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Preface

This book (‘lecture notes’ seems a more appropriate name) has just one aim;

that is to show by examples how some of the most basic and important ideas

in modern physics, can be more deeply revealed by the geometry of Clifford

algebras.

So it is not a detailed treatment of the theory of Clifford algebras, fol-

lowed by diverse applications. There are already many such books, the au-

thor’s favourite is still Lounesto’s classic text - Clifford Algebras and Spinors.

It would be a brave author who would attempt a better book along those

lines.

Rather, this book is written with physicists firmly in mind. These gentle

souls only rarely feel the need to plough through a mathematician’s text, in

all its depth and abstractness. This is not to decry these works - they are

very often of great depth and beauty. But they are not what physicists usu-

ally need. A physicist, when confronted with a new field to study, or perhaps

just an idea which seems critically important, will look for a mathematical

theory which underpins this area. He or she will usually be satisfied if the

mathematics can be used as a tool to explain the physics and to make new

predictions.

Many mathematicians will be disappointed with this work. The theory

of Clifford algebras is only very sketchily drawn here and many important

results are completely omitted. Even the very definition of a Clifford alge-

bra is not one which would satisfy a pure mathematician. Instead of starting

with tensor products and quotient subspaces, Clifford algebras are defined

in terms of bases. This is not at all the done thing. On the other hand, it

is usually precisely what physicists need. Look at the way physicists use

tensors. What is their definition of a tensor? Answer: A tensor is an object

which transforms according to ... Such a definition is nonsense to a mathe-

matician but is perfectly acceptable to a physicist because it works.

So, physicists use mathematics as a tool and also as a language. It is

used to describe ideas. It follows that whenever possible, these ideas should

be given a geometric interpretation since geometry is the very heart of de-

scription. This is a personal viewpoint - many mathematicians and physi-
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cists will be content with an algebraic understanding of ideas and results.

But in any case, a geometric viewpoint will always be of some use, even to

algebraists.

This book is subtitled ‘lecture notes’ and this is for two reasons. The first

is that the choice of topics can be more idiosyncratic and will reflect the au-

thor’s preferences and prejudices. This is certainly brought out here - you

only have to look at the way some topics are handled and even why they are

included at all. The topics chosen are just those the author found interest-

ing and important. Readers would no doubt have chosen their own different

ones.

The second advantage is that a careful trawling through the literature

is not expected in a set of lecture notes. This is of real benefit to those of us

who are somewhat careless in hunting down references and to give others

the due recognition which they deserve. So here, the author must point out

that the very large majority of the ideas and results given here are not new

and in any case, no claim is made for originality.

The author has been particularly fortunate in working with a number of

experts in this field and in discussing many of these ideas with them. In

particular he is grateful to Eric Lehmann at the University of Caen, for his

extensive proof reading, discussions and polite listening to the author’s more

eccentric ideas. Many thanks are also owed to Guy Laville (Caen), Phil But-

ler (Canterbury, New Zealand) and Niels Gresnigt (Xi’an Jiaotong-Liverpool

University, China) for their contributions to the author’s understanding of

this beautiful area of research.

Readers will no doubt find any number of errors, missing references

which should really have been given (even in lecture notes), topics where

the explanation could be clearer and topics entirely left out which should

have been there. The author would be grateful for any (positive or negative!)

feedback and such should be sent to the email address

peter.renaud@canterbury.ac.nz
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Preface to Version 2

In this version, a number of mistakes have been corrected and hopefully, a

smaller number introduced. As well, another chapter has been added; this

one dealing with the energy spectrum of the hydrogen atom.

It seems clear to the author, that if physicists are to be persuaded to

look more closely at the role that Clifford algebras should play, then more

effort should be put into using Clifford algebras to solve, or at least analyse,

problems which they regard as important. Some of these (such as the Stern-

Gerlach experiment), are straightforward but their relative simplicity can

also be a disadvantage - if the conventional solution is simple, why look for

another method? On the other hand, problems such as finding the energy

levels of hydrogen in the relativistic case, are decidedly tricky. It cannot re-

alistically be expected that a Clifford algebra approach will be very much

simpler, but we can hope that the approach sheds more light on what is usu-

ally a tedious, algebraic exercise. In particular, the role that the various spin

operators (usually denoted by J, S and K) seems clearer since the Clifford

approach explains quite easily why only the spin-orbit operator K is needed.

But that perhaps is a personal view only.
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Chapter 1

Clifford algebra - the basic

theory

1.1 What is a Clifford algebra?

Clifford algebras are defined on vector spaces on which a “metric”1, i.e. a

non-degenerate quadratic form Q has been chosen. Different quadratic forms

will generally lead to different algebras. The most important property of the

quadratic form is its signature: the numbers of positive and negative eigen-

values.

This is for real spaces. For complex vector spaces, it turns out that sig-

nature is unimportant and that the Clifford algebra depends only on the

dimension of the space. For this reason, complex Clifford algebras are of

much less importance in physics and will only rarely be discussed here. We

will be concerned only with real Clifford algebras. Although complex spaces

are the traditional settings for many areas in modern physics, we will see

that many of the important Clifford algebras have either an inherent com-

plex structure (even though they are real algebras), or can be “complexified”

in a trivial fashion. An example of “complexification” is M(4,R), the algebra

of all 4×4 real matrices. We will see below that this is a Clifford algebra

and it has the trivial complexification M(4,C) where C is now the field of

1Mathematicians would call this a ‘pseudo-metric’ as we do not usually assume that the

length of a vector is positive. But the term is standard in relativity theory and we abide by

this usage.
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complex numbers. This algebra is important in the Dirac theory.

In any case, it is the geometrical ideas behind Clifford algebras which

make them so appealing and it is these ideas which will be emphasized in

these notes. Geometry is much harder to find in complex spaces.

All (real) Clifford algebras are defined on the underlying real vector space,

Rn, the space of vectors with n real components. Vectors should be regarded

as column vectors

x =




x1

x2

...

xn




though sometimes for typographical reasons we will write them in the usual

way one writes the coordinates of a point, i.e. as
(
x1, x2, · · · , xn

)
. (Of

course we can always write x =
[
x1, x2, · · · , xn

]T
where xT is the trans-

pose of x.)

Clifford algebras are often described in terms of tensor-product spaces,

modulo a quadratic form ([1]). Mathematically this has the appeal of provid-

ing a basis free definition. But from a practical viewpoint (and our approach

will always be a practical one), this approach is unnecessarily complicated

and obscure, as well as disguising much of the geometry which is inherent

in Clifford algebras and which makes their study so rewarding. (It also often

makes algebraic manipulations more cumbersome, which is hardly a useful

feature.) Our approach instead is to define Clifford algebras in terms of basis

vectors in Rn always bearing in mind that the choice of basis is immaterial

and that if pushed, one can always introduce these ideas in a basis-free way.

So what are Clifford algebras?

