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Abstract 11 

In this article, we present the development and treatment of an inverse problem applied to data from 12 

the Felix Baumgartner stratospheric jump. This jump is well documented with a lot of data. Therefore, 13 

it makes a particularly well-suited example for teaching in a numerical techniques laboratory. The 14 

major aim of the article is to give guidelines in order to construct a simple, but not simplistic, inverse 15 

problem with real data for junior undergraduate students. Students should master classical mechanics 16 

and have some skills in numerical modelling. We use the programming language Python and various 17 

libraries in order to build a model and solve the entire problem. This programming language is 18 

increasingly used and understood by students, which allows them to focus on the physical and 19 

numerical aspects of the involved problem. The fairly new strategy presented in this article is an 20 

attempt to estimate the angle of attack from acceleration measurements, and to give an uncertainty 21 

estimation of Baumgartner’s free-fall speed. 22 

  23 
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I. Introduction 24 

“Oh no, not the free-fall again!” Most first-ever physics courses start with classical mechanics, and 25 

especially with the study of the motion of solids. On 14 October 2012, the Red Bull Stratos team [1] 26 

shared with the world an extraordinary experiment, a leap from a capsule suspended 40km above 27 

Earth, over Roswell, New Mexico. During this jump, the skydiver Felix Baumgartner was the first human 28 

to break the sound barrier without any thrust force. He maintained for a total of 30 seconds a speed 29 

greater than the speed of sound in air. 30 

Even many years later, the extraordinary experimental conditions of this free fall still make it a 31 

veritable ‘playground’ for any physicist who wants to teach classical mechanics and numerical 32 

modelling. Like any physics problem under extreme conditions, this experiment is more complex than 33 

it seems. It is a problem involving several scientific fields: mechanics, fluid dynamics, thermodynamics, 34 

numerical method and many others, such as pathophysiology or data acquisition. Anyone can 35 

understand it very quickly by reading the Red Bull report [2]. This is probably the reason why it makes 36 

a particularly well-suited example for teaching. It allows students to make connections between 37 

different scientific fields, to break the disciplinary boundaries and to learn to work as a team on a small 38 

project. This example could be realized by undergraduate students after a set of laboratory classes, 39 

such as that proposed by Samsonau [3]. To carry out this work in their third year, sophomore college 40 

students should have followed an introductory course in Python language, with an emphasis on 41 

applications in the physical sciences and engineering, on basic problem solving, programming 42 

techniques, and fundamental algorithms. Students who have experience in programming with Python 43 

of about 7 hours per week (1:30 lectures, 4h computer laboratory time and 1:30 personal work) for 6 44 

to 7 weeks can easily tackle this problem. 45 

Modelling such an experiment is difficult given the non-linearity of the processes in an environment 46 

where air pressure, air temperature and air density are interrelated, and change rapidly with altitude. 47 

The mechanistic approach, which consists of describing phenomena in the context of the laws of 48 

conservation, is the most commonly used approach. It constitutes a powerful tool for understanding 49 

and seems best suited for predictive simulations. However, we should also not forget that the key to 50 

the modelling approach is to build a model that is simple, realistic and feasible. The most commonly 51 

used approach for modelling such a high-altitude free fall is to use Newton's second law to consider 52 

gravitational force, and an aerodynamic force that opposes the skydiver's motion through the air. This 53 

model has been used by many authors [4 - 8] in order to estimate the position and velocity of the 54 

skydiver. An excellent introduction for students to this kind of problem can be found in the book 55 

written by Barger and Olsson [9]. This paper can be seen as a continuation of the earlier works of Colino 56 

and Barbero [6] and Guerster and Walter [7]. 57 
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In order to build the model, we need to completely define the forces included in the equation of 58 

motion, consisting of all the parametric functions and the initial conditions. Most of the time, not all 59 

the parameters are well known. Sometimes, we don't know the exact value of a specific parameter. 60 

