratio for our (central-
ized and decentralized) negociation strategy, the hill
climbing algorithm and the initial allocation.

is stable.
A comparative study of our strategy with

different distributed resolution methods algo-
rithms is beyond the scope of this paper, but it is
certainly worth of further investigation. Some of
our experiments suggest that we need to extend
our negotiation framework to consider (a) task
swaps to improve the mean flowtime of stable
allocations, and (b) a less restrictive acceptabil-
ity rule which currently discards some task dele-
gations which may reduce the flowtime. Gener-

ally, future work must extend the task realloca-
tion toward an iterated, dynamic and on-going
process, which takes place concurrently with the
task execution, allowing the distributed system
to be adaptive to disruptive phenomena (task
consumption, job release, slowing down nodes).
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