Begin with the vector space Rn on which we are given a non-degenerate

quadratic form Q. Such a form can always be written as Q(x)= xTQx where

with a small abuse of notation, we also use Q to denote a symmetric n× n

matrix. Since Q is symmetric, its eigenvalues are real and the fact that Q

is non-degenerate means that Q has p positive and q negative eigenvalues

with p+ q = n. This pair (p, q) is called the signature of Q and is the only

2



important property of Q in defining the associated Clifford algebra. This al-

gebra will be written as Cl(p, q) or sometimes as Cl(Q).

Choose an orthonormal basis e1, e2, . . . , en in Rn. Here orthonormal means

relative to Q so that we require

eT
i Qe j = 0, i 6= j (1.1)

eT
i Qe i =

{
+1, i = 1 . . . p

−1, i = p+1 . . . n.
(1.2)

The inner product xTQ y will also be written as 〈x, y〉.

Define multiplication to be an associative operation which satisfies the

two conditions

1

e2
i =

{
+1, i = 1 . . . p

−1, i = p+1 . . .n
(1.3)

2

e i e j =−e j e i, if i 6= j.

These two rules2 allow us to define unambiguously any product e i1
e i2

. . . e ir

where A = {i1, i2, . . . ir} is an (ordered) subset of {1,2, . . . ,n}. Further we can

always assume that i1 < i2 < . . . < ir because by condition 2 above we can

always reorder the indices. For example

e3e2e1 = (e3e2)e1 =−(e2e3)e1 =−e2(e3e1)=+e2(e1e3)= (e2e1)e3 =−e1e2e3

We write eA for the product e i1
e i2

. . . e ir
(this includes the case where the

indices are not necessarily ordered and may even be repeated.)

Example 1.1 In Cl(0,2) (so that e2
1 = e2

2 =−1),

e121 = e1e2e1 =−e1e1e2 =−(−1)e2 = e2.

2together with associativity
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The Clifford algebra Cl(p, q) is the vector space spanned by the products eA

where A is an arbitrary subset of {1,2, . . . ,n} whose elements can always be

written in increasing order.3

It follows from this that Cl(p, q) has dimension 2n.

A point of notation. In special relativity we work in R4 and it is con-

ventional in that case to write the coordinates of a vector as (x0, x1, x2, x3).

So we will write a basis for R4 as e0, e1, e2, e3. In the case where the met-

ric is denoted by physicists as +−−− the Clifford algebra will be Cl(1,3)

so that e2
0 = +1, e2

1 = e2
2 = e2

3 = −1. The other case is where the metric

is written as −+++ and the Clifford algebra will then be Cl(3,1) so that

e2
0 = −1, e2

1 = e2
2 = e2

3 = +1. As we will see later, the two Clifford algebras

Cl(1,3) and Cl(3,1) are not isomorphic and this has led some (albeit few)

physicists to suggest that there might be some physics in this.4

Exercise 1.1 a. Show that e2
12 =−1 in both Cl(2,0) and Cl(0,2).

b. Show that e2
123 =−1 in Cl(3,0) while e2

123 =+1 in Cl(0,3). This has led

some authors to preferring to work with Cl(3,0) as e123 can then be used as a

substitute for the imaginary i. See e.g. [7].

c. Show further that in either algebra, e123 is in the centre of the algebra,

meaning that it commutes with all elements of the algebra. (Hint: It suffices

to show that e123 commutes with each of e1, e2, e3.)

1.2 Examples of Clifford Algebras

We will look at examples in the cases n = 1,2,3 and 4. Higher dimensional

algebras do crop up from time to time in physics but are of lesser impor-

tance for our purposes. The cases n = 6 is useful however in shedding some

3By convention when φ is the null set, we define eφ = 1.
4There is no consistent view as to which metric should be chosen. The choice varies with

authors and times. In any case physicists are pretty well united in the view that the choice

doesn’t really matter meaning that there is no physics in the choice. But this view is not

universal. We will return to this point later.
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geometric light on the groups SU(3) and SU(4).5

1.2.1 n= 1

There are two Clifford algebras defined on R1: Cl(1,0) and Cl(0,1). These

both have dimension 21 = 2 and so are useful in representing points in the

plane.

1. Cl(1,0) has the single basis vector e1 with e2
1 = 1. This is not a divi-

sion algebra because there are non-zero elements such as 1±e1 which do not

have inverses.

Exercise 1.2 Show that (1+ e1)(1− e1) = 0 and deduce that 1± e1 have no

inverses.

If we make the correspondence

e1 =
[
0 1

1 0

]
, and 1=

[
1 0

0 1

]
,

then Cl(1,0) is isomorphic to the algebra of all 2× 2 matrices of the form[
a b

b a

]
. This algebra is of limited importance.

2. Cl(0,1) again has the single basis vector e1 this time with e2
1 = −1.

So clearly Cl(0,1) is isomorphic to the algebra of complex numbers with a+
be1 ←→ a+ bi. But for reasons we will discuss in more detail later, this is

not a particularly useful idea (basically because a+be1 is the sum of a scalar

and a vector).

1.2.2 n= 2

Here there are three Clifford algebras; Cl(2,0), Cl(1,1) and Cl(0,2). Their

dimensions are all 22 = 4.

5Basically because SU(4) and the two-fold covering group of SO(6) are isomorphic. This

is an interesting result we will look at later.
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1. Consider firstly Cl(2,0). Take as basis e1, e2 with e2
1 = e2

2 = 1. Note

that

(e12)2 = e1e2e1e2 =−e1e1e2e2 =−e2
1e2

2 =−1.

We can represent Cl(2,0) by the algebra M(2,R) of all 2×2 real matrices by

taking

1=
[
1 0

0 1

]
, e1 =

[
0 1

1 0

]
, e2 =

[
1 0

0 −1

]
, e12 =

[
0 −1

1 0

]
. (1.4)

This gives an isomorphism between Cl(2,0) and M(2,R).

2. For Cl(1,1) we will have the basis e1, e2 with e2
1 =+1, e2

2 =−1. Working

as above we now find that e2
12 = +1. This time we can represent the basis

elements by

1=
[
1 0

0 1

]
, e1 =

[
0 1

1 0

]
, e2 =

[
0 −1

1 0

]
, e12 =

[
1 0

0 −1

]
(1.5)

and we have immediately the same result as in 1. above: namely that

Cl(1,1) is isomorphic to M(2,R).

So Cl(2,0) and Cl(1,1) are isomorphic algebras. But in fact this is merely

an accidental isomorphism and has no real significance. This is an impor-

tant point to note because it shows the algebraic properties of a Clifford

algebra are not enough to describe the algebra fully. In these last two exam-

ples, the Clifford algebras are defined by two quite different metrics. One

is positive definite, i.e. describes Euclidean geometry, while the other is hy-

perbolic. They could hardly be more different. But the algebras they define

are isomorphic. So, and this is the vital point to understand, the algebraic

properties of a Clifford algebra give only half the picture. The other half is

the underlying geometry.