Some of these parameters cannot be directly measured, so in such conditions we can use parameter 61 

estimation techniques in order to estimate the parameter values and also, importantly, the parameter 62 

uncertainty and ultimately, calculating the associated uncertainty of the computed position and 63 

velocity of the skydiver, whilst taking into account the available measures. 64 

This paper follows a three-fold structure: first, building the direct problem in which the physical system 65 

of the free fall is modeled, with all parameters and with the initial conditions. Second, the inverse 66 

problem is merged with the direct problem and the data. Finally, the last section illustrates the global 67 

model application to determine an estimation of the parameters and their associated uncertainties. 68 

 69 

II. The direct problem 70 

In order to establish the equation of motion, Newton's second law is applied to a body of mass m 71 

subject to two forces, gravitational force 𝑃⃗  and drag force 𝐹𝐷
⃗⃗ ⃗⃗ : 72 

𝑚𝑎 = 𝑃⃗ + 𝐹𝐷
⃗⃗ ⃗⃗   (1) 73 

𝑎  is the body acceleration in m s-2. If the free fall is strictly vertical and the positive z direction is chosen 74 

to be up, the equation of motion, as described in detail by Guerster and Walter [7], is given by: 75 

𝑚
𝑑𝑣𝑧

𝑑𝑡
= − 𝑚𝑔(𝑧) +

1

2
𝐶𝐷(𝑀𝑎)𝐴⊥(𝛽)𝜌(𝑧, 𝑇)𝑣𝑧

2  (2) 76 

where 𝐶𝐷(𝑀𝑎) is the drag coefficient, which depends on the Mach number Ma, 𝐴⊥ is the projected 77 

area depending on the angle of attack 𝛽 (the angle between the z axis reversed and a longitudinal 78 

reference line on the body, head first), 𝜌(𝑧, 𝑇) the air density depending on altitude z and air 79 

temperature T, 𝑔(𝑧) the acceleration due to gravity depending on z. For this equation of motion, the 80 

state variables are the altitude z and the speed 𝑣𝑧. The aim of the direct problem is to compute the 81 

state variables, which are dependent variables, against time (the independent variable). This can be 82 

done by rewriting the second-order differential equation (2) as a system of two first-order equations: 83 

{

𝑑𝑧

𝑑𝑡
= 𝑣𝑧

𝑑𝑣𝑧

𝑑𝑡
= − 𝑔(𝑧) +

1

2𝑚
𝐶𝐷(𝑀𝑎)𝐴⊥(𝛽)𝜌(𝑧, 𝑇)𝑣𝑧

2
  (3) 84 

To determine the evolution of the body, it is necessary to define its initial state, that is the initial 85 

position and the initial velocity. At this step, it is also necessary to define all the parametric functions 86 

which complete the model. The same relations as those used by Guerster and Walter [7] are included 87 

within the model.  88 

 89 

 90 
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The parametric functions and the data 91 

Before defining explicitly all the parametric functions, it is important to fix the geographical coordinate 92 

system in which the trajectory is studied. The initial GPS position (𝜑:latitude, 𝜆:longitude, z:altitude), 93 

when Baumgartner left the capsule on 14 October 2012, at 18:06:32.0 UTC, was  (𝜑 = 33.3408417°,94 

𝜆 = −103.7679067°, 𝑧 = 38969.4 m). To study the trajectory and the speed of Baumgartner during 95 

his fall, we choose a local tangent plane coordinates system with an origin given by  (𝜑 =96 

33.3408417°, 𝜆 = −103.7679067°, 𝑧 = 0.0 m); by convention the east axis is labeled 𝑥𝐸𝑎𝑠𝑡, the 97 

north 𝑦𝑁𝑜𝑟𝑡ℎ and the up 𝑧𝑈𝑝. In this local ENU (East, North, Up) coordinate system, the trajectory 98 

versus time is depicted in figure 1. This representation has not been used by other authors who studied 99 

the free fall, but it is very interesting, more intuitive and practical. In figure (1), we can clearly identify 100 

two stages of the leap’s evolution. The first stage, from exit time t=0 to 75 s, is a quasi-perfect vertical 101 

one dimensional movement. The second stage from t=75 to t=260 s (main chute deployment, at 102 

