
HAL Id: hal-03015559
https://hal.science/hal-03015559

Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Atom-Thick Membranes for Water Purification and Blue
Energy Harvesting

Dawid Pakulski, Wlodzimierz Czepa, Stefano del Buffa, Artur Ciesielski,
Paolo Samori

To cite this version:
Dawid Pakulski, Wlodzimierz Czepa, Stefano del Buffa, Artur Ciesielski, Paolo Samori. Atom-
Thick Membranes for Water Purification and Blue Energy Harvesting. Advanced Functional Ma-
terials, 2019, Smart and Responsive Micro- and Nanostructured Materials, 30 (2), pp.1902394.
�10.1002/adfm.201902394�. �hal-03015559�

https://hal.science/hal-03015559
https://hal.archives-ouvertes.fr


  

1 
 

 DOI: 10.1002/ ((please add manuscript number))  

Article type: Review 

 

Atom-thick membranes for water purification and blue energy harvesting 

 

Dawid Pakulski,  Włodzimierz Czepa, Stefano Del Buffa, Artur Ciesielski,* Paolo Samorì* 

 

D. Pakulski, Dr. A. Ciesielski, Dr. Stefano Del Buffa, Prof. P. Samorì 

Université de Strasbourg, CNRS, ISIS  

8 allée Gaspard Monge, 67000 Strasbourg, France. 

E-mail: ciesielski@unistra.fr ; samori@unistra.fr 

 

D. Pakulski, W. Czepa, Dr. A. Ciesielski  

Centre for Advanced Technologies,    

Umultowska 89c, 61614 Poznań, Poland 

 

D. Pakulski, W. Czepa  

Faculty of Chemistry, Adam Mickiewicz University  

Umultowska 89b, 61614 Poznań, Poland 

 

 

Keywords: blue energy, pressure retarded osmosis, reversed electrodialysis, 2D materials, atom 

thick membranes 



  

2 
 

Abstract 

Membrane-based processes such as water purification and harvesting of osmotic power 

deriving from the difference in salinity between seawater and freshwater, are two strategic 

research fields holding great promises for overcoming critical global issues like the world 

growing energy demand, the climate change and the access to clean water. Ultrathin membranes 

based on two-dimensional materials (2DMs) are particularly suitable for highly selective 

separation of ions and effective generation of blue energy, because of their unique physico-

chemical properties and novel transport mechanisms occurring at the nano- and sub-nanometer 

length scale. However, due to the relatively high costs of fabrication compared to traditional 

porous membrane materials, their technological transfer towards large-scale applications still 

remains a great challenge. Herein, we present an overview of the current state-of-the-art in the 

development of ultrathin membranes based on 2DMs for osmotic power generation and water 

purification. We discuss several synthetic routes to produce atomically-thin membranes with 

controlled porosity and we describe in detail their performances, with a particular emphasis on 

pressure retarded osmosis and reversed electrodialysis methods. In the last section, outlooks 

and current limitations as well as viable future developments in the field of 2DMs membranes 

are provided.
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1. Introduction 

The continous increase of global energy demand and the urgent requirements associated to the 

growing pollution and climate change are continously stimulating the scientific community 

towards the development of efficient and reliable technologies, which will make use of 

renewable energy sources, and eventually replace conventional, exhaustible methods based on 

fossil fuels.[1] Numerous alternative sources of clean energy have been identified, including 

wind, bioenergy, solar and water power.[1b] According to the Interntional Energy Agency, the 

share of renewables in meeting global energy demand is expected to reach 12.4% in 2023, with 

almost one third of the global electricity power demand being provided by renewable sources.[2] 

However, the complete replacement of fossil fuels still represents a long-term goal since the 

limited efficiency associated with the production and storage of electrical power from 

renewable sources represents, in most cases, a big concern. A remarkable amount of energy has 

been recently identified in the salinity gradient potential, which allows to harvest so-called blue 

energy by exploiting natural aquatic systems. This form of energy derives from the difference 

in osmotic pressure that is generated when two aqueous solutions with different salt 

concentration are separated by a semi-permeable membrane. In order to equilibrate the 

chemical potential of the solvent in the two reservoirs, water tends to flow from the diluted feed 

solution (i.e., fresh water) to the more concentrated draw solution (i.e., seawater). The osmotic 

pressure is defined as the excess hydrostatic pressure which must be applied to overcome this 

spontaneous stream of solvent through the membrane, according to the well-known Vant’Hoff 

equation: 

 

Π = 𝑐𝑅𝑇           (1) 

 

in which c is the molar concentration of the solution.[3]  
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The Gibbs free energy released from the spontaneous mixing of ideal solutions of different 

salinity can be calculated from the difference between the Gibbs free energy of the mixed (G1) 

and that of the unmixed (G2 and G3) solutions: 

 

𝐺 = ∑ µ)𝑛) = ∑ µ)𝑐)𝑉))          (2) 

 

∆𝐺-). = 𝐺/ − (𝐺2 + 𝐺4) 

= ∑ µ)𝐶)𝑉 = ∑ 7𝑐),/𝑉/𝑅𝑇𝑙𝑛𝑎),/; − ()) 𝑐),2𝑉2𝑅𝑇𝑙𝑛𝑎/,2 + 𝑐),4𝑉4𝑅𝑇𝑙𝑛𝑎),4)   (3) 

 

where subscripts 1, 2 and 3 refer to the final mixed solution and to the initial solutions of 

different salinity, respectively, V is the volume of the solutions and a is the activity of the ith 

component of the ideal solution.[4] Equation 2 and 3 do not take into account the free energy 

difference of water (i.e., AG0mix ), which results in an underestimation of <10%.[4] 

The osmotic flow can thus be exploited to directly convert ΔGmix to mechanical and electrical 

work by the controlled mixing of water masses of different salt concentration. Even though 

salinity gradient potential was overlooked throughout the years, recent investigations have 

made remarkable advances in blue energy generation resulting in few pilot plants installed in 

Norway, Japan, Italy and Korea.[5] Theoretical calculations based on entropy change report that 

up to 0.8 kW/m3 can be effectively harvested at the sea-river interface.[6] Although this amount 

of energy is much lower than that conventionally produced by burning fossil fuels, several 

advantages (one and foremost the huge availability of saline water on Earth) make salinity 

gradient energy an attractive alternative and a promising renewable solution for future’s energy 

harvesting.[7] Effective sourcing of osmotic power requires the establishment of efficient 

energy-conversion technologies and the continous development of functional materials. Several 

methodologies to harvest salinity-gradient energy have been developed so far, most of which 

rely on processes that make use of separation membranes. Among the currently available 
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options, pressure retarded osmosis (PRO) and reversed electrodialysis (RED) represent two 

among the most promising and mature technologies. In PRO, a salt-rejecting porous 

semipermeable membrane is placed in between two solutions with a concentration gradient, 

allowing for controlled mixing and energy production.[8] Briefly, the volume expansion of the 

draw solution resulting from the permeation of water from the feed solution through the 

membrane causes a pressure build-up, which is partially released by an outlet flow powering a 

hydroturbine that generates electricity.[9] Conversely, RED is based on directional transport of 

charges driven by Nernst potential, using ion-exchange membranes and directly converting 

osmotic power in electricity by using suitable electrodes and an external load resistance.[10] 

Recent progress in this field have enabled to produce power outputs in the range of several 

W/m2.[9] A great advantage of PRO and RED methods comes from the fact that both can be 

applied in natural water reservoir systems such as estuaries[11] and can operate in continous, 

unlike wind and solar energy harvesting systems. Unfortunately, critical limitations of salinity 

gradient-based processess result from the osmotic transport across the membranes. In fact, the 

development of PRO and RED technologies have been practically restricted so far by the lack 

of membranes able to allow for a sufficient flow, and the energy generated by these systems 

results to be currently limited by the properties of the adopted membrane. Therefore, a 

comprehensive understanding of the transport mechanism as well as the search for novel 

materials result are crucial for the optimization of the whole process and further technological 

developments in the field. Apart from harvesting blue energy, membrane separation processes 

are also key to another strategic global issue, i.e. water purification. The alarming report 

recently released by the World Health Organization,[12] with at least 2 billions of people 

currently using contaminated drinking water and half of the global population expected to live 

in water-stressed area by 2025, calls for global political actions, but also urges the scientific 

community to develop efficient materials and accessible technologies for water purification. 

Because of the inverse scaling of water flow with the membrane’s thickness and high 
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selectivity, two-dimensional materials (2DMs) can offer a new approach over the control of 

mass transport at the nanoscale, and possibly leading to the emergence of a disruptive 

technology in the field of membrane science. Since the discovery of graphene in 2004[13] the 

research in 2DMs has grown exponentially and has heavily influenced many classical fields 

such as chemistry and condensed physics, as well as interdisciplinary domains like materials 

science and nanotechnology.[14] The importance of these atomically thin sheets of layered 

compounds (graphene, transition metal dichalcogenides, boron nitride, MXenes, phosphorene, 

etc.) resides in the fact that their exceptional chemical and physical properties (e.g., 

photoluminescence, semi-metallic conductivity, semiconducting charcateristics with tuneable 

band-gaps, extremely high surface-to-volume ratio, etc.) are dictated by their dimensionality 

and can be finely tuned by chemical engineering of their surface, resulting in outstanding 

materials for fundamental and applied research. Atomically thin membranes have been recently 

investigated for applications in water desalination and purification,[15] chemical sensing and 

separation,[16] energy conversion,[6, 9, 17] and gas separation[18] due to the beneficial presence of 

micropores (pore width <2.0 nm, according to the IUPAC definition) in their ordered lattices 

that allows for selective transport of molecules and ions with uppermost permeability.[19] 

Moreover, atomic-scale thickness, chemical resistance and extreme mechanical strength offered 

by 2DMs all constitute valuable features to be considered in membrane separation processes.[20]  

This Review aims at summarizing the recent progresses on the use of atomically-thin 

membranes for water purification and osmotic power harvesting based on 2DMs, and 

motivating the interest in novel technological developments based on 2DMs-based membranes. 