3. Before considering Cl(0,2), let us briefly remind ourselves of an im-

portant division algebra,6 the quaternions H.7

6There are in fact only three associative division algebras over the reals: the reals them-

selves, the complex numbers and the quaternions.
7Discovered independently by William Hamilton and Olinde Rodrigues. Hamilton, an

Irish mathematician and amateur bridge carver, is usually credited with their discovery

but the French mathematician Rodrigues had described many of their properties some years

earlier.
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To define the quaternions, start with H = R4 with a basis written 1, i, j,k

and define an associative multiplication which also satisfies the properties

i2 = j2 = k2 =−1, (1.6)

i j = k, jk = i, ki = j. (1.7)

This algebra is non-commutative since for example

ji = (ki)i = ki2 =−k =−i j and similarly k j =− jk, ik =−ki.

Returning now to Cl(0,2), choose a basis e1, e2 with e2
1 = e2

2 = −1. It fol-

lows (as above) that e2
12 = −1. It is now trivial to verify that if we make

the correspondence e1 ↔ i, e2 ↔ j, e12 ↔ k, then Cl(0,2) is isomorphic to the

quaternions H.

Exercise 1.3 Draw up and compare, the multiplication tables in each case,

i.e. for H and Cl(0,2).

However, this is not a particularly interesting result since while e1 and

e2 are vectors in R2, e12 is not. This means that i, j,k in a sense have differ-

ent standings with k singled out as the different one. There is nothing like

this in the quaternions.

We will see a much better interpretation of quaternions in Clifford alge-

bras shortly.

1.2.3 n= 3

There are two important algebras here, Cl(3,0) and Cl(0,3).8 Either algebra

can be usefully applied to describe geometrical ideas in R3 such as rotations

and reflections.

8The other two algebras are based on hyperbolic geometry and play a lesser role in

physics.
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1. Consider Cl(3,0) with basis e1, e2, e3 satisfying e2
1 = e2

2 = e2
3 =+1. The

Pauli spin matrices σi, i = 1,2,3 also have this property and we can use the

correspondence

1=
[
1 0

0 1

]
, e1 =σ1 =

[
0 1

1 0

]
, e2 =σ2 =

[
0 −i

i 0

]
, e3 =σ3 =

[
1 0

0 −1

]
.

(1.8)

It follows that we need to define

e12 = e1e2 =
[
0 1

1 0

][
0 −i

i 0

]
=

[
i 0

0 −i

]

and similarly

e23 =
[
0 i

i 0

]
, e31 =

[
0 1

−1 0

]

and finally

e123 =
[

i 0

0 i

]
.

It is clear that taking real linear combinations of these eight matrices, we

obtain all 2× 2 complex matrices. It follows that Cl(3,0) is isomorphic to

M(2,C). Because of the connection between the basis elements and the Pauli

matrices, Cl(3,0) is often called the Pauli algebra.

Note that e2
123 = −1, a result which has led some to prefer this algebra

to its rival Cl(0,3) because it gives us another possible representation for i.

But there is a problem with this which we will discuss in the next chapter.

Matrices in M(2,C) and therefore too, elements of Cl(3,0) are useful

when describing rotations in R3. To see this, we write a point (x1, x2, x3)

in R3 as a matrix

(x1, x2, x3)= x1e1 + x2e2 + x3e3 ←→
[

x3 x1 − x2i

x1 + x2i −x3

]

i.e. as a trace-zero anti-Hermitian matrix.

This representation has the disadvantage that the x3 component of a

point is singled out for (unfair) special consideration. We will see shortly

that Cl(0,3) does not suffer from this problem.
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2. For Cl(0,3) the basis vectors e1, e2, e3 satisfy e2
1 = e2

2 = e2
3 = −1. This

immediately brings to mind the defining properties of the quaternions, namely

i2 = j2 = k2 = −1. We cannot just identify the basis vectors with i, j,k since

the quaternion algebra is four dimensional while Cl(0,3) has dimension

23 = 8. Instead we can take the representation to be

e1 =
[
0 i

i 0

]
, e2 =

[
0 j

j 0

]
, e3 =

[
0 k

k 0

]

in which case

e23 =
[
0 j

j 0

][
0 k

k 0

]
=

[
i 0

0 i

]

and similarly

e31 =
[

j 0

0 j

]
, e12 =

[
k 0

0 k

]

and finally

e123 = e12e3 =
[

0 −1

−1 0

]
.

By considering linear combinations of the eight basis vectors for Cl(0,3) we

find that the algebra is isomorphic to the algebra of 2×2 quaternions of the

form [
q1 q2

q2 q1

]

so that Cl(0,3) is simply H
⊕

H (see also the following exercise).

In this representation, there is no preferred direction as there is in the

case of Cl(3,0).

Exercise 1.4 The matrix

U = 1
p

2

[
1 −1

1 1

]

describes a rotation through
π

2
in R2.

Show that if e′
A
=UT eAU (with A a subset of {1,2,3}) then every e′

A
is in

diagonal form. (It suffices to show this for e i, i = 1,2,3.) This shows more

clearly that Cl(0,3) is isomorphic with H
⊕

H, the direct sum of two copies of

the quaternions, with e1 ↔ (i,−i) etc.
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In the next chapter we will discuss how quaternions are natural objects

for describing rotations in R3. This in turn means that Cl(0,3) is arguably

a more suitable algebra than Cl(3,0) at least as far as rotations (and later,

spin) is concerned.

1.2.4 n= 4

This is the dimension we need to consider when discussing the role Clifford

algebras might play in special relativity. The two metrics −+++ and +−−−
lead to two different algebras Cl(3,1) and Cl(1,3). That they are not iso-

morphic has led to some speculation that there might be some interesting

physics in the choice of metric [8].

We will also briefly look at Cl(0,4) and Cl(4,0) since R4 plays a role in

describing Pauli spinors in real space. This will be dealt with more thor-

oughly later.

1. We discuss Cl(3,1) first since it can be represented by 4×4 matrices

and this provides a link with the Dirac equation and the Dirac algebra - a

matter we will discuss later. Because of this, it is the Clifford algebra pre-

ferred by some physicists.

Here we need a basis e0, e1, e2, e3 which satisfies the conditions

e2
0 =−1, e2

1 =+1, e2
2 =+1, e2

3 =+1.

Before continuing, it is worthwhile asking ourselves what type of rep-

resentation we might be after. Since Cl(3,1) obviously contains Cl(3,0) as

a sub-algebra and Cl(3,0) is generated by the Pauli matrices, it would be

highly desirable if Cl(3,1) also contained a copy of the Pauli matrices. After

all, Pauli matrices generate rotations in R3 and rotations are important ex-

amples of Lorentz transformations.

It is easy to show that there is no non-trivial 2×2 matrix e0 which anti-

commutes with the Pauli matrices. So we would need to increase the dimen-

sions of the matrices. One way to proceed is to start with the 2× 2 Pauli
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matrices σi and then define the generators e i (i = 1,2,3) by

e i =
[
σi 0

0 −σi

]
.

The last generator e0 can then be found using the conditions e0e i =−e i e0 as

well as e2
0 =−1.

Exercise 1.5 Show that we can take e0 =
[

0 iI

iI o

]
where I = I2 is the 2×2

identity matrix.