18:10:52.0 UTC) looks more like a classic free fall of a skydiver who does not try to increase his speed 103 

but instead tries to fall slowly and steadily in a nice regular “belly-to-earth” position. 104 

In most papers [4,5 and 8], the acceleration due to gravity is taken as constant, but the change of g can 105 

be easily considered by using the world geodetic system ellipsoidal gravity formula (WGS 1984) with 106 

the first-order free-air correction factor: 107 

𝑔(𝑧, 𝜑) = 9.7803
1+0.00193∙𝑠𝑖𝑛2(𝜑)

√1−0.00669∙𝑠𝑖𝑛2(𝜑)
− 3.086 × 10−6 ∙ 𝑧   (4) 108 

at the origin of local ENU system 𝜑 = 33.3408417°  109 

𝑔(𝑧, 𝜑) = 9.7959 − 3.086 × 10−6 ∙ 𝑧  (5) 110 

For z varying from the initial position to the main chute deployment, 2566.8 ≤ 𝑧 ≤ 38969.4 m, the 111 

acceleration due to gravity is 9.6756 ≤ 𝑔 ≤ 9.7879  𝑚 𝑠2⁄ , that is a relative error of 1% if g is taken 112 

as a constant. The total mass of Baumgartner taken for the simulations is 𝑚 = 121.2  𝑘𝑔 [7]. 113 

For this experience, the Red Bull Stratos team did everything to ensure the safety of Baumgartner’s 114 

jump [1; 10]. Various measures have been taken, analyzed and processed by the team to validate 115 

several world records, and now they are available to us. Baumgartner was equipped with several GPS 116 

apparatuses, and in particular a Garmin 18X-5 WAAS GPS with a sampling frequency of 5 position 117 

measurements per second. The data files made available also contain temperature, air pressure, speed 118 

of sound and triaxial acceleration data. Baumgartner was equipped with a triaxial accelerometer 119 

positioned at chest level in order to understand and analyze the environmental stressors experienced 120 

[11]. 121 

Atmospheric density and speed of sound (𝑀𝑎𝑐ℎ1) profiles are estimated based on the pressure 𝑃(𝑧) 122 

and temperature 𝑇(𝑧) measurements with: 123 

𝜌(𝑧) =
𝑃(𝑧)

𝑅𝑠𝑇(𝑧)
 and 𝑀𝑎𝑐ℎ1(𝑧) = √1.40 ∙ 𝑅𝑠𝑇(𝑧)  (6 and 7) 124 
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with 𝑅𝑠 = 287.0 𝐽 (𝐾 𝑘𝑔)⁄ . The profiles of temperature, pressure, density and speed of sound are 125 

depicted in figure 2 (red curve) and are compared to two classical models, the US Standard 126 

atmosphere, 1976 [12] and NRLMSISE-00 Atmosphere Model [13, 14], and to the sounding operated 127 

by the Red Bull Stratos team at the Santa Teresa observatory and Roswell airport. The most important 128 

data for studying the free fall is for 20 ≤ 𝑧 ≤ 40 km. In this part, we have good correlation between 129 

the data and the NRLMSISE-00 Atmosphere Model. In the later simulations we will use the data 130 

depicted on the red curve. To our knowledge, the data was obtained by the Red Bull Stratos team with 131 

a numerical weather forecast model. 132 

For the drag coefficient and the projected area, we use the relations proposed by Guerster and 133 

Walter [7]:  134 

𝐶𝐷 = 𝐴  for 𝑀𝑎 =
𝑣𝑧

𝑀𝑎𝑐ℎ1
≤ 0.6 (8) 135 

𝐶𝐷 = 𝐴 + 𝐵(𝑀𝑎 − 0.6)2  for 0.6 ≤ 𝑀𝑎 ≤ 1.1  (9) 136 

𝐶𝐷 = 𝐴 + 0.25 ∙ 𝐵 − 𝐶(𝑀𝑎 − 1.1)  for 1.1 ≤ 𝑀𝑎  (10) 137 

and 138 

𝐴⊥(𝛽) =  𝐴𝑥 sin(𝛽) + 𝐴𝑧 cos(𝛽)  (11) 139 

with 𝐴𝑥 = 1.19  𝑚2 the effective front area and 𝐴𝑧 = 0.525  𝑚2 the effective top area [7], A, B and C 140 