Firstly, we will present the currently adopted methods for the fabrication of atom-thick 

membranes based on graphene, graphene oxide, MoS2, and related hybrid materials, then we 

will discuss the performances of the resulting membranes in PRO and RED applications based 

on the latest scientific literature reports. Aiming at providing a practical, critical overview of 

the vast research activity and on the latest developments in the field, we will draw particular 
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attention on what is currently scientifically and technologically feasible in order to highlight 

the potential impact of salinity gradient as a strategic renewable energy source. Considering the 

specific subject of this Review, the reader is referred to more general works on polymers[21] and 

other functional materials (e.g., metal-organic frameworks,[22] zeolites,[23] silica[24]), as well as 

on bottom-up fabrication techniques of meso- and microporous inorganic matrices [19b, 25], used 

in membrane separation processes.  

 

2. Materials for fabrication of atomically-thin membranes 

In general, membranes are thin semi-permeable barriers laying at the basis of a number of 

separation processes typically achieved through gravity or concentration, salinity, electrical 

potential, temperature and pressure gradients.[15b, 26] Semi-permeable membranes used, for 

instance in desalination processes, can be usually classified into three categories based on their 

composition: inorganic, organic and inorganic-organic hybrids. Ceramic materials (such as 

SiO2, Al2O3, TiO2),[27] carbon-based materials (graphene and related layered materials as well 

as carbon nanotubes)[15d, 20b, 28] and other two dimensional materials (such as MoS2 and hBN)[20c, 

29] all belong to the first class. Organic membranes are composed of polymeric materials, 

typically polyamide, polyvinyl alcohol, cellulose acetate, polypropylene, polysulfone, 

polyvinylidene fluoride, and represent the standard of commercially-available technologies.[30] 

The last group of inorganic-organic hybrid membranes are usually obtained via incorporation 

of inorganic fillers into polymeric matrices, or by the combination of inorganic and organic 

membranes.[31] In this Review we focus our attention on the recent developments of inorganic 

membranes based on 2DMs (i.e., graphene (G), graphene oxide (GO), molybdenum disulfide 

(MoS2) and on their corresponding organic-inorganic hybrids.  

Despite the widespread exploitation of bulky multilayered membranes in e.g. desalination 

process, these materials may suffer from drastic internal concentration polarization (ICP) when 

they are used in PRO and RED, which significantly reduces the water flux over time, and 
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therefore also the power density.[9, 32] On the other hand, membranes based on graphene and 

related 2DMs have recently been considered as a valuable alternative to traditional materials 

(e.g., in osmotic pressure membranes) due to the fact that water transport through a membrane 

scales inversely with its thickness.[33] The atomic-level thickness of 2DMs thus makes them the 

thinnest possible barrier, massively minimizing transport resistance and ultimately maximizing 

water flux.[15e, 29a] 

Another ubiquitous and severe limitation of all membrane-based technologies operating in real 

conditions (i.e., raw natural acquatic reservoirs or municipal wastewater) is represented by the 

fouling process, during which pore blocking, cake formation, organic adsorption, inorganic 

precipitation and biological fouling take place on the membrane surface, ultimately hindering 

its separation performances and leading to temporary or permanent flux decline.[34] General 

strategies to prevent membranes fouling typically involve a fine-tuning of the physico-chemical 

properties of the surface achieved by means of hydrophylic and superhydrophylic coatings, 

chemical/supramolecular grafting on the surface or adsorption of inorganic particles, as well as 

pre-treatment of the water reservoirs (e.g., addition of oxidising agents, flocculants, coagulants) 

or optimization of operative conditions such as pH, temperature, applied pressure and 

hydrodynamic conditions (e.g., high cross-flow velocity).[35] Interestingly, some 2DMs-based 

membranes are known to display antifouling characteristics. The incorporation of negatively 

charged GO in thin film composite membranes, for instance, helps in reducing the adsorption 

of negatively charged foulants thanks to electrostatic repulsions and the formation of a 

hydration layer acting as a steric barrier. Furthermore, the hydrophilic nature and low surface 

roughness, together with the possibility of easily decorating its surface with photoactive 

metal/metal oxide nanoparticles, provides additional (bio)fouling resistance to GO-based 

hybrid membranes.[36] Recently, an active layer of CVD graphene transferred onto a 

commercial PTFE membrane has been shown to display antifouling properties against 

surfactants and oils, and to succesfully operate in real desalination conditions. In particular, 
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antifouling properties of graphene are attributed to the decreased hydrophobicity (with respect 

to pristine PTFE), surface charge neutrality and weak physisorption interactions with the 

foulant species investigated.[37]  

Overall, the ability to precisely control membrane thickness, surface chemistry and micro-meso 

porosity is crucial for the development of materials to be used in blue energy nanogenerators 

and water purification systems. 

The continous progress in advanced fabrication techniques, together with the unparalleled 

physical and chemical properties of 2DMs such as high surface-to-volume ratio, mechanical 

strength,[38] chemical robustness[39] and selectivity[16b] have thus paved the way for a new era in 

the field of membrane separation processes.  

 

2.1. Preparation methods of 2D materials-based membranes 

Nanosheets of 2DMs with atomic thickness can be used as main components to produce various 

separation membranes including porous 2D membranes, layered stacks membranes and hybrid 

2D-polymeric membranes (Figure 1). The main parameters used to describe and compare the 

quality of newly prepared membranes are surface morphology, thickness, porosity and pore 

functionalization, which in turn can selectively affect the mass transport across the membrane. 

Numerous top-down techniques for creating pores of precise dimensions have been developed, 

and include electron beam irradiation,[40] oxidative etching[18c] and plasma etching.[41] On the 

other hand, to fabricate layered stacks and hybrid membranes typical methodologies involve 

phase inversion,[42] interfacial polymerization,[43] electrospinning,[44] blending,[45] surface 

coating,[46] filtration assisted coating,[15a] and layer-by-layer assembly.[47] The large-scale 

production of high-quality graphene and related 2D materials is key to develop real 

technologies and commercial applications. The search for practical and environmental-friendly 

fabrication methods that could be directly transferred to the industrial level represents a critical 
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– sometimes limiting – aspect of applied research in 2D materials science and nanotechnology. 

Along with recent advances in liquid-phase methods based on shear-mixing, ultrasounds, 

microfluidization or electrochemical exfoliation, roll-to-roll processing holds great promises 

especially because of the continuous operation mode and the facile integration with ordinary 

industrial equipment.[48] Kidambi et al.,[49] for instance, has recently described a method for the 

production of nanoporous atomically thin membranes based on roll-to-roll chemical vapor 

deposition (CVD) of graphene and subsequent casting of polyether sulfone (PES). The 

monolayer graphene can be grown at a remarkable speed of 5 cm/min and, after etching of the 

underlying Cu growth substrate, a large area (>3 cm2) PES-supported graphene membrane was 

obtained. In the following section, fundamental mechanisms for the generation of 2DMs-based 

membranes are briefly summarized and some of the most appealing examples are highlighted.  

 
2.1.1. Porous 2DMs Membranes 

In Nature, pores in cell membranes play a fundamental role in signal transduction, 

osmoregulation, transport of nutrients and fusion of cells. The mechanism of pore formation, 

although not yet understood in details, requires surmounting the energy barrier (i.e., the 

entropically unfavorable spatial confinement of water molecules within the pore region) and it 

is driven by favourable enthalpic protein-protein interactions.[50] In materials science, the 

controlled formation of pores with defined size in a given material is inherently challenging, 

with pore density and pores average size mainly being dependent on the coaction of defects 

nucleation and their growth into larger pores.[51] Various practical approaches for the top-down 

generation of pores within 2D materials have been proposed in the literature.[26e] Single layer 

graphene (SLG) nanosheets with artificially obtained pores, for instance, could find application 

in ionic sieving membranes. Molecular dynamics studies presented by Cohen-Tanugi et al. 

indicate that nanoporous graphene can act as a barrier for salt ions (Figure 2a) while allowing 
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the flow water with permeabilities several orders of magnitude higher than existing reversed-

osmosis membranes, emphasizing the potential of nanoporous single-layered membranes in 

desalination process (Figure 2b).[15d]   

Suk and co-workers further proposed that graphene with a pore size in the range of 1-3 nm 

would allow ~10% faster water transport through the membrane, compared to thin carbon 

nanotubes (CNTs membranes).[33] Interestingly, nanoporous few layers graphene membranes 

with thickness below 10 nm can be produced using low-energy (<10 keV) focused electron 

beam in a scanning electron microscope (SEM), in the presence of nitrogen gas (Figure 3a).	

N2 is ionized by the electron beam directly in the SEM chamber, then it chemically interacts 

with carbon atoms forming cyanogen, a gaseous product that is aspirated by the pump, and 

leading to the formation of pores on the graphene surface.[52] Despite the low density of pores 

which can be achieved via this method, a fine control over pore formation was demonstrated 

by varying beam current and gas pressure.  

Fischbein and Drndić demonstrated the precise modification of suspended multiayer graphene 

sheets by exposing the material to the focused electron beam (energy of hundreds of keV) of a 

transmission electron microscope (TEM).[53] By irradiating a few-layered graphene sheet (ca. 

five layers) with an electron beam for ~5 s, pores with diameter ~3.5 nm have been generated. 

Garaj and co-workers reported on a graphene sub-nanometric trans-electrode membrane grown 

via CVD method on nickel surface.[40a] The graphene membrane was placed on a SiNx/Si 

substrate chip and nano-sized pores were generated using the electron beam of a TEM. The 

authors studied the interactions of the membrane with different alkali metal ions solutions by 

investigating the surface electrochemical behavior, showing multiple opportunities for further 

modifications and applications of the obtained 2D membrane.  