The problem with this approach is that we end up with a matrix rep-

resentation for Cl(3,1) where it is difficult to identify important geometric

concepts. For example it is not at all obvious how Lorentz transformations

should be described. Even rotations, which are generated by the Pauli ma-

trices, are now generated by the e is (i = 1,2,3) and each e i contains two

different versions of σi. What does that mean?

Finally the matrix algebra itself is not particularly attractive. The ma-

trices are not all real but clearly (on dimensional grounds) not all complex

matrices are included either. Describing it is not straightforward or particu-

larly satisfying.

There is another approach which yields better results. Start with the

Clifford algebra Cl(2,0) which we already know to be isomorphic to the al-

gebra M(2,R) of all 2×2 real matrices. Take the generators to be

f1 =
[
0 1

1 0

]
, f2 =

[
1 0

0 −1

]
.
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Now define eµ, µ= 0,1,2,3 via

e1 =
[

f1 0

0 − f1

]
,

e2 =
[

f2 0

0 − f2

]
,

e3 =
[

0 I2

I2 0

]
,

e0 =
[

0 −I2

I2 0

]
.

It is now easy to verify that the eµs all anti-commute and that e2
0 =−1, e2

i
=

+1, i = 1,2,3. A little more calculation shows that the 16 matrices eA, A ⊂
{1,2,3} in fact span all of M(4,R). So we have a representation of Cl(3,1) as

the algebra of all 4×4 real matrices.

Exercise 1.6 The reasoning above can be generalized to give the following

result (which however we will not need).

Cl(p + 1, q + 1) is isomorphic to the algebra of all 2× 2 matrices whose

elements are the elements of Cl(p, q).

The proof is not difficult and may be found in [1], Ch 16.8.

This representation has some advantages over the previous one. For a

start, it is easier to describe. Furthermore it bears a direct relationship with

the Dirac algebra: the algebra of all 4×4 complex matrices. (This is a good

example of a real Clifford algebra having an obvious ‘complexification’.) But

the price to pay when we complexify, is that any geometric structure in the

real algebra becomes obscured or even lost.

Another disadvantage with this representation is that the Pauli matrices

have largely disappeared (or at least, have become lost). On the positive side

however, is that Lorentz transformations (being 4×4 matrices) can be nicely

represented in this algebra.
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As we will now see, the Clifford algebra Cl(1,3) avoids these problems

and seems the more appropriate algebra when dealing with ideas in special

relativity.

2. The +−−− metric gives the Clifford algebra Cl(1,3) which in many re-

spects appears superior to Cl(3,1) for the simple reason that it describes ro-

tations and Lorentz transformations in a more natural and geometric man-

ner. This aspect will be explored in the following chapter. For the present,

let us look at how this algebra can be described (as usual) as a matrix alge-

bra.

Cl(1,3) contains Cl(0,3) in an obvious way and the latter algebra will

prove highly useful in describing rotations and spin. So we seek a repre-

sentation for Cl(1,3) which extends the representation we already have for

Cl(0,3). By this we mean that we will take the (quaternion) matrix represen-

tations for e1, e2, e3 which are already present. As for e0, we need only choose

a matrix which anti-commutes with each e i, i = 1,2,3 and which squares to

1. This then leads to the following representation for Cl(1,3).

1=
[
1 0

0 1

]
, (1.9)

e0 =
[
1 0

0 −1

]
, e1 =

[
0 i

i 0

]
, e2 =

[
0 j

j 0

]
, e3 =

[
0 k

k 0

]
, (1.10)

e23 =
[

i 0

0 i

]
, e31 =

[
j 0

0 j

]
, e12 =

[
k 0

0 k

]
, (1.11)

e01 =
[

0 i

−i 0

]
, e02 =

[
0 j

− j 0

]
, e03 =

[
0 k

−k 0

]
, (1.12)

e023 =
[

i 0

0 −i

]
, e031 =

[
j 0

0 − j

]
, e012 =

[
k 0

0 −k

]
, e123 =

[
0 −1

−1 0

]
,

(1.13)

e = e0123 =
[
0 −1

1 0

]
. (1.14)

It is clear now that these 16 matrices provide a basis for M(2,H), the algebra

of all 2×2 matrices with quaternion components.

Exercise 1.7 Show that another representation can be obtained, starting
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with

e0 =
[
0 1

1 0

]
, e1 =

[
i 0

0 −i

]
, e2 =

[
j 0

0 − j

]
, e3 =

[
k 0

0 −k

]

and using these to define the other basis terms eA. Which representation to

use, is largely a matter of personal choice. It doesn’t really matter.

3. Finally let us consider the Clifford algebras which arise from a eu-

clidean metric. Start with Cl(4,0). It would be nice if we could extend the

representation of the Pauli algebra Cl(3,0) which we know to be isomorphic

to M(2,C), perhaps to something like M(n,C). But it is clear on dimensional

grounds that this is impossible. Quaternions however seem to give better

hope and we can start with something like

e1 =
[
0 −i

i 0

]
, e2 =

[
0 − j

j 0

]
, e3 =

[
0 −k

k 0

]
.

To find e4, the properties that e2
4 = +1 and that e4 anti-commutes with

e1, e2, e3 is enough to show that we can choose

e4 =
[
1 0

0 −1

]
.

Exercise 1.8 Now calculate the other basis vectors and deduce that Cl(4,0)

is isomorphic to M(2,H).

4. Finally the case of Cl(0,4) can be treated in a similar way. We can

start with

e1 =
[
0 i

i 0

]
, e2 =

[
0 j

j 0

]
, e3 =

[
0 k

k 0

]

and find e4 by a similar process to be (for example)

e4 =
[

0 1

−1 0

]
.

Exercise 1.9 Show that in this case too, Cl(0,4) is isomorphic to M(2,H).

So three of the cases studied when n = 4, give the same representation

for the Clifford algebra, namely M(2,H). Nothing should be read into this

result. The underlying geometries are quite different and it just goes to

show, yet again, that algebra is only half the story. Still, it illustrates why, if

you think algebraically alone, it is easy to be led astray.
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1.3 Gradings in a Clifford algebra

Since the basis elements of the Clifford Algebra Cl(p, q), p+q = n are the el-

ements eA where A is a subset of {1,2, . . . ,n}, the algebra splits naturally as

a direct sum Cl(p, q)=⊕
Clr(p, q) of subspaces spanned by the elements eA

where A has r elements. This is the Zn−grading of Cl(p, q).9 For example,

1. Cl0(p, q) is the 1−dimensional subspace of real scalars (i.e. spanned

by 1 or eφ.)

2. Cl1(p, q) is the n−dimensional subspace spanned by the basis vectors

e i, i = 1,2, . . . ,n. So Cl1(p, q)= Rn.

3. Cl2(p, q) is the

(
n

2

)
−dimensional subspace spanned by the basis vec-

tors e i j, 1≤ i < j ≤ n. This is the space of bivectors in the algebra.

4. Generally Clr(p, q) is the

(
n

r

)
−dimensional subspace spanned by the

basis vectors e i1 i2···ir
, 1≤ i1 < ·· · ir ≤ n.