three parameters that should be estimated in the inverse problem. 141 

The last needed information, and probably the most difficult to obtain is the angle of attack 𝛽 during 142 

the leap. Guerster and Walter [7], estimate an angle of attack 𝛼 =
𝜋

2
− 𝛽 with the full video from 143 

Baumgartner’s point of view during the leap. In this study, the angle of attack is estimated based on 144 

the triaxial acceleration measurements (fig.3). Accelerometers are sensitive to both linear acceleration 145 

and the local gravitational field. In the absence of linear acceleration, the accelerometer output is a 146 

measurement of the rotated gravitational field vector and can be used to determine the accelerometer 147 

orientation angles. At the start of a fall, the vector sum of acceleration will tend toward 0 g (fig 3) -  148 

this is called the phenomenon of weightlessness. Until t=25 s, the longitudinal and lateral accelerations 149 

do not change, after that time and until t=75 s, these accelerations fluctuate a lot. During this time, 150 

Baumgartner was in a dangerous situation of spinning, which has been studied in detail by Garbino et 151 

al. [11]. The vertical acceleration has a different signal: it changes gradually, probably due to the drag 152 

force’s module and direction acting on the body (fig. 3). Even if we aren’t in a perfectly static situation, 153 

and we also neglect the lateral acceleration 𝐴𝑦, and if we suppose likewise that Baumgartner didn't 154 

rotate around his body’s z-axis (head first), the angle of attack is estimated with [15, eq. 55 page 19]: 155 

𝛽 = 𝑐𝑜𝑠−1 (
𝐴𝑧

√𝐴𝑥
2+𝐴𝑧

2
)  (12) 156 
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with 𝐴𝑧 and 𝐴𝑥 representing the vertical and longitudinal acceleration respectively. In order to smooth 157 

the signal and remove potential linear acceleration, a rolling mean of 2.5 s is applied to the angle and 158 

used later in a linear interpolation lookup table for the simulations (fig. 4). 159 

The numerical implementation 160 

The programming language we use is Python, a language which gives readable code that closely 161 

resembles the equations. The equation (3) is a system of two first-order equations that can be solved 162 

by numerical integration. There are a lot of numerical tools called “ODE solver” (ordinary differential 163 

equation) to solve this kind of equation [16]. Here, we have chosen to work with the SciPy ecosystem 164 

[17], and in particular with the module scipy.integrate.solve_ivp. This module allows us to choose 165 

between all the classical numerical integration methods, and trigger events to stop the integration 166 

time if needed. By default, we select the Runge-Kutta method. We can also set the maximum allowed 167 

time step size during integration, which allows us to properly control any variations in the parametric 168 

functions, like the angle of attack. At this stage, we have all the necessary information allowing us to 169 

program and to solve the direct problem, apart from the parameters A, B and C appearing in the drag 170 

force. A useful solution is to generate uniformly distributed random parameters between bounds 171 

and/or to take some values from literature and to build the code and do tests. This is an important 172 

step before tackling the inverse problem, since the direct code must be solved in as little CPU time as 173 

possible, and be reliable and robust regardless of the parameters used. 174 

 175 

III. The inverse problem 176 

The inverse problem covers a very wide range of formulations and fields of application. In this part, we 177 

will present an application of a classical non-linear inverse problem. Here, the aim is to find the model 178 

parameters we don't know that produce the data we have measured. From a mathematical point of 179 

view, we formulate this with the help of a classical cost function or objective function, i.e. the mean 180 

sum square error between model output and the measures: 181 

𝑂(𝑝; 𝑦, 𝑦𝑚𝑒𝑠) =
1

𝑛𝑚−𝑛𝑝
∑ (𝑦𝑖(𝑝) − 𝑦𝑖

∗)2𝑛𝑛
𝑖=1   (13) 182 

with 𝑝 = (𝐴, 𝐵, 𝐶) the vector of parameters, nm and np the number of measurements and parameters 183 