Liu et al. presented a method of fabrication based on molybdenum disulfide (MoS2) sculpted 

via TEM. MoS2 flakes were first mechanically exfoliated on SiO2 substrate, then transferred to 
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a square-shaped opening located on a SiNx membrane, thermally annealed at 400 °C under 

H2/Ar flux and finally subjected to the electron beam drilling with an applied voltage of 200 

kV. Pores with size ranging from 2 to 20 nm were obtained on single- and few-layer MoS2. The 

authors demonstrated better water-transport behavior and higher performances in detecting 

DNA translocations of the so-obtained nanoporous MoS2 membrane with respect to 

conventional thicker silicon nitride membranes or graphene.[54] Feng et al. lately reported on a 

MoS2 nanopores as an osmotic nanopower generator.[29b] Both TEM irradiation and 

electrochemically reaction techniques (ECR) were applied to create a single pore in the MoS2 

nanostructure. Based on the membrane efficiency, it was shown that the osmotically induced 

current reached 106 W m-2, which is approximately three orders of magnitude greater than the 

value obtained with boron nitride nanotubes,[55] and six orders of magnitude higher than the 

power density obtained in reversed electrodialysis with classical membranes made of cellulose 

acetate or polyamide.[9] Recent experimental advances have demonstrated that subnanometer-

sized pores in SLG sheets can also be produced by O2 plasma irradiation, with size and density 

of the pores increasing with the plasma etching time.  

Surwade and co-workers proposed an approach for a controlled formation of pores with 

diameters ranging from 0.5 to 1 nm with a density of ≈1010 cm-2 in a SLG, by using an oxygen 

plasma-etching process with an etching time of ~1.5 s (Figure 3b). [19b] Another approach to 

generate randomly distributed pores over large areas consists in using oxidative etching. This 

route considerably enhances the scalability of the process while simoultanesly decreasing the 

pore size down to the sub-nanometer scale. Liu and co-workers demonstrated that thermal 

oxidation of graphene and graphite induces the formation of a low density of large pores (>10 

nm).[56] Further oxidation at higher temperature (500 °C) caused the etching of pores ranging 

from 20 to 180 nm in diameter in single-layer graphene, but not in double- and multi-layered 

sheets. Accordingly, SLG reacts faster and presents randomly distributed etch pits in contrast 

to natural graphite where nucleation of pores preferentially takes place at point defects. Tao et 
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al. characterized the highly disordered morphology of a SLG sheet, as well as that of a graphitic 

material, treated in an ozone generator. The presence of ozone and oxygen radicals resulted in 

nucleation of defects, yielding a high density of pores.[57]  

A closely related approach to produce sub-nanometer sized pores in 2DMs membranes involves 

the creation of reactive spots via ion bombardment and their consequent enlargment by 

chemically oxidative conditions. Hern et al. reported a method to create controlled 

subnanometer-sized pores from 0.24 to 0.40 nm with density exceeding 1012 cm-2 in large area 

SLG membranes through chemical oxidation (acidic potassium permanganate) of reactive 

defects introduced by bombardment with gallium ions (Figure 3c).[19a] In turn, Celebi et al. 

reported on the short-exposure dosage of gallium and helium ions as a method to provide fast 

and exact generation of well-defined pores in graphene, with diameters ranging from <10 nm 

to 1 µm.[18b] A very large number of pores could be generated by electron beam irradiation at 

room temperature, however, the obtained pore size is still far from the microporous range (i.e., 

pore diameter < 2.0 nm) that is needed for selective transport of ions and gases. 

 

2.1.2 Layered stacks and hybrid membranes  

Unlike the top-down fabrication of pores in a pristine two-dimensional material, recent 

advances in the production of membranes made of layered stacks of 2DMs with well-defined 

interlayer distance have shown promising potential in desalination and water purification 

applications.[15e, 26d, 58] In the following section some of the main processing techniques for the 

fabrication of stacked layers of 2DMs and hybrid membranes are discussed.  

Surface coating is a general process in which 2DMs are mixed with suitable polymer solutions 

or simply dispersed in a solvent and are being applied on the desired surface. Evaporation of 

the solvent eventually leads to a stacked coating of nanosheets or a hybrid membrane.[59] 

Depending on the balance between adhesion with the substrate and cohesion forces among the 

structural components of the film, the obtained stack of nanosheets can be eventually peeled-
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off and used as a self-standing membrane. Due to its simplicity, high throughput and general 

applicability, this method presents several advanteges for a wide range of applications. 

Numerous coating strategies have been suggested to assemble 2DMs into layered stacks and to 

enhance the mechanical properties and separation performances of conventional membranes, 

including spin/spray coating and drop casting.[60] Therefore, the resulting 2DMs-based 

membranes possess different thicknesses and surface morphologies correlated to the used 

coating technique, as well as to the adopted experimental conditions (i.e., concentration and 

viscosity of the adopted solutions, concentration of 2DMs, wettability and surface chemistry of 

the underlying substrate, chemical functionalization of the 2DMs, presence of binding agents, 

drying conditions, etc.). For example, by drop casting GO dispersion onto a piece of smooth 

paper Sun et al. were able to obtain free-standing membranes with thickness <10 µm and an 

interlayer spacing of 8 nm, and investigated their selective ion penetration and water 

purification properties.[60b] Shen et al. described the manufacture of transport mixed membranes 

via surface coating of a polysulfone support with GO nanosheets grafted with hyperbranched 

polyethyleneimine dispersed in a chitosan matrix cross-linked with polyvinyl amine at high 

temperature.[46] Chen et al. achieved a full control of the interlayer spacing of graphene oxide 

membranes prepared via drop casting by using mono- and di-valent metal ions (K+, Na+, Li+, 

Ca2+, and Mg2+), with a precision of ~1	Å. [61] This method is based on the strong noncovalent 

interactions between hydrated cations and the aromatic π-electrons of GO.	Experimental results 

demonstrated that a thin KCl-controlled GO membrane showed a water flux of 0.36 l m-2 h-1 

with effective rejection of sodium ions. Overall, the approach presented by Chen represents a 

remarkable step forward in GO-based membranes used in water purification processes. Despite 

these GO membranes also showed a good permselectivity for gases (CO2/N2), such direct 

coating procedure lacks in the precise control over thickness and surface homogeneity. That is 

the reason why a proper surface coating via the direct casting of a polymer solution onto a 

porous substrate is, in general, a very problematic task.  
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Spin and spray coating represent widely adopted methods to produce thinner and more 

organized polymer-based and composite films on various substrates and they are largely 

employed, for instance, in the production of photoresists in the microelectronics industry and 

in the paint industry. In a typical spin coating process, a polymer solution or a dispersion is first 

deposited on a substrate that is then accelerated rapidly to a certain rotation speed. The 

centrifugal force acting on the liquid film causes it to spread radially and leads to the removal 

of the excess liquid from the substrate. The thickness of the deposited film diminishes during 

the rotation of the substrate, until an equilibrium thickness is reached as a consequence of 

disjoining pressure effects or a dramatic increase in viscosity due to solvent.[62] By a careful 

selection of operative conditions (e.g., acceleration rate, rotation speed, rotation time, substrate 

temperature) and experimental parameters (e.g., concentration and viscosity of the 

solution/dispersion, chemical functionalization of the substrate, etc.) a wide range of 

homogenous, thin and ultrathin polymer and hybrid films can be obtained.[63] Spray coating is 

generally considered as the process of forming an aerosol by the action of a pressurized gas 

impinging upon a liquid flowing through a nozzle, and the application of such aerosol onto a 

substrate. Depending on the type of material to be processed and its particle size distribution, 

different nozzle size and geometry as well as different atomization methods can be adopted 

(high temperature, ultrasounds, hydraulic vs pneumatic atomization), the simplest being the 

dispersion of solid particles in a suitable medium and the use of low-cost instruments such as 

air brushes or spray cans.  

Membranes having a thickness in the 0.1 - 10 µm range and interlayer distance of ~10 Å can be 

easily produced by spin and spray coating methods.[64] Spin coating results to be particularly 

suitable for coating flat substrates and has been adopted, for instance, for the surface 

functionalization of polyacrylonitrile and polysulfone membranes with 2DMs.[65] Pan et al. 

explored MoS2 nanosheets embedded into a polyether block amide matrix to prepare high-

efficiency transport membranes for gasoline desulfurization, using a spin coating method.[65a] 
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The performances were evaluated using the tiophene/n-ocetane binary mixture as a model, with 

the hybrid membrane containing 4 wt% MoS2 resulting the best also in terms of higher 

permeation flow. A similar methodology has been used by Cao and co-workers to fabricate 

membranes with a brick-and-mortar cross-sectional structure of pristine and reduced graphene 

oxide blended with sodium alginate.[65b] A pervaporation dehydration experiment was carried 

out utilizing ethanol/water solutions to study the selectivity of these composite materials 

towards permeation of water. Due to the presence of GO structural defects, nanosheet edge-to-

edge slits, and interfacial free volume cavities, channels with high selectivity and transport rate 

toward water molecules were constructed. The interplay between crystallinity of the polymer 

matrix and permselectivity of water channels endows the hybrid membrane with enhanced 

separation performances, and a remarkable long-term operation stability. 

2DMs nanosized membranes can be also manufactured by combining diverse coating 

techniques, e.g. drop casting followed by spin coating of a 2DMs dispersion onto the same 

support surface.[60a] Nair et al. reported on the first submicrometer-thick graphene oxide based 

laminated membranes obtained by spray coating and spin coating, with the ability of almost 

fully retained liquid, vapor and gas (including helium), allowing at the same time the unimpeded 

permeation of water (Figure 4a).[64] Scanning electron microscopy (SEM) image show that the 

obtained films have a very well defined layered structure	(Figure 4b).	Water moleucles can 

easily pass through capillaries formed by the assembly of graphene oxide layered stacks 

(Figure 4c), while the diffusion of other species (organic solvents, gases) is impeded by the 

reversible narrowing of the channels in low humidity conditions and by their blocking with H2O 

molecules. In general, films obtained using spray coating may not possess homogeneous 

structure, because of the effect of gravity draining. In this situation the rotation of substrates 

during spraying may overcome this issue, and it can also represent a suitable method to coat 

tubular-shaped membranes.[60a] Despite of some well-known advantages, the use of spray 

coating method in membrane surface modification with 2DMs is still in its embryonal stage. 
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Thanks to the unique structure of ultrathin layered materials, the typical strategy to easily 

assemble 2DMs laminar membranes is a filtration process.[15a, 18a, 66] The solvent flows in the 

limited space offered by the filtration support causing additional interactions between the 

2DMs, such as hydrogen bonding, electrostatic and van der Waals interactions, which are 

responsible for their continous assembly into ordered laminar structures. The thickness and 

interlayer distance of the laminates, typically in the range or few nanometers to tens of 

micrometers, can be controlled by using different concentrations of 2DMs. Noteworthy, other 

functional constituents, such as polymers and other molecular species can be simply integrated 

with 2DMs, and used to control the interlayer structure of the final laminated hybrid membrane. 