5. Finally Cln(p, q) is the 1−dimensional subspace spanned by e = e12···n.

This is the subspace of pseudoscalars. e = e12···n is often called the

(unit) pseudoscalar.10

The elements in Cl1(p, q) are sometimes called the 1− vectors to distinguish

them from elements in Clr(p, q) for higher values of r.11.

Similarly elements of Cl2(p, q) are called 2−vectors or bivectors. Like-

wise we have 3− vectors (trivectors) and so on.

For many applications, the Zn−grading is too fine and we are mostly

interested in whether the number of elements in A is either even or odd.

9The symbol Z is traditionally used to denote the set of integers.
10In relativity where we use the algebras Cl(1,3) or Cl(3,1) this would be the pseu-

doscalar e = e0123.
11Relativists would call them 4−vectors but this slight ambiguity of notation should not

cause problems.
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This leads to the Z2 grading where Cl(p, q) is decomposed into the sum of

even and odd terms,

Cl(p, q)= Cl+(p, q)
⊕

Cl−(p, q) (1.15)

where

Cl+(p, q)=
⊕

Clr(p, q), r is even (1.16)

and

Cl−(p, q)=
⊕

Clr(p, q), r is odd (1.17)

Clearly too

dim Cl+(p, q)= dim Cl−(p, q)= 2n−1. (1.18)

Elements in Cl+(p, q) are called the even elements, while those in Cl−(p, q)

are called odd. Note that Cl+(p, q) is a sub-algebra of Cl(p, q). We will see

later that although in general Cl(p, q) and Cl(q, p) are different algebras, i.e.

non-isomorphic, Cl+(p, q) and Cl+(q, p) are isomorphic. This has important

consequences if we wish to argue for one choice of metric over another, as for

example the choice of which Minkowski metric to use in special relativity.

1.3.1 Involutions

A Clifford algebra Cl(p, q), or in this case, more conveniently written as

Cl(Q), has what is known as the universal property [1, ch 13.4]. Briefly this

means that any linear map f : Rn → Rn which preserves the quadratic form,

i.e. Q( f (x)) = Q(x) for all x ∈ Rn, can be extended to an automorphism or

anti-automorphism from Cl(Q) → Cl(Q) (which with mild abuse of notation

we still write as f ). This may seem a complicated idea but in practice it is

very simple as there are only three important examples.

Consider the two maps f (x) = x and f (x) = −x from Rn → Rn. Since

Q(−x) = Q(x), each of these maps preserves Q. So we are led to four cases.

(All other cases are combinations of one of these with an isometry on Rn).

1. f (x) = x, x ∈ Rn and we extend f to an automorphism. This is just the

identity map from Cl(Q)→ Cl(Q). This case is of no importance.

2. f (x) = x, x ∈ Rn and we extend f to an anti-automorphism. Now this

case is of considerable importance and we usually write f (v) as ṽ, (v ∈
Cl(Q)). This map is called the reversion map. Using the anti-automorphism

property ũv = ṽ ũ, we have
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(a) ṽ = v for v ∈ Cl0(Q) or Cl1(Q).

(b) ṽ =−v for v ∈ Cl2(Q) or Cl3(Q).

(c) ṽ = v for v ∈ Cl4(Q) etc.

Exercise 1.10 Show that if v ∈ Clr(Q),

ṽ = (−1)
r(r−1)

2 v.

3. f (x)=−x, x ∈ Rn and we extend f to an automorphism. Here we write

f (v) as v̂ for v ∈ Cl(Q) and we call this map the grade involution map.

Using the automorphism property ûv = û v̂, we have

(a) v̂ = v for v ∈ Cl0(Q) or Cl2(Q),

(b) v̂ =−v for v ∈ Cl1(Q) or Cl3(Q) etc.

We call this map grade involution because it depends only on the Z2

grading.

v̂ =
{

v, if v ∈ Cl+(Q),

−v, if v ∈ Cl−(Q).

Exercise 1.11 Derive this result by showing that if v ∈ Clr(Q),

v̂ = (−1)rv.

4. f (x) = −x, x ∈ Rn and we extend f to an anti-automorphism. In this

case we write f (v) as v for v ∈ Cl(Q) and we call this map the Clifford

conjugation map. Using the anti-automorphism property we have

(a) v = v for v ∈ Cl0(Q) or Cl3(Q),

(b) v =−v for v ∈ Cl1(Q) or Cl2(Q) etc.

Exercise 1.12 Show that if v ∈ Clr(Q),

v = (−1)
r(r+1)

2 v.
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Exercise 1.13 These three involutions are not all independent. Clif-

ford conjugation is in fact the composite map of grade involution fol-

lowed by reversion.

If we define a paravector to be the sum of a scalar and a 1−vector, then

Clifford conjugation mimics many of the properties of complex conjugation.

Paravectors are an important field of research in Clifford analysis but will

not be discussed in this work.12

1.3.2 The inner product on Cl(p, q)

Using the algebraic structure in a Clifford algebra, the inner product 〈·, ·〉 on

Rn can be expressed in terms of the basis vectors e i as

〈e i, e j〉 =
{

0, if i 6= j,

e2
i
, if i = j.

Exercise 1.14 Let x, y ∈ Rn show that

1. 〈x, y〉 = xy+ yx

2
.

2. 〈x, x〉 = x2.

This last example shows that in the cases p 6= 0, q 6= 0 there exist vectors

in Rp,q with 〈x, x〉 = 0. Since then x2 = 0, such vectors cannot have inverses.13

All other vectors x will have inverses with

x−1 = x

〈x, x〉
.

When written in the above algebraic way, it becomes clear how we might

extend the inner product to all of Cl(p, q). Since a basis for Cl(p, q) consists

of the elements eA with A ⊂ {1, . . . ,n}, it suffices to define

〈eA, eB〉 =
{

0, if A 6= B,

e2
A

, if A = B.

12The name was coined by J. G. Maks in his 1989 doctoral thesis.
13Such vectors are appropriately called null vectors in relativity.
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It follows from this definition, that in the Zn−grading, all the subspaces

Clr(p, q) are orthogonal and therefore too, the subspaces Cl+(p, q) and Cl−(p, q).

Appealing as this definition may be, it does lead to problems. One of these

will be discussed more fully when we come to consider how Pauli spinors

might be represented in a (real) vector space. Very briefly here14, that space

will be taken to be Cl−(0,3). This space has the basis e1, e2, e3, e123 and since

e2
i
= −1, i = 1,2,3 while e2

123 = +1, the inner product as defined above, leads

to a hyperbolic metric. This is difficult to reconcile with the known proper-

ties of spinors as it would lead to an unphysical geometric picture.

Instead, we will take the lead from linear algebra, where the inner prod-

uct of (real) matrices is usually taken to be

〈A,B〉 = trace(ATB).

If we now replace the transpose of a matrix by the reversion of an element in

the Clifford algebra, and trace by the real or scalar part (denoted by Rl(·)),
we are led to an alternative definition of the inner product on Cl(Q).