respectively, 𝑦𝑖(𝑝) the model output, e.g. the speed and 𝑦𝑖
∗ the measurements. The aim is to find the 184 

parameters that minimize the objective function, which is done iteratively. Generally, the algorithm 185 

starts with a set of initial parameters and calculates the corrections to be made to the parameters, so 186 

that the objective function decreases until a criterion of the objective function is reached and/or until 187 

the parameter values don't change anymore. There are plenty of algorithms that can be used to 188 

minimize a function. The most widely used is probably the Levenberg-Marquardt algorithm. The choice 189 

of a good algorithm is problem dependent, on the number of parameters, the bounds on the 190 



7 
 

parameters, the number of available measurements, the correlations between parameters, the 191 

structure of the model and so forth. We can distinguish two main classes of algorithms: global and 192 

local algorithms. According to the author's own experience, the most efficient strategy when solving a 193 

minimization problem is to be able to use several kind of algorithms and analyze the different results. 194 

Here, we have chosen to use LMFIT: Non-Linear Least-Squares Minimization and Curve-Fitting for 195 

Python [18]. This library allows us to use more than twenty methods of minimization, from the local 196 

Levenberg-Marquardt least squares method to the Markov Chain Monte Carlo (MCMC) algorithm, 197 

amongst others. A complete discussion of inverse methods is beyond the scope of this document; the 198 

aim here is simply to give students access to up-to-date methods and algorithms as "gray-box", and 199 

not completely "black-box".  200 

The use of lmfit.minimize() module is straightforward, as long as the user starts with one of the 201 

numerous examples available on the GitHub repository ( https://lmfit.github.io/lmfit-202 

py/examples/index.html) and adapts it to their problem. Principally, the user has to build a callable 203 

function that corresponds to the direct problem. This function should return the difference between 204 

model and measure, i.e. the residual vector: 205 

𝜀𝑖 = 𝑦𝑖(𝑝) − 𝑦𝑖
∗ (14) 206 

In our example, the state variable of interest is the speed. 𝑦𝑖(𝑝) is the solution of the system of 207 

equation (3), i.e. 𝑣𝑧(𝑡 = 𝑡𝑖), with 𝑡𝑖 the discrete time observations for 𝑖 = 1⋯𝑛𝑚. In the local ENU 208 

coordinate system, we can compute the speed by using the evolution of the altitude z over time with 209 

a first order finite difference equation: 210 

𝑦𝑖
∗ ≡ 𝑣𝑖 ≃

𝑧𝑖+1(𝑡𝑖+1)−𝑧𝑖(𝑡𝑖)

𝑡𝑖+1−𝑡𝑖
 (15) 211 

The GPS used has a sampling frequency of 5 position measurements per second; for the whole duration 212 

of the leap (from t=0 to 260s), this gives us a total number of available measurements of 1300. In figure 213 

(1), we have seen that the vertical free fall is well approximated during only the first part of the leap, 214 

that is for a period from t=0 to 75 s. For the parameter estimation, we only use the data obtained 215 

during this first part of the leap and with one measurement per second, that is a total number of 216 

measurements 𝑛𝑚 = 75, for a total number of parameters to be estimated 𝑛𝑝 = 3. 217 

 218 

IV. Results and discussion 219 

In order to start the inverse problem, it is often necessary to have some prior knowledge of the 220 

parameters we want to estimate. Sometimes, these parameters have no physical meaning, but even 221 

in this case we should give an initial set of parameters and some lower and upper bound values (Table 222 