Dikin et al. first reported on the preparation of GO membranes by flow directed assembly of 

indyvidual GO sheets.[66a] The interlayer spacing resulted to be about 0.83 nm, as inferred by 

XRD measurements, which is in accordance with the presence of approximately one mono-

layer of water in between the GO sheets. Han et al. fabricated a ultrathin (22-53 nm) graphene 

membrane with 2D nanochannels by filtering chemically converted graphene onto a 

microporous substrate (PVDF and mixed cellulose ester membranes).[15a] The resultant 

membrane showed an excellent retention performance with a relatively high water flux (21.8 L 

m−2 h−1 bar−1), based on the mechanism of physical sieving and electrostatic interaction.	Guan 

et al. incorporated 3D zirconium based nanoporous metal-organic frameworks (UiO-66) 

crystals into a 2D graphene laminated structure, for water desalination based on size-selective 

diffusion.[67] The 3D/2D membrane exhibited 15 times higher water permeability with respect 

to reduced graphene oxide membranes produced by hydrothermal reduction of GO in the 

presence of NH3(aq) and L-ascorbic acid, with similar high retention rate. Chen et al. fabricated 

rGO-CNTs hybrid membranes by intercalation of reduced graphene oxide with carbon 

nanotubes, using a vacuum-assisted filtration method.[68] The optimized rGO-CNTs hybrid was 

proposed as a membrane for retaining dyes, sugars, proteins and nanoparticles from water. 

Experimental results showed high retention efficiencies above 99% (excluding methyl orange), 
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excellent antifouling properties and good permeability values of 20-30 L m-2 h-1 bar-1. As a 

widespread, high throughput method for membranes fabrication, filtration process can be easily 

extended to other 2D materials, such as MoS2,[69] WS2[70] and MXenes, the only limitation being 

represented by the chemical compatibility between the filter and the solvent in which 2DMs are 

dispersed, as well as through pore charcateristics. 

A method commonly employed for the preparation of thin polymer films, which can also be 

extended to the preparation of layered stacked membranes, is interfacial polymerization (IP).[71] 

This process consists in a in situ interface reaction between two reactive monomers dissolved 

in immiscible solvents to form an ultra-thin dense polymeric film (from few nm to several µm 

thick) at the interface (Figure 5a). IP was developed by Cadotte et al.[72] and has been used for 

producing membranes for nanofiltration and reverse osmosis processes.[73] This represented the 

first example in the literature for a non-cellulosic membrane material with equivalent water flux 

and salt rejection for monovalent metal ions. The structural morphology and composition of 

membranes prepared by IP can be controlled by various factors, such as concentrations of 

monomers, solvent type, reaction’s kinetics.[71c, 74] To date, 2DMs sheets have been rarely 

employed for the realization of hybrid membranes via the interfacial polimerization method. 

For example, Yin et al. prepared GO-polyamide nanocomposite membranes for water 

purification.[75] Their results indicated that by increasing the concentration of GO from 0 to 

0.015 wt.% in the 1,3,5 benzenetricarbonyl trichloride (TMC)-hexane phase during the 

fabrication, the permeate flux under 300 psi increased from ~40 to ~60 L m-2 h-1 bar-1, while 

rejections of NaCl and Na2SO4 only marginally diminished of around 2%. Recently, Bano and 

co-workers designed novel nanofiltration hybrid membranes prepared via IP, using GO 

nanosheets incorporated in a polyamide matrix.[76] The results revealed that the addition of GO 

has a strongly positive impact on both water flux and antifouling properties, with no detrimental 

side effect on salt rejection. Despite the continuous improvement in the design of thin polymeric 



  

19 
 

membranes by IP some technical challenges still hamper the use of 2DMs in this field, 

especially regarding the structural integrity of the resulting hybrid film and the minimization of 

2DMs sheets aggregation during the polymerization reaction.  

Layer-by-layer (LbL) assembly represents another classical method for the fabrication of 

layered composite films by means of alternated deposition of oppositely charged species 

(classically polycations and polyanions), resulting in the growth of ordered stuctures along the 

substrate’s normal direction (Figure 5b).[77] The LbL assembly of 2DMs gives the possibility 

of generating functionalized membranes with excellent separation performance and controlable 

thicknesses by selecting the number of deposition cycles.[78] Moreover, the interlayer distance 

can be tuned by chemically modifying the 2DMs, either by covalent or non-covalent 

approaches, which improves the stability of functional multilayers. Choi et al. showed that the 

coating of multilayered GO with polyamide (PA) thin films via LbL approach resulted in a 

hybrid membrane with improved antifouling properties (due to the hydrophylic protecting PA 

layer) and resistance to chlorine induced degradation, while maintaining high levels of salt 

rejection.[79] Interestingly, the water flux through the GO-PA membrane is not affected by the 

presence of the multilayered GO structure and it is comparable to that of pristine PA membranes 

(14 L m-2 h-1). A similar approach to assemble graphene and 2DMs sheets into laminar 

membranes is the Langmuir-Blodgett method, which offers the possibility of controlling in 

plane interactions of materials assembled at the water-air or water-solvent interface by 

modification of the surface pressure, thus allowing for the formation of monolayers that are 

eventually transferred on solid substrates.[80] Hu et al. covalently cross linked GO sheets with 

TMC and immobilized them on a polydopamine-coated polysulfone substrate via LbL 

approach.[81] The obtained GO membrane has a free interlayer spacing of approximately 1 nm 

and a total thickness of approximately 5–50 GO layers, showing high rejection of cationic dyes 

(Rhodamine B) and water flux of 27.6 L m-2 h-1 bar-1 which is much higher than commercially 
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available nanofiltration membranes. The same group reported on the alternate layer by layer 

assembly of GO sheets with poly(allylamine hydrochloride) on a porous poly(acrylonitrile) 

substrate to fabricate a novel type of water purification layered membranes.[82] The obtained 

hybrid membranes retained a high structural stability in solutions with low ionic strength, and 

exhibited high rejection (up to 99%) for sucrose (used as a representative uncharged species). 

However, the contact of the membrane in solutions with high ionic strength (i.e., MgCl2 1 M) 

results in the increase of the interlayer spacing due to the shielding of electrostatic interactions 

holding the GO and polymer layers together, suggesting that stronger interlayer forces are 

needed to obtain more stable multilayers.  

The final method of hybrid membranes fabrication is the electrospinning.[44] Electrospinning is 

a special type of the electrospray process in which external high voltage is used to consistently 

produce fibers with sub-micrometric diameter of numerous organic polymers.[83] A general 

electrospinning set-up consists of a high voltage (kV) power supply, a syringe connected to a 

pump and a grounded conductive collector. As soon as the first liquid drops are ejected from 

the syringe, Coulomb forces originating from the strong electric field between the needle tip 

and the collector overcome the liquid’s surface tension, deforming the meniscus into a conically 

shaped structure (the so-called Taylor cone) and producing a stream of material that comes out 

from the nozzle. Finally, as the solvent evaporates and the jet dries, the spontaneous whipping 

motion of the polymer fiber results in the formation of a non-woven fibrous mat on the grounded 

collector surface. This simple and effective process capable of generating nanofibers was first 

described by Zeleny in 1914[84] and patented by Formhals in 1934.[85] Hitherto, various types 

of polymers have been investigated to obtain electrospun membranes, including polystyrene,[86] 

poliacrylonitryle,[87] polyvinylidene fluoride (PVDF),[88] chitosan[89] and cellulose acetate.[90] 

The morphologies of the resulting membranes can be effectively tuned by different parameters 

such as polymers solution’s flow and applied voltage.[91] In general, high porosity and high 
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specific surface area make electrospun membranes very appealing materials for water 

purification processes.[92] Feng et al. reported on the use of polyvinylidene fluoride nanofibrous 

membrane, produced by electrospinning, to remove salt from seawater.[93] The membrane could 

be used in air-gap distillation process to produce water with small salinity (less than 280 ppm) 

starting from 6 %wt NaCl solution. The electrospinning method has been also applied to the 

fabrication of 2DMs based membranes. Ren et al. assembled sheets of Ti3C2Tx into supported 

membranes for the selective sieving of metal ions and dyes from wastewater.[94] Those MXene 

membranes presented a micrometric thickness (from 9 to 15 µm) and ultrafast water flux as 

high as 37.4 L atm-1h-1 m-2). In another work, Wang and co-workers obtained multi layers GO 

membrane surface-overlaid on the electrospun polyacrylonitrile nanofibers for highly efficient 

removal of pollutants from water.[95] Noteworthy, the prepared bilayer membranes were stable 

and free of delamination even after the thermal reduction of GO sheets. Najafabadi et al. used 

chitosan/GO nanofibers as a high-performance adsorbent for heavy metal ions from aqueous 

solutions.[89] The authors used an applied voltage of 20 kV, with a nozzle-collector distance of 

15 cm to obtain the hybrid chitosan/GO membranes and were able to effectively adsorb Pb2+, 

Cu2+ and Cr6+ metal ions.  

In this section, we have outlined some of the currently available technologies for 2DMs-based 

membranes in terms of their basic components, used methodology, structural features and 

properties. All the above-mentioned examples of 2DMs are summarized in Table 1.  

 
2.2 Transport mechanism  

As a result of an emergence of new strategies for inter-particle channel modifications and 

extended lateral dimensions, 2DMs-based membranes are being considered as a novel platform 

for effective separation technologies, remarkably facilitating water, gas, and ion transport. The 

ultra-fast and highly selective transport has been investigated for a long time, but a unifying 



  

22 
 

picture of the overall mechanism is yet to be reached. Generally speaking, depending on the 

considered length scale of the membrane pore size, a variety of selective transport mechanisms 

can be achieved (Figure 6). 