Definition 1.1 If x, y ∈ Cl(Q), define

〈x, y〉 = Rl(x̃y). (1.19)

Exercise 1.15 Show that in the Zn−grading, all the subspaces Clr(p, q) are

again orthogonal and therefore too, the subspaces Cl+(p, q) and Cl−(p, q).

Exercise 1.16 Show that in Cl(0,3) this leads to a negative-definite metric

on Cl−(0,3).

When dealing with spinors later, and also the group SO(4), this will be the

correct inner product to use.

Although this inner product is negative-definite, we can hardly complain.

It is entirely consistent with our deliberate choice of using Cl(0,3) rather

than Cl(3,0).15

14for reasons which will be discussed at length in a later chapter,
15Inner products on Clifford algebras are discussed fully by Dorst in [9].
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1.3.3 What are bivectors, trivectors etc geometrically?

Just as vectors have the geometric meaning of a scalar length and a direc-

tion, so we can give a geometric picture to a bivector, at least in simple cases.

Consider first, two basis vectors e1, e2 in Cl(Q) (as usual we use this

notation when signature is not important). These define a plane in Rn and

this plane can be given an orientation, i.e. an (imaginary) rotation from e1

to e2.

e1

e2

orientation of e12

e12 is then described geometrically as a scalar (1 in this case, being the

area of the square defined by e1 and e2) and an orientation from e1 to e2. In

other words whereas a vector has a scalar length and a direction, so in this

case e12 has a scalar area and an orientation.

The corresponding diagram for e21 would be

e1

e2

orientation of e21
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The orientation for e21 (a rotation from e2 to e1) is now equal and opposite

to that of e12. An immediate consequence of this geometric interpretation is

the reason behind the assumption that e1e2 =−e2e1.

What about the more general case when we multiply two arbitrary vec-

tors x, y in Rn?

The first thing to notice is that we no longer have a bivector. For example

let x = ae1 +be2 and y= ce1 +de2 with a,b, c,d scalars. Then

xy= (ae1 +be2)(ce1 +de2)= (ac < e1, e1 >+bd < e2, e2 >)+ (ad−bc)e12

=< x, y>+(ad−bc)e12.

So in general the product of two vectors x and y will be the sum of a scalar

and a bivector. It is only a pure bivector when the vectors are orthogonal.

The scalar part of xy is the inner-product < x, y > of the vectors and the

bivector part consists of the area of the parallelogram formed by x and y,

together with the orientation of x to y. (It is sometimes described as the ori-

ented area of the parallelogram formed by the vectors and in the plane that

they span.)

Exercise 1.17 Show that for any two vectors x, y in Cl(Q)

xy=
( xy+ yx

2

)
+

( xy− yx

2

)

gives the decomposition of the product xy as a sum of a scalar (the inner-

product of x and y) and a bivector.

Can we give a similar geometric description for an arbitrary element of

Cl2(p, q)?

In some cases the answer will be yes: for example the bivector u =
e12 + e13 can be written as u = e1(e2 + e3) which expresses u as the prod-

uct of two orthogonal vectors. This is possible since the two components of

u have e1 in common. But in general, the geometric picture is more com-

plicated and probably not worth pursuing. For example in R4 what is the

geometric meaning of v = e12 + e34? Here we are asked to give meaning to
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the ‘sum’ of two orientations. There does not seem to be any obvious answer.

Unlike directions which can be added, orientations cannot.

As an aside, it is worth pointing out that if the geometric difference be-

tween u and v (in the paragraph above) is fairly clear, algebraically too, the

two bivectors have different properties. For any two vectors x, y, we can de-

fine the matrix A = xyT − yxT which has rank 2 (assuming that x and y are

linearly independent). So in the example above, u corresponds to a rank 2

matrix. In the same way we can find a matrix which represents v and this

matrix is the sum of two rank 2 matrices. In this case it is a matrix of rank

4. It is this algebraic difference between u and v which lies behind their

different geometric properties.

In any case, we can only really make sense of the direction of the sum of

two vectors if the vectors are connected in some way, for example having the

ends meeting in a common point. It is the same with orientations. If they

are not connected in some way, they cannot be added.

Trivectors too can be given a geometric interpretation though it is neces-

sarily more complicated. As before, start with the three orthonormal vectors

e1, e2, e3 described in the following figure. The first two, e1, e2 define an

orientation and the right hand rule determines the direction of e3. So for

trivectors, the same idea now really requires that of handedness as shown

below.
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orientation of e21

direction of e3

Finally, what of 4−vectors in Clifford algebras on R4, i.e. psudoscalars?

These arise in relativity and it would be useful to have some idea of their

properties, especially any property which distinguishes them from ordinary

scalars. An important example which we will discuss later is that of helicity:

the projection of the spin of a particle in the direction of its momentum.

Since we are now in R4 it is unrealistic to give any geometric meaning

to the idea of an oriented 4−volume. However geometry still plays an im-

portant role when we consider possible invariance under certain discrete

symmetry groups such as parity (space inversion): (x, y, z) → (−x,−y,−z) or

time inversion: t →−t.

1.4 Groups in Clifford algebras

Clifford algebras contain a number of groups which have important applica-

tions. These groups are central to the study of the two-fold covering groups

for some of the classical groups such as rotation or Lorentz groups. Here

we will give just a few examples since more groups will be studied further

in Chapter 3 where we will look at specific examples which are of special
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importance in geometry and physics.

1. The Clifford group Γ(p, q).16 This group can be defined in a number of

equivalent ways and we choose the definition which gives us its important

properties most easily.

Definition 1.2 Γ(p, q) is the (multiplicative) group generated by invertible

1-vectors in Rp,q.

Since a product of 1−vectors must be either an even or an odd element of

Cl(p, q) we have

Γ(p, q)= Cl+(p, q)
⋃

Cl−(p, q).

(So that Γ(p, q) cannot contain linear combinations of even and odd ele-

ments.)

Exercise 1.18 If g is an invertible 1-vector, the map

g : x → gxg−1

is a map from Rp,q → Rp,q, i.e. maps 1-vectors to 1-vectors.

(One way to show this is to write g−1 in terms of g̃ and deduce that if

y= gxg−1 then ỹ= y. This means that y cannot contain a 3−component.)

2. The Pin group Pin(p, q). (This is the first of the important covering

groups.)

Pin(p, q)= {g ∈Γ(p, q) : gg̃ =±1}.

So if g ∈Pin(p, q), g̃ is a scalar multiple of g−1. This is not true for arbitrary

elements of Γ(p, q).

Exercise 1.19 Let g = 1+ e0123 in Cl(1,3). Show that g−1 exists but is not a

scalar multiple of g̃ (and so, g is not in Pin(1,3).)

16Actually first studied by R. O. S. Lipschitz in the 1880s and sometimes called the

Clifford-Lipschitz group.
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Example 1.2 Consider Pin(0,1). Let e1 be the basis vector for R0,1 so that

e2
1 =−1. Then if g is in Pin(0,1) we have g̃ = g (check this!) so that if g is odd

then g =±e1 while if g is even, g =±1. This means that Pin(0,1) is the cyclic

group Z4 = {1, e1, e2
1 =−1, e3

1
=−e1}.