1). For this simulation, we use the trust region reflective method to minimize the objective function 223 
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[18]. At the end of the estimation, after 11 iterations, the final set of parameters and the 95% 224 

confidence interval on the parameters are: 225 

𝐴 =  0.617 +/− 0.035 (5.7%)  (16) 226 

𝐵 =  0.840 +/− 0.259 (30.8%)  (17) 227 

𝐶 =  1.425 +/− 0.344 (24.2%) (18) 228 

The results differ from those of Guerster and Walter [7] for the parameters B and C. We find slightly 229 

larger values for almost identical confidence intervals. It should be noted that the parameters A and B 230 

have a correlation of -0.92 and for B and C of 0.89. Since we didn't use exactly the same angle of attack 231 

as Guerster and Walter [7], it is possible to find different parameters that give almost identical results 232 

for the speed. This is a key point for parameter estimation, as there is not always a unique solution to 233 

the inverse problem, but instead depends greatly on the model structure and on available data. The 234 

drag force in the model depends on the product of the drag coefficient and the projected area, so this 235 

creates a perfect correlation between them. Colino and Barbero’s [6] strategy was to use the product 236 

and take different values of this product depending on the stages of the leap. The results of the inverse 237 

problem for the altitude, speed and Mach number are depicted in figure (5). We can observe a fairly 238 

good match between the measurements and the modelling. The gray region (fig. 5) represents the 95% 239 

confidence interval of the estimated speed. In the second stage, from t=75 to t=260 s, we observe 240 

larger differences between the measurements and the model, probably due to a 3D effect on the 241 

trajectory. A more detailed graphic concerning the supersonic stage is given in figure (6). We found a 242 

total supersonic time of 30s, a maximum speed, reached at t=50 s, 𝑣 = 375.7 ± 10.8  𝑚 𝑠⁄  and a 243 

Mach number 𝑀𝑎 = 1.25 ± 0.03. We can also see the impact of variations over time of the angle of 244 

attack on the speed, for t=40 s and t=74 s. 245 

Now that the whole model has been built (direct and inverse), it is relatively simple to carry out 246 

additional tests if needed, for example to test other sets of initial parameters, or to assume that g is 247 

constant, or to propose a different model for the drag coefficient or for the air density equation, or to 248 

modify the time parametric function for the angle of attack. 249 

If one wishes to have more reliable information on the parameters and their uncertainties, it is possible 250 

with LMFIT to use an MCMC algorithm to determine the posterior distributions for the parameters, 251 

and not only a local uncertainty estimation. 252 

 253 

V. Conclusion 254 

The good thing about building a full model, i.e. direct and inverse, is that it gives students the 255 

opportunity to learn multiple skills by discussing the problem on the conceptual level, together with 256 

mathematical formulation, finding numerical methods, appropriate algorithms and writing the 257 

computer code, and testing the programs and using them to perform numerical experiments, to 258 
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analyze the problem, and to compare the results to real data. All of this is now possible, especially with 259 

Python if we agree to use some libraries as a "gray-box" and explain the principles of these algorithms 260 

to students. Additionally, representing the computational results graphically is always very important, 261 

and this is facilitated for students with Python [19]. Finally, teaching the building of an inverse problem 262 

has a lot of similarities with creating an Investigative Science Learning Environment [20, figure 1.3 page 263 

1-7 ]. 264 

 265 
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 342 

Figure 1: Skydiver position evolution through the leap, expressed in a local tangent plane coordinates 343 

system, as origin  (𝜑 = 33.3408417°, 𝜆 = −103.7679067°, 𝑧 = 0.0 m) 344 

 345 

 346 

Figure 2: Comparison of the different atmospheric data; the red curves are used for the simulations. 347 
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 348 

Figure 3: Measured triaxial acceleration 349 

 350 

Figure 4: Estimated angle of attack based on the acceleration 𝐴𝑥 and 𝐴𝑧 351 

  352 
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Table 1: Initial set of parameters with lower and upper bounds. 353 

Parameters 𝑝𝑘 Min value Initial value Max value 

A 0.25 0.6 2 
B 0.1 0.6 2 
C 0 0.3 5 

 354 

 355 

 356 

Figure 5: Measured and predicted altitude, speed and Mach number with the final set of parameters. 357 

 358 

Figure 6: Measured and predicted altitude, speed and Mach number with the final set of parameters 359 

for the supersonic stage. 360 