One among the most interesting and useful working mechanism taking place at the smallest 

length scale, concerning for instance polymeric and 2DMs membranes used in reverse osmosis 

and gas separation membranes, is the solution-diffusion mechanism.[96] Diffusion is defined as 

a spontaneous spread and penetration of species (molecules) from a region with higher chemical 

potential to another one with a lower chemical potential.[97] The difference in chemical potential 

may results from a concentration, temperature or pressure gradient. The process in which 

molecules exhibiting size larger than a membrane pore size are blocked in a membrane due to 

steric hindrance is called molecular sieving.[98] Besides the molecular trapping, this process can 

be driven via additional electrostatic or chemical interactions with the membrane’s surface. At 

larger length-scale (i.e., sub-µm range), the transport is regulated by Knudsen diffusion for 

which species with lower molecular mass have higher permeance and travel faster.[18b] 

Poiseuille flow (also called convective flow) is the pressure-induced pore flow model generally 

adopted to describe the transport in a capillary or a porous medium.[99] In Poiseuille flow when 

the pores are very small and the mean free path of the gases and ions is larger than the pore 

diameter, collisions with the pore will occur and the lighter molecules will then preferentially 

pass through the membrane. 

In general, transport through membrane pores with size larger than molecules or ions results to 

be affected by electrostatic interactions, steric effects and chemical affinity.[100] Diffusion 

mechanism is considered as a key process for harvesting blue energy using membrane 

separation of molecular species – ions from water in PRO and cations from anions in RED. 

Nevertheless, some reports have presented that molecular separation in PRO and RED are not 

mandatory for osmotic flow. Diffusio-osmotic transport was introduced by Derjaguin in the 
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1940s and it has been overlooked for many years, until some recent works brought it back under 

the spotlight.[101] Diffusion-osmosis transport is a surface mechanism driven by an osmotic 

pressure gradient occuring within few nanometres from the surface of the membrane pores 

(Figure 7). In this case, the use of semipermeable membranes is not necessary, because the 

osmotic flow would result from specific interactions between the solute (in this case, a salt) and 

the surface. The difference in ionic concentration produces an electric current, known as the 

diffusion-osmotic current, as the ions move across the membrane subjected to the interfacial 

osmotic pressure gradient. Diffusion-osmosis is therefore a halfway process between PRO and 

RED, and since it occurs at the surface, increasing the surface area of the membranes translates 

in a higher ionic current. This mechanism has been exploited in membranes made of 2DMs and 

has been shown to provide particularly efficient osmotic power conversion. Further discussion 

about “anomalous” transport mechanisms associated with phenomena occurring within the 

membrane in the nano and sub-nano scale regime[29b, 102] and originating from the interaction 

of the ions with the surface of the nanopores at the Debye layer (λD) length scale is presented 

in section 3.2.1.  

Despite the fact that the transport of chemical species through a membrane is a complex process 

and is still the subject of fundamental investigations, an atom thick selective layer endowed 

with precisely controlled porosity and chemical functionality based on 2DMs is unquestionably 

advantageous for achieving high permeation and selectivity. Therefore, further investigations 

aiming at achieving a full control over membranes nanostructuration and over the mass 

transport in atom thick porous materials, would lead to more and more effective solutions for 

seawater desalination and osmotic energy harvesting, as well as gas separation and catalysis.  

 

3. 2DMs in reverse electrodialysis (RED) and pressure retarded osmosis (PRO) processes  
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RED and PRO are emerging membrane-based technologies that enable converting chemical 

energy of salinity gradients in useful work. RED and PRO have inherently different working 

mechanisms. RED is based on a charge-driven flow provided by ions passing through a stack 

of ion exchange membranes generating a chemical potential difference. PRO is based on water 

permeation through a semipermeable membrane as a consequence of the concentration gradient 

between draw and feed solutions, with Cdraw > Cfeed. The volume expansion of the more 

concentrated solution resulting from the permeation of water in the draw reservoir causes a 

pressure build-up, that is partially released by an outlet flow powering a hydroturbine. Both 

RED and PRO rely on partial transport through a semi-permeable membrane, with the flow of 

water scaling inversely with the membrane’s thickness. 2DMs exhibit multiple crucial features, 

including chemical inertia and high adsorption selectivity towards different chemical species, 

making them exceptionally suitable for membranes fabrication. Moreover, 2DMs exhibit 

extreme mechanical strength allowing for application of high external pressures, which are 

required in both RED and PRO applications. As the pores size significantly influences 

permeation of specific molecules through the membrane, creating pores in a controlled fashion 

is key for any membrane-based processes. Therefore, tunable thickness and the ability to 

introduce various defects, including sub-nanometer sized pores, over a large surface area make 

2DMs ideal materials for their use in blue energy generation. Porous graphene, for example, 

constitutes a particularly attractive candidate for applications in desalination, nanofiltration and 

other membrane-based processes.[103] Notably, several approaches can be followed to prepare 

micro- and mesoporous graphene, as well as other 2DMs. In Section 2 we have described in 

detail some of the recent and most promising top-down fabrication techniques used to obtain 

porous 2DMs, also highlighting some of the critical drawbacks (e.g., poor scalability of 

electron-beam fabrication, poor control of pore size distribution for oxidative methods). 

Noteworthy, semi-permeability is a crucial characteristic of membranes for pressure retarded 

osmosis, as the water needs to flow across the membrane with the highest flux possible. On the 
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other hand, reverse electrodialysis is mostly based on ion-exchange membranes, therefore their 

physical and electrochemical properties should be taken more into consideration. In this regard, 

as 2DMs can provide multiple functionalization pathways, anion and cation exchange 

membranes (AEM and CEM, respectively) based on 2DMs can benefit from additional 

chemical modification aimed at higher permeate selectivity and increased ionic current.  

 

3.1 Reverse Electrodialysis (RED) 

In RED process brine and a freshwater are let passing through a stack of alternating anion and 

cation exchange membranes (AEM and CEM, respectively) generating adjacent highly 

concentrated (HC) and low concentrated (LC) compartments. The salinity gradient induces a 

chemical potential difference over each membrane’s side with a corresponding flux of water 

molecules from the LC compartment to the HC compartment (Figure 8a). However, due to the 

presence of ion exchange membranes, only counterions can selectively permeate through each 

LC compartment and the difference in ion concentration across both AEM and CEM produces 

an electrochemical potential difference. The total electromotive force generated in RED, i.e. 

the open circuit voltage (OCV), is the sum of the Nernst potential over each cell. For relatively 

diluted NaCl solutions and 2 ion exchange membranes:[104]  

 

𝑂𝐶𝑉~ 2>?@
AB

𝑙𝑛 CDEF
DGF
H          (4) 

 

In which α is the membranes permselectivity, z is the valence of the exchanged ions, T is the 

temperature, F is the Faraday constant, R is the Boltzmann constant and cHC and cLC  are the 

concentration of the HC and LC compartments, respectively.  The resulting ionic flux is then 

transformed into an electric current at the end electrodes with a suitable reversible redox couple, 

and electric work is produced by using an external load resistance.[104-105]  
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RED operating mechanism can be described according to Nernst-Planck transport theory with 

a few important factors having significant influence on the overall performance, namely 

membrane thickness, water transport and co-ion transports through the membranes.[106] 

Theoretical and experimental results show that membrane thickness plays a remarkable role in 

current efficiency and effective performance in RED. Investigations on membranes with 

thickness in the range of 10-100 μm performed by Tedesco et al. revealed that thinner 

membranes are able to produce higher power density, as long as they remain structurally stable 

and highly selective.[106a] Membrane’s selectivity indeed represents, at least from a materials 

science perspective, the predominant feature for reverse electrodialysis, since the effect of co-

ion transport through the membrane may reduce the density power of about 20%.[106c] Other 

factors affecting RED performance and practically limiting blue energy harvesting are 

schematically displayed in Figure 8b. The useful work produced in RED is indicated by the 

black patterned area, entropy production due to resistive energy loss caused by internal 

resistance of the RED stack is depicted in blue, while the resistive loss associated to 

uncontrolled mixing, i.e. water and co-ions leakage, is marked in red. The area depicted in green 

indicate the amount of energy unutilized because of premature discontinuation of the 

process.[104-105]  

 

One among the challenges for effective energy production from reverse electrodialysis is the 

design and fabrication of appropriate membranes with ion/molecules selective nanochannels. 

Typically, smart nanochannels can be obtained using defect-rich functional materials, by self-

assembly processes and ion-track-etching or electrochemical etching.[75, 107] Since RED 

practically requires a series of ion exchange membrane pairs in order to provide effective 

electrochemical potential, the application of ultrathin membranes with low resistance is 

necessary (Figure 9a).[104, 108] It is estimated that the maximum amount of salinity gradient 

energy that can be harvested from 1m3 of freshwater and 1m3 of sea water is about 1.8 MJ.[109] 
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Notably, the amount that can be harvested with RED strictly depends on the energy efficiency 

of the process.[110] Two different approaches might be distinguished in terms of application of 

two-dimensional materials in reverse electrodialysis. The first is based on the preparation of 

selective membrane (CEM/AEM) providing ion migration and chemical potential generation. 

On the other hand, since 2DMs exhibit unique electrical properties, they can also be utilized as 

electrode materials.[111]   

Wan et al. have presented porous graphene with controllable pore size as a potential material 

for RED.[112] The porous graphene was obtained with a microwave combustion process of a GO 

– metal precursor mixture (e.g., silver acetate, cobalt nitrate, ammonium molybdate, copper 

nitrate) and subsequent washing of the formed NPs. Then, the obtained porous graphene was 

placed together with an anodic aluminum oxide (AAO) membrane (with pores size around 60 

nm) between two gaskets (Figure 9a-b) and the so-obtained asymmetric ion-selective 

membrane with pore size of 5, 30 and 100 nm was investigated towards salinity gradient power 

generation. The sample with the smallest pores exhibited the best power density, equal to 1.15 

W m-2 as tested in 1 M - 10-6 M NaCl set. To the best of our knowledge, this membrane shows 

the highest power density among graphene-based RED devices. 