Example 1.3 Consider instead, Pin(1,0). Now if e1 is the basis vector for

R1,0 then e2
1 = +1 and a similar argument shows that Pin(1,0) is now the

direct product of the two cyclic groups Z2 = {±1} with {1, e1} (which of course

is also cyclic of order 2).

So the two Pin groups Pin(0,1) and Pin(1,0) are non-isomorphic. In gen-

eral this is true for all Pin groups: the choice of metric is important.

Example 1.4 Consider now Pin(0,2). Let e1, e2 be a basis for R0,2 so that

e2
1 = e2

2 =−1. Suppose that g ∈Pin(0,2). Then gg̃ =±1 and g is either even or

odd. If g is even then g = a+be12 in which case g̃ = a−be12. Then gg̃ = a2+b2

i.e. g is of the form g = cosθ+ e12 sinθ for some θ and g is an element of the

group SO(2).

If now g is odd, then a similar argument shows that g is of the form

g = cosθe1 + sinθe2. From this we can deduce that Pin(0,2) is the semi-

direct product of SO(2) with the cyclic group Z2.

3. The Spin group Spin(p, q). This is the subgroup of Pin(p, q) consisting

of even elements only17, i.e.

Spin(p, q)=Pin(p, q)∩Cl+(p, q).

Example 1.5 Spin(0,1) = Spin(1,0) = Z2 = {±1}. This follows easily from

examples 2 and 3.

4. Finally the Spin group Spin(p, q) has the further subgroup

Spin↑(p, q)= {g ∈Spin(p, q) : gg̃ =+1}.18

17So we could write Spin(p, q)=Pin+(p, q)
18Some authors write Spin+(p, q) instead. This can be confusing since the + sign is gen-

erally used to emphasize that we are working in Cl+(p, q). The ↑ symbol seems more appro-

priate since in the case of Cl(1,3), it means that these are the elements of Spin(1,3) which

preserve the arrow of time as relativists would put it.
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For Euclidean metrics, this subgroup has no significance since Spin↑(n,0) =
Spin(n,0). But for non-Euclidean metrics, the subgroup is generally a proper

subgroup. (See Lounesto [1].)

The connection between the Pin and Spin groups and the orthogonal

groups are as follows.

Pin(p, q), Spin(p, q) and Spin↑(p, q) are respectively the two-fold covering

groups of O(p, q), SO(p, q) and SO↑(p, q) (where SO↑(p, q) is the connected

component of SO(p, q).

More complicated (and interesting) examples of groups which lie natu-

rally in Clifford algebras, will be seen later.
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Chapter 2

Rotations and reflections

2.1 Introduction

We now have a good basic understanding of how a Clifford algebra is built

up starting with the space Rn equipped with a (usually indefinite) metric Q

with signature (p, q). The algebra resembles a stack of vector spaces which

are graded by the way we define their bases. The bottom stack is the reals,

followed by the vectors in Rn, then the bivectors etc. Each of these spaces is

equipped with an inner product, such that the spaces are all orthogonal to

one another.

At this stage we are in the position of describing some of the most impor-

tant ideas concerning the geometry of transformations and how these ideas

can be expressed through Clifford algebra. These ideas are most easily seen

in two or three dimensions (and this is where most of the applications will

be found), but in general there is little problem in generalising them to arbi-

trary dimensions.

Many of the most important ideas in geometry, are defined in terms of

symmetries, usually transformations in R2 or R3, which leave certain prop-

erties invariant or unchanged. For example, translations and rotations leave

objects looking pretty well the same. In physics these symmetries have the

additional, critically important, properties, that they give rise to conserva-

tion laws. It is these concepts we now want to consider, especially the way

Clifford algebras include them in a most natural way.
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Two of the most basic and important conservation laws are those of mo-

mentum and angular momentum. There are others of course such as energy

and charge but we will deal with the first two to start with because they can

be derived from symmetries in two or three dimensional space.

As we will soon see, these two symmetries are each derivable in term of

reflections so it is with this idea that we will start.

2.2 Reflections

Consider first, reflections1 in R2. The simplest example is a reflection in a

line l through the origin.

Assume too for simplicity that the metric on R2 is the usual Euclidean

metric so that the Clifford algebra is Cl(2,0).

Consider the following figure where a point P is reflected to the point P ′

in a line l through the origin.

b
l

P

O

r

r∥

r⊥

P ′

r′

Figure 2.1
1See e.g. Lounesto [1], ch 1.12.
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Let b be a direction vector of the line through the origin (b need not be

normalized). The projection r∥ of r onto b is

r∥ = 〈r,
b

‖b‖
〉 b

‖b‖
= 〈r,b〉 b

‖b‖2
= 〈r,b〉b−1 (2.1)

(since b2 = ‖b‖2).

Also

r⊥ = r− r∥ = (rb−〈r,b〉)b−1 (2.2)

so that the reflection of r in the line l is

r′ = r∥− r⊥ = (2〈r,b〉− rb)b−1. (2.3)

Using the fact that

〈r,b〉 = rb+br

2
,

i.e.

2〈r,b〉− rb = br

the reflection of r in l is then given by

r′ = brb−1. (2.4)

If we want to generalize this result to reflections in higher dimensions, it is

more appropriate to describe r′ in terms of a vector perpendicular to the line,

rather than parallel. Consider the following figure.
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b
l

r

r∥

r⊥

r′

r′′

n

Figure 2.2

Here n is a normal vector to the line and r′′ is the reflection through n. Since

r′ =−r′′ we have

r′ =−r′′ =−nrn−1. (2.5)

Exercise 2.1 Show that the reflection r′ of a point r, through the line 〈r,n〉 =
d is

r′ =−nrn−1+2dn−1. (2.6)

Exercise 2.2 Show too that formula (2.4) holds in the algebra Cl(0,2). (Ba-

sically because all we need to use is the definition x2 = 〈x, x〉 for any 1−vector

x.)

More generally, a point r in Rn can be reflected through a hyperplane (of

dimension n−1.) In the case of a hyperplane through the origin given by the

equation 〈r,n〉 = 0, the equation (2.5) still holds so that the reflected point is

again r′ =−nrn−1.

Similarly equation (2.6) holds for a reflection of a point through a general

hyperplane.
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2.3 Translations

A translation in Rn can be written as the product of two parallel reflections.

Consider the following figure in R2. Here we have two lines with equations

l1 : 〈r,n〉 = d1 and l2 : 〈r,n〉 = d2. Assume that n is a unit vector and d2 > d1.

Put d = d2−d1

2
.

r

r1

r2

l1 l2

Figure 2.3

Again work in either Cl(2,0) or Cl(0,2). From Exercise 2.1 the reflection

through line l1 maps

r → r1 =−nrn−1+2d1n−1.

Similarly r1 is reflected to r2 by the line l2 so that

r2 =−nr1n−1+2d2n−1

=−n(−nrn−1+2d1n−1)n−1+2d2n−1

= ·· ·
= r+2(d2 −d1)n since n is a unit vector

= r+dn

i.e. r is translated to r+dn.
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So a translation can be expressed as the product of two successive reflec-

tions in parallel lines.