 
Another approach was recently proposed by He et al. and relies on a use of graphene hydrogel 

as an electrode for RED process.[113] The electrode material was prepared by using a one-step 

hydrothermal reduction, followed by the soaking of the obtained hydrogel in hexadecyl 

trimethylammonium bromide and subsequent compression to form tablets. A RED cell was 

prepared by assembling commercially available filtration and anion-exchange membranes 

between a high-concentrated (500 mM NaCl) and low-concentrated (20 mM NaCl) solutions, 

with the open circuit potential measured using the Ag/AgCl electrode. The proposed RED set 

exhibited a power density of 482.4 mW m-2 when an anion exchange membrane was used. 

Rollings et al. reported on a graphene membrane with high ion selectivity.[114] Nanopores 
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generated via electrical pulse method enabled selective permeability of potassium ions. 

Experiments were performed in different KCl solutions using Ag/AgCl electrode. The obtained 

material exhibits promising results for cation exchange membrane with high potential for RED 

application.  

TMDs are also being investigated as membrane materials for RED. In Section 2 we already 

discussed the use of a single-layer MoS2 with a single nanopore proposed as an osmotic 

nanopower generator.[29b] Based on the membrane efficiency, it was extrapolated that the 

osmotically induced current reached 106 W m-2, which is approximately three orders of 

magnitude greater than the value obtained with boron nitride nanotubes,[55] and six orders of 

magnitude higher than the power density obtained in RED with classical membranes (e.g., 

cellulose acetate or polyamide membranes).[9] A more practical application of TMDs in reverse 

electrodialysis was presented by Jeong et al. who utilized MoS2 and a hybrid of MoS2 and 

porous carbon to prepare a very efficient cathode material. The porous carbon substrates were 

directly coated via CVD process by heating Mo(CO)6 and S2 under inert gas conditions. The 

RED tests were performed on fifty pairs of ion exchange membranes for 0.5 M - 1 M NaCl 

solutions using Ti-mesh supported Pt as an anode. The investigated hybrid system exhibited a 

maximal power density of around 0.48 W m-2, which is more than double to that of a pristine 

MoS2 electrode (0.2 W m-2).  

Table 2 summarizes all the above-mentioned examples of 2DMs-based membranes and 

electrodes used in reverse electrodialysis. 

 

3.1.2 Ionic diodes and RED systems exploiting ionic transport in nano-sized channels  

Similar to a diode in electronics, an ionic diode can be defined as a device with the property of 

asymmetric electric conductance in which ions preferentially flow in one direction.[115] While 

in Nature asymmetric ion channels allow ionic transport in one direction to perform complex 

biological functions,[116] the presence of nano-sized channels with rectified ionic transport 



  

29 
 

within a membrane can be particularly beneficial for RED-based processes thanks to enhanced 

selectivity. The charge selectivity in such devices derives from peculiar transport mechanisms 

occurring when the size of the channels connecting water solutions reservoirs approaches the 

dimensions of the hydration layers formed around each ion (i.e., Debye length). A different 

concentration profile of counter-ions and co-ions can be due, for instance, to Coulomb 

interactions between ions and charged channel walls. In this regime, the ion conductance 

through the nanochannel is ruled by the surface charge instead of the ion concentration in the 

reservoir.[117] This ionic diode behavior can also be observed when other symmetry breaking 

factors occur, namely asymmetric shape of the channel (e.g., conical-, funnel, bullet-shaped 

nanochannels),[115] partial charging of the nanochannel surface[118] and concentration gradient 

across the nanochannel.[119] The working principles of ionic diodes are based on ions flow 

promoted by pressure gradient in the channel. This phenomenon induces counter ions flow in 

the double layer at the channel walls leading to generation of electrical current. In details, as 

the inner surface of the channel is charged, the advection of ions creates streaming potential 

resulting in electro-kinetic energy conversion from mechanical to electrical (Figure 10a). 

Moreover, nanofluidic systems make it possible to determine the highest energy conversion 

efficiency by probing of the regime of double layer overlap.[120] Therefore, porous materials 

with high specific surface area with potential to induce p-n junction constitute attractive 

materials for such systems for harvesting blue energy.[121] Ion transport through nanochannels 

can be compared to electrons and holes in semiconducting nanomaterials or Shockley 

diodes.[101a, 122] The current generated during the process can be expressed by the Shockley 

equation:[123]  

 

𝐼 = 𝐼J C𝑒𝑥𝑝 N
𝑒𝑉
𝑘𝐵𝑇
Q − 1H          (5) 
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where I represents the ionic diode current, IS is the so-called saturation current, e is elementary 

charge, V is the voltage and T is the temperature. 

Nanofluidic RED-based energy harvesting systems have been recently investigated and they 

have shown high power densities and energy conversion efficiencies. Long et al.[124], for 

instance, have performed numerical simulations to illustrate the electrokinetic behavior of 

asymmetric nano-sized channels (R1=5 nm, R2= 10 nm) connecting NaCl reservoirs of different 

concentration. Their results show that due to the asymmetric geometry of the bilayer channel, 

the performance of the nano-fluidic RED is strongly impacted by the direction of the applied 

NaCl concentration gradient because of the different degree of electric double layer overlap in 

the selected asymmetric configuration. Hwang et al.[125] used a thin mesoporous silica 

membrane with uniaxially aligned pores (thickness ∼55 nm, pore size = 2-3 nm) to separate 

reservoirs of monovalent electrolytes of different concentration. Interestingly, the power 

density of their devices shows a cation-specific dependency (3.90 W m−2 for KCl, 2.39 W m−2 

for NaCl, 1.29 W m−2 for LiCl) suggesting that a larger difference in the diffusion coefficient 

of ions and cations, leads to a higher power density. An ionic diode membrane with asymmetric 

structure, chemical composition and surface charge polarity has been developed by Gao et 

al.[126] by employing a mesoporous carbon (pore size ∼7 nm, negatively charged) - microporous 

alumina (pore size ∼80 nm, positively charged) heterojunction. The peculiar design of the 

membrane lead to rectified ion transport through the meso/macro channels with high selectivity, 

even in highly concentrated electrolyte solutions. When artificial seawater and river water are 

mixed through the ionic diode membrane, a remarkable power density of up to 3.46 Wm-2 is 

obtained. Another noteworthy experimental work that highlights the role of the channel size in 

nanofluidic devices was presented by Esfandiar et al. who investigated ion transport through 

angstrom-scale slits.[127] Their devices were constructed by assembling different crystals 

(graphene, hexagonal boron nitride, MoS2) on top of bilayer graphene and MoS2, which served 
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as spacers, resulting in a stacked membrane with channels height of ∼0.7 Å. By performing 

conductivity tests with KCl solutions permeating these slits, a deviation from linearity of the 

conductance around 10-2 M was observed (Figure 10b) and slight dependence on the 

composition of the channels walls, apart from higher saturation values of the conductance that 

were ascribed to variable surface charges of the channels’ walls (Figure 10c). Interestingly, 

large ions (i.e., hydrodynamic diameter larger than 13 Å) are completely excluded from the Å-

scale channel, while ions with hydrated diameters slightly larger than the slit size permeate with 

reduced mobility, presumably upon distortion of their hydration shells. The confinement effect 

also translates in a remarkable asymmetric transport between anions and cations of the same 

diameter (i.e., anions generally show reduced mobility), which is explained by considering the 

different orientation of water molecules in their hydration shell and the polarization effect 

exerted by the channel’s surface. The presented results emphasize the importance of 2DMs to 

develop nanofluidic systems with size- and/or charge-selective transport and might build the 

foundations for next-generation RED systems. 

2DMs-based membranes endowed with nanofluidic channels have been recently proposed as 

potential candidates for high-performance ion-exchange and electro-dialysis technologies, due 

to their nonlinear ionic transport. For example, Hong et al.[128] have measured the ionic 

permeability of a GO membrane (thickness = 3 μm) fixed on a porous substrate separating two 

compartments filled with electrolyte solutions and electrically contacted with Ag/AgCl 

electrodes (Figure 11a). The GO membrane showed high cation selectivity for different salts 

(monovalent cations > bivalent cations > trivalent cations) due to the negatively charged surface 

of the membrane’s nanochannels (i.e., oxygen-carrying functional groups). The ion-rejection in 

GO membranes results to be determined as much by the electro-static repulsion (i.e., 

nanochannel surface charge) as it is by the size-exclusion effect (i.e., nanochannel height). 
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Hence, surface modification of GO nanosheets may offer a new route for increasing the overall 

salt rejection, without lowering the water flow across the membrane.  

 

An interesting approach was presented by Ji et al. by using GO-based charged nanofluidic 

membrane (GOM) pairs (interlayer distance ∼1 nm, thickness = 0.5 – 100 µm).[121a] Pristine 

graphene oxide was used as a cation exchange membrane (i.e., negatively charged membrane), 

while a carbodiimide-mediated ligation is employed to conjugate positively charged 1-

aminopropyl-3-methylimidazolium bromide onto GO surface, reverting its charge and making 

it the anion exchange counterpart (Figure 11b). These charged GOM stacked pairs showed 

surface charge-governed transport and were able to generate high voltage (up to 2.7 V), as well 

as to provide a power density as high as 0.77 W m-2 when tested in a 0.5 M - 0.01 M draw-feed 

NaCl solution set.  

A dramatic reduction of the nanochannel size could also lead to the emergence of quantum-like 

ionic transport, as demonstrated by Feng et al. who separated two ionic solutions with a single-

layer MoS2 membrane featuring a single 0.6-nm-diameter nanopore, biased by a pair of 

Ag/AgCl electrodes (Figure 11c).[129] Pronounced non-linear I-V characteristics are observed, 

with the current being suppressed at small voltages, and increasing more strongly when the bias 

voltage exceeds a threshold value (apparent gap ∼400 mV). All the tested chloride salts (K+, 

Na+, Li+, Ca2+, Mg2+) exhibited nonlinearity, with different voltage gaps for different ions and 

a strong dependence on the cation’s valence. The observed phenomenon differs drastically from 

traditional ion transport through larger nano-sized pores, with the suppressed conductance in 

the subthreshold regime being attributed to the finite energy barrier to overcome in order to add 

a charge carrier to the pore, and to the stepwise free energy barrier required to break ion’s 

hydration shells when it permeates through pores smaller than 0.8 nm. Another relevant 

example of anomalous ionic transport occurring at Å-scale length is that reported by Motuerde 

et al.[130] In their work the authors were able to study the purely two-dimensional flow of water 
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and ions through Å-scale channels realized by van der Waals assembly of 2D crystals of 

graphite (or hexagonal boron nitride) and by-layer graphene spacers on a SiN membrane, 

separating two reservoirs filled with KCl solutions and containing Ag/AgCl electrodes. Each 

device had channels with height ≈ 6.8 Å, width = 130 nm and length of a few micrometers 

(Figure 11d). The ionic transport, propelled by pressure and by an applied electric field, 

revealed a highly nonlinear transistor-like electrohydrodynamic effect. The application of a 

small voltage is able to “switch” the ionic transport (characterized by streaming mobilities), and 

such gating effect results to be markedly dependent on channel material’s composition. The 

authors described the system’s behavior with an extended Poisson–Nernst–Planck model and 

attributed the bias-dependent high streaming mobility to the unusually fast transport of water 

and hydrated ions at molecular distances from the channel surfaces. 

 

Considering the aforementioned examples and the fast, continuous progress in nanomaterials 

manufacturing technologies, further engineering of materials at the nano-scale aimed at the full 

control of the ionic transport mechanism in atomically thin, small and ultra-small (<1 nm) pores, 

will definitely result in the development of highly selective next-generation membranes, and 

likely stimulate fundamental research in novel domains of physical chemistry, nanoscale 

fluidics and biology.  

 

3.3 Pressure Retarded Osmosis (PRO) 

Osmotic energy represents a sustainable solution for the production of energy, with high 

potential and a significantly lower amount of pollutants created during the process. Pressure 

Retarded Osmosis (PRO) has become an attractive method for power generation by means of 

osmotic energy and it is based on the application of a semipermeable membrane separating two 

modules with a high salinity gradient. In order to equilibrate the chemical potential of the two 

solutions (see Chapter 1), water flows from the low-concentrated feed solution to the high-
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concentrated draw solution. As a consequence, an elevated pressure – up to approximately half 

of the difference in osmotic pressures between the two solutions – builds-up on the side of the 

membrane facing the draw solution, increasing the flow and simultaneously powering an outlet 

turbine that generates electricity. An actual PRO system consists of membrane modules in 

continuous flow operation, i.e., water solutions advance along the axial length of the 

membranes in direct current configuration (Figure 12a). Figure 12b shows a schematic 

representation of a PRO system, in which the osmotic flow of water from the LC to the HC 

compartment produces an increase of the volume ΔV and a corresponding excess pressure ΔP. 

The useful work that can be obtained using PRO can thus be calculated with the following 

equation[131]: 

 

𝑈 = ∫∆𝑃	𝑑𝑉           (6) 

 

However, similar to RED, several factors practically lower the amount of energy extractable in 

PRO (Figure 12c), such as frictional loss originating from the permeation of water through the 

membrane, as well as uncontrolled mixing originating from the diffusion of salt from the HC 

side to the LC solution due to a non-perfect selectivity of the membrane.[105]  

 

The PRO method constitutes an attractive energy source and gained considerable attention since 

its invention by Loeb in 1973.[132] Further developments of the technology recently resulted in 

the first osmotic power plant prototype installed in Norway in 2009. PRO can be effectively 

used to capture natural salinity gradient directly exploiting natural seawater-river interfaces, 

however efficient technologies for energy conversion are still required.[9] It is estimated that 

global energy production potential of PRO exceeds 2 TW, which constitutes about 20% of the 

current energy consumption worldwide.[11] Therefore, implementation of PRO-based energy 

harvesting definitely represent a global strategic target. An important parameter to be 
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considered is power density (W), which can be defined as the osmotic energy output per unit 

membrane area and can be calculated from[133]  

 

𝑊 = 𝐽[∆𝑃	 	 	 	 	 	 				 	 	 	   (7) 

 

where ΔP represents the trans membrane pressure and Jw represents the water flux.  

In order to make PRO economically advantageous, it is estimated that the target power density 

should exceed 5 W m-2.[134] Notably, implementation of PRO requires a few serious challenges 

to be taken into consideration such as module design, membrane’s thickness and anti-fouling 

properties.[135] Typically, a potential material for building such membranes should provide high 

water flux, hydrophilicity, good solute retention and high power density. Moreover, the main 

challenge associated to the practical applicability of PRO in blue energy harvesting is the 

fabrication of low-cost membranes able to develop a low internal concentration polarization 

(ICP) during operation. Concentration polarization occurring at the membrane-liquid interface 

is indeed one of the key factors that most dramatically lower the effective osmotic flow and the 

final power density of the system.[136] Furthermore, in order to avoid complications related to 

membrane fouling the feed stream requires pre-treatment, resulting in a considerable energy 

consumption.[137] Since the water transport through the membrane is strictly dependent on 

membrane thickness, two-dimensional materials have been recently considered as promising 

alternative providing minimization of transport resistance and ultimate increase of water 

flux.[15e, 29b, 138] In this regard, the objective would be to achieve a controllable and selective 

transport through atomically-thin membranes of graphene, graphene oxide, TMDS and their 

corresponding hybrid materials, which have been recently widely developed for nanofiltration 

and separation techniques.[20b, 64, 139] Additional functionalization and defect engineering of 

2DMs may constitute powerful tool in the development of next generation membranes. 
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Tong et al. reported on the application of a free-standing graphene oxide membrane (GOM) in 

pressure retarded osmosis.[140] The membrane was fabricated using vacuum filtration method 

by pouring a graphene oxide dispersion onto inorganic porous AAO filter, resulting in a thin 

GOM, which was dried, peeled and used as prepared. Several samples with different thickness 

ranging from 1.73 μm to 4.12 μm were investigated, with the thickest membrane showing a 40-

fold decrease in the water permeability coefficient. These GO membranes presented a power 

density as high as 24.63 W m-2 with a water flux of 4.27 L m-2 h-1 bar-1 using NaCl 3 M and 

NaCl 0.017 M as draw and feed solutions, respectively. To the best of our knowledge, this 

represents the best performance reported so far for 2DMs-based PRO membranes. Another 

interesting example is provided by Hu et al.[141] In their work, GO was electrostatically attached 

to a porous poly(acrylonitrile) by employing poly(allylamine hydrochloride) as a support film, 

resulting in a layer-by-layer assembled membrane with thickness around 80 nm. The prepared 

membrane was consequently tested using DI water as feed solution and sucrose solution in 

range of 0.2-0.9 M as draw solution. The GO-based set was tested toward forward osmosis and 

pressure retarded osmosis exhibiting a water flux as high as 5.8 L m-2 h-1 atm-1. However, higher 

porosity and smaller thickness are needed to make such membrane fully applicable.  

Another functionalized GO-based nanostrucure was reported by Lim et al. by incorporating GO 

sheets on halloysite nanotubes.[142] The obtained nanocomposite was deposited on a polysulfone 

substrate and tested using DI water and 1M NaCl as feed and draw solutions, respectively. The 

presence of GO provided significant reinforcement of the membrane allowing highly 

pressurized conditions. The presented membrane for pressure retarded osmosis exhibited 

optimal power density equal to 16.7 W m-2 with a water permeability coefficient of 2.31 L m-2 

h-1 bar-1, making it a great candidate for practical use in PRO applications. Despite the amount 

of practical applications of 2DMs in pressure retarded osmosis is still limited, the ongoing 

investigation of graphene, TMDs and other atom thick materials towards semipermeable 

membranes suggests promising results in scaled-up systems for harvesting blue energy.  
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4. Conclusion and perspective 

This Review presented an outline of various techniques used to fabricate atomically-thin 

membranes with controlled porosity and their application in the field of water purification and 

salinity gradient energy harvesting. In particular, blue energy originating from controlled 

mixing of solutions with different salinity is an environment-friendly, renewable energy source 

and, unlike wind or solar energy, can be harvested in continuous exploiting natural aquatic 

systems (e.g., estuaries) and any brackish/fresh water boundaries. By considering the latest 

developments in the field, we foresee that this source of energy would soon reach a level where 

it becomes viable at a large-scale, playing a decisive role in future’s global energy supply.  

According to their unique physico-chemical properties and transport mechanism, 2DMs-based 

membranes show immense potential for next-generation separation technologies and efficient 

blue energy harvesting materials. However, their full development into practical and large-scale 

applications are yet to be achieved. Some of the challenges to be tackled in the near future will 

be attaining a higher control over porosity and mechanical resistance, further exploiting 

defective sites in 2DMs and pore edges to insert additional chemical functionalities, as well as 

realizing ordered in-plane and out-of-plane assemblies on a larger scale. Among the several 

available methodologies, defects engineering by electrochemical methods is emerging as one 

of the most promising options thanks to its low complexity and the ease of industrial scale-up 

toward mass production. Electrochemical functionalization and the realization of 2D covalent 

organic frameworks (2D COF) via direct chemical functionalization of 2DMs, could further 

increase the selectivity of the membranes toward specific chemical species, paving the way to 

the application of 2DMs not only in separation processes but also in sensing and bio-sensing 

platforms. On the other hand, alongside with CVD fabrication methods and top-down surface 

engineering technologies, liquid-phase exfoliation and brick-and-mortar assemblies of 2DMs 

have proven to be particularly well suited for the realization of layered stacks and hybrid films, 
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especially because of the possibility to manufacture membranes on a large-scale and the 

virtually unlimited number of available materials that can be used as substrates.  

The large-scale production of high-quality 2DMs indeed represents a key step towards 

development of real technologies and commercial applications. In this regard, special efforts 

have to be devoted in the near future to novel and improved production methods that could be 

easily integrated with ordinary industrial equipment,[143] and operate in continuous, such as roll-

to-roll CVD or roll-to-roll mechanical processing. Thanks to the continous progress of 

advanced nanofabrication techniques and novel chemical engineering routes, as well as to the 

tremendous effort of several groups working at the interface between physics, chemisty, 

materials science and nanotechnology, membrane-based processes, such as PRO and RED, will 

certainly continue to profit from the development of two-dimensional materials, eventually 

leading to the emergence of effective technologies for the harvesting of blue energy and water 

purification. 
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Figure 1. Schematic diagrams summarizing single, few and multi-layered porous GO (taken 

here as a model 2D material) membranes with their corresponding microfluidic flowforms and 

structural properties. Reproduced with permission.[144] Copyright 2018, Elsevier Ltd. 
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Figure 2. a) Side view of a nanoporous graphene membrane.  b) Salt rejection efficiency as a 

function of water permeability for nanoporous graphene, compared to existing technologies. 

The inset shows a schematic picture of hydrogenated (right) and hydroxylated (left) graphene 

nanopores. Reproduced with permission.[15d] Copyright 2012, American Chemical Society. 

	

Figure 3. a) Electron beam irradiation and SEM image of nano-pores on a single layer graphene 

flake. Reproduced with permission.[52]  Copyright 2011, American Institute of Physics. b) 

Schematic image of a porous graphene membrane suspended on a 5 µm diameter hole and 

STEM image of nanoporous graphene membrane after 1.5 s exposure to oxygen plasma.[19b] 

Copyright 2014, American Chemical Society. c) Creation of randomly-distributed sub-

nanometer pores in a graphene membrane using ion bombardment followed by chemical 

oxidation. Reproduced with permission.[19a] Copyright 2014, American Chemical Society. 
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Figure 4. a) Photograph of a 1 mm-thick GO film peeled off from a Cu foil. b) Electron 

micrograph of the film’s cross section. c) Schematic view for possible permeation pathways 

through the laminates (L/d ~1000). Reproduced with permission.[64]  Copyright 2012, American 

Association for the Advancement of Science.  

 

Figure 5. a) Schematic represetation of the interfacial polymerization reaction. Reproduced 

with permission.[145] Copyright 2016, Springer Nature. b) Schematic ilustration of synthesis GO 

membrane via layer by layer (LbL) assembly. Reproduced with permission.[81] Copyright 2013 

Amercian Chemical Society.  
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Figure 6. Length scale dependence of membrane transport mechanisms (Q = flux, D = 

diffusivity, S = sorption coefficient, m = molecular mass, µ = viscosity). Characteristic 

dimensions of gas and water molecules, hydrated ions and gas mean free path are depicted on 

bottom left. Reproduced with permission.[16b] Copyright 2018, Elsevier Ltd. 

 

Figure 7. Diffusion-osmotic process for osmotic energy conversion. Reproduced with 

permission.[17d] Copyright 2017, Springer Nature Publishing AG. 
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Figure 8. a) Schematic representation of a reverse electrodialysis (RED) cell constituted by two 

ion exchange membranes. b) Representative plot of useful work (W), fractional/resistive loss, 

uncontrolled mixing loss and unutilized energy for RED. The horizontal axis denotes the 

progress of the energy production process, i.e., the fraction of salt permeated from the HC 

compartment. The presented data refer to NaCl solutions simulating seawater-river interface 

(HC=0.6 M, LC=1.5 mM) and membrane’s properties in accordance with technologically 

available high-performance ion exchange membranes Reproduced with permission.[104] 

Copyright 2014, American Chemical Society.  

 

Figure 9. a) Nanoporous rGO ion exchange membrane, and b) experimental set-up for salinity 

gradient power generation. Reproduced with permission.[112] Copyright 2018, WILEY-VCH.  
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Figure 10. a) Schematic representation of electrokinetic effects. Top: pressure driven- Down: 

electric field driven energy conversion in nanofluidic channels. Reproduced with 

permission.[120] Copyright 2006, American Chemical Society. Conductance as a function of 

KCl concentration for b) devices with 2 layered graphene and MoS2 used as spacers and c) 

devices made from graphite, hBN and MoS2 as upper and bottom walls. Reproduced with 

permission.[127] Copyright 2019, American Association for the Advancement of Science. 

 

Figure 11. Schematic representation of 2DMs based nanofluidic channels utilizing: a) GO 

membrane. Reproduced with permission.[128] Copyright 2016, American Chemical Society. b) 

negatively/positively charged GO. Reproduced with permission.[121a] Copyright 2016, WILEY-

-VCH. c) porous single-layer MoS2. Reproduced with permission.[129] Copyright 2016, 
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Macmillan Publishers Limited. d) graphite/hBN with graphene spacers. Reproduced with 

permission.[130] Copyright 2019, Springer Nature Publishing AG.  

 

Figure 12. a) Schematic diagram of the pilot PRO plant proposed by Statkraft.[42a] b) Schematic 

representation of Pressure Retarded Osmosis (PRO) process. c) Representative plot of useful 

work (W), fractional loses, uncontrolled mixing loses and unutilized energy for PRO. The 

horizontal axis denotes the progress of the energy production process, i.e., the fraction of salt 

permeated from the HC compartment. The presented data refer to NaCl solutions simulating 

seawater-river interface (HC = 0.6 M, LC = 1.5 mM) and membrane’s properties in accordance 

with technologically available high performance ion exchange membranes Reproduced with 

permission.[104] Copyright 2014, American Chemical Society. 

 

Table 1. Examples of 2D materials-based porous membranes, layered stacks and hybrid 

membranes for water purification and desalination.  

Materials Pore preparation method Tested solution Water flux Application Pore size Reference 

SLG a) Oxygen plasma etching K+, Na+, Li+, Cl- 70 g m-2 s-1 atm-1 Water purification 0,5-1 nm [19b] 

FLG b) 
Electron beam irradiation 

(SEM) 
----- ----- ----- ~6 nm [52] 

MLG c) 
Electron beam irradiation 

(TEM) 
----- ----- ----- ~3,5 nm [53] 

SLG/FLG Thermal oxidation etching ----- ----- ----- 20-180 nm [56] 

SLG/FLG/
MLG 

Ozone etching ----- ----- ----- 2-6 nm [57] 

SLG Chemical etching 
K+, Cl-, Allura 

red 
----- Ionic transport 0,2-0,4 nm [19a] 

SLG/ 
PVDF d) 

Filtration Organic dyes  21,6 L m-2 h-1 bar-1 Water purification ~0,2 nm [15a] 
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a) single layer graphene, b) few layers graphene (<10), c) multi layers graphene (>10), d) 

polyvinylidene fluoride reduced, e) zirconium metal organic frameworks made up of 
[Zr6O4(OH)4] clusters, f) multi layers graphene oxide, g) 1,3,5-benzenetricarbonyl trichloride, h) 

methylene blue, i) hyperbranched polyethylenimine, j) poly(allylamine hydrochloride), k) carbon 
nanotubes, l) chitosan, m) polyamide,  
 

Table 2. Two-dimensional materials-based membranes and electrodes used in Reverse 

Electrodialysis. 

Membrane Electrolyte Electrode Power density Ref. 

Porous graphene NaCl Ag/AgCl 1.15 W m-2 [112] 

AEMa) NaCl Graphene hydrogel 482.4 mW m-2 [113] 

GOb) KCl Ag/AgCl ----- [146] 

Single layer MoS2c) KCl Ag/AgCl 106 W m-2 [29b] 

CEMd)/AEM 
 

NaCl MoS2 0.2 W m-2 [147] 

CEM/AEM 
 

NaCl MoS2-porous carbon ~0.48 W m-2 [14] 

a) anion exchange membrane, b) graphene oxide, c) molybdenum disulfide, d) cation exchange 
membrane. 

GO-
UiO66 e) 

Filtration Rhodamine B ~15 L m-2 h-1 bar-1 Water purification ~0,4 nm [67] 

rGO-
UiO66 

Filtration Rhodamine B  ~30 L m-2 h-1 bar-1  Water purification ~0,4 nm [67] 

MLGO f) Drop-casting Cu2+, Mn2+, Cd2+,  
Na+, RhB,  

----- Water purification <10 nm [60b] 

MLGO Drop-casting 
K+, Na+, Li+, 

Mg2+, Ca2+,  
0,36 L m-2 h-1 bar-1 Ion sieving ----- [61] 

GO/TMC g) Impregnation MBh) 27,6 L m-2 h-1 bar-1 Water purification few nm [81] 

MLGO Spin and spray coating ----- ----- Water purification ~0,5 nm [64] 

GO/HPEIi) Surface coating ----- ----- CO2 capture ----- [46] 

GO-PAH j) Surface coating 
Mg2+, Cl-, 

sucrose 
19 L m-2 h-1 bar-1 Water purification  ~1 nm [82] 

rGO-
CNTk) 

Vacuum filtration  Organic dyes  20-30 L m-2 h-1 bar-1 Water purification ----- [68] 

GO-CSl) Electrospinning Cu2+, Pb2+, Cr6+ ----- Water purification ----- [89] 

MoS2 
Electron beam irradiation 

(TEM) 
----- ----- 

Detection DNA 

translocation 
2-20 nm [54] 

MoS2 
Electron beam irradiation 

(TEM) 
------ ----- 

Nanopower 

generator 
2-6 nm [29b] 

MoS2 Vacuum filtration Organic dyes 245 L m-2 h-1 bar-1 Water purification <3 nm [69] 

MoS2/ 
Pebax 

Spin coating ----- ----- 
Gasoline 

desulfurization 
~0,3 nm [65a] 

WS2 Vacuum filtration Organic dyes 730 L m-2 h-1 bar-1 Water purification <3 nm [70] 

GO/PAm) LbL deposition Na+, Cl- 14 L m-2 h-1 bar-1 Water purification <1 nn [79] 

GO-PA Interfacial polymerization Na+, Ca2+, Cl- 85 L m-2 h-1 bar-1 Water purification ----- [76] 

GO-PA Interfacial polymerization Na+ Cl-, SO4
2- 59.4 m-2 h-1 bar-1 Water purification ----- [75] 

MXene Filtration  Mg2+, Na+, MB 37,4 m-2 h-1 bar-1 Water purification 0,3-0,6 nm [94] 
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Two-dimensional materials (2DMs) possess unique features that make them ideal for the 

realization of stable, selective, ultra-thin membranes for blue energy harvesting, as well as 

for water purification technologies. In this review, we highlight recent developments on the 

fabrication and the use of atomically-thin 2DMs-based membranes, with particular attention on 

Pressure Retarded Osmosis (PRO) and Reverse Electrodialysis (RED) processes. 
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