2.4 Generalized reflections - inversions

Consider a reflection R in Rn about a hyperplane through the origin. From

Fig 2.1 above, we see that a point r is decomposed as the sum r = r∥+r⊥ and

the reflection of r is then

Rr = r′ = r∥− r⊥ (2.7)

The projection operator P associated with the hyperplane subspace is

Pr = r∥ (2.8)

so that

Rr = Pr− (r− r∥)= Pr− (r−Pr)= 2Pr− r (2.9)

or

R = 2P − I. (2.10)

Although for a reflection, the hyperplane is a subspace of dimension n−1,

equation (2.10) can be used to define a generalized reflection through any

subspace.

Exercise 2.3 Show the following:

1. If R is a (generalized) reflection, then R can be written as a symmetric

matrix with R2 = I.

2. Conversely if R is symmetric with R2 = I, then P = R+ I

2
is a projection

operator and R is the reflection about the subspace associated with P

(i.e. the range of P).

3. If R is a reflection about P (i.e. about the subspace associated with P),

then −R is the reflection associated with P⊥ = I −P. In particular in

R3, P = 0 gives the space inversion map, Rx =−x.
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There are two important examples of reflections in R1,3 which play a funda-

mental role in physics. They are time reversal and space inversion.

In R1,3, the time reversal map is the map

T(x0, x1, x2, x3)= (−x0, x1, x2, x3). (2.11)

It is straightforward to check that this operator can be described in the Clif-

ford algebra Cl(1,3) by

Tx =−e0 xe−1
0 (2.12)

which has the same form as (2.5) and is a genuine reflection (i.e. not a gen-

eralized one). It is the reflection about the hyperplane {x : x0 = 0}.

The space inversion map in R1,3 is defined by

S(x0, x1, x2, x3)= (x0,−x1,−x2,−x3) (2.13)

and we can also easily verify that it is given by the Clifford algebra map

Sx =−e123xe−1
123 (2.14)

so that in R1,3, this is a generalized reflection (as e123 is not a 1−vector). The

associated subspace is the 1− dimensional subspace spanned by e0.

Exercise 2.4 1. Show that space inversion can be written as the product

of three (genuine) reflections.

2. Show too that equations (2.12) and (2.14) also hold in Cl(3,1). So the

choice of signature is not important here.

2.5 Rotations

A rotation is always in a plane. Although we often talk about a rotation

‘about an axis’, this is because we live in R3 and given a plane and a point in

the plane, there is a line through that point and perpendicular to the plane.

This is the axis of rotation. In higher dimensional spaces, there is no longer

any such axis.
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Warning! Rotations in Rn preserve the (Euclidean) metric and therefore

are elements of SO(n) - the group of isometries on Rn with determinant 1.

But there are isometries which are not rotations. Some authors however

equate matrices in SO(n) with rotations. This does not make good geomet-

rical sense and it is always preferable to define rotations as acting in a plane.

For simplicity, we will only consider rotations about the origin. More

general rotations (about a point in a plane) can be reduced to this case by an

appropriate translation.

In this section we will show how rotations can be expressed in very sim-

ple terms, using the ideas which allowed us to write reflections in Clifford

algebra notation.

We start with the case of rotations in R2. Here the plane is given to us

so that the only variable is the angle of rotation.

2.5.1 Rotations in R2

Thee are two ways we can use Clifford algebras to describe rotations in R2.

However only the second way can be generalized to the general Rn case. So

let us start with the way which cannot, just to see what the problem is.

This approach is simply another way of describing rotations in the com-

plex plane. Here a rotation through an angle θ is expressed algebraically by

the function z → eiθ z.

We work in Cl(0,2): the case Cl(2,0) is entirely similar and is left as an

exercise. Choose an orthonormal basis e1, e2. Since rotations map 1− vectors

to 1−vectors, eiθ = cosθ+ isinθ must be replaced by an even vector, of norm

1. As e2
12 =−1, the obvious approach is to try a map of the form

x → qx = (cosθ+ e12 sinθ)x (2.15)

A simple calculation gives

qe1 = (cosθ+ e12 sinθ)e1 = cosθ e1 +sinθ e2 =
[
cosθ

sinθ

]
(2.16)
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and

qe2 = (cosθ+ e12 sinθ)e2 =−sinθ e1 +cosθ e2 =
[
−sinθ

cosθ

]
(2.17)

So left multiplication by q corresponds to matrix multiplication by the

matrix

Rq =
[
cosθ −sinθ

sinθ cosθ

]
(2.18)

and this correctly describes a rotation in R2.

Exercise 2.5 Show that in Cl(2,0), the map Rq above, describes a rotation

through the angle −θ.

Alternately instead of (2.15), we could have tried right multiplication

x → xq−1 = x(cosθ− e12 sinθ) (2.19)

The reason why we choose q−1 rather than q here, is because right multi-

plication by q−1 gives the same matrix as left mulitplication by q, i.e. the

matrix Rq.

Exercise 2.6 Verify this last statement.

How could we extend this idea to higher dimensions? First note that

formulae like (2.15) or (2.19) do not work in R3. The reason is simple: the

vector x now has an e3 component and then qx will have an e123 term, i.e. it

will no longer be a 1−vector. Furthermore we cannot get around this problem

by defining q more generally. If we try to write q = cosθ+sinθp where p is a

bivector satisfying p2 =−1 then it is not hard to show that if x = pe123 then

x is a 1-vector and qx will again have a 3-vector component.

Exercise 2.7 Show this!

Another reason why this idea doesn’t extend to R3 is the fact that no axis

of rotation will exist. For if x is a point on this axis then, no matter how we

define q, qx = x. But unless q = 1, which is the trivial case, q−1 has an

inverse so that x = 0. So there can be no axis of rotation.
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There are two pointers to a way around this problem. The first is to

notice that equations (2.15) and (2.19) show that left multiplication by q and

right multiplication by q−1 each give the same rotation in R2. Since there is

no reason why we should prefer one to the other, we might combine them to

give a composite rotation (though we will have to go to half angles for q to

give the whole angle rotation). So we could try

x → qxq−1 (2.20)

where

q = cos
θ

2
+ e12 sin

θ

2
.

From the results above, we know that this represents a rotation through an

angle θ.

The second clue comes from looking at reflections. As is well known in

Euclidean geometry, if we have two lines (in R2 still) intersecting at a point,

then the two successive reflections in the lines produce a rotation about the

point of intersection, through an angle, twice the angle between the lines.

Figure 2.4 below shows a double reflection. First the point P is reflected

in the line l1 to a point P ′. Then P ′ is reflected in l2 to P ′′. The net result

P → P ′′ is a reflection through an angle 2θ where θ is the angle between l1

and l2.
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l1

P

l2

P ′

P ′′

θ

Figure 2.4

θ

If the lines l1 and l2 intersect at the origin and have equations 〈a, x〉 = 0

and 〈b, x〉 = 0 respectively, the composition of a reflection about l1 followed

by a reflection about l2 is

x → (ba)x(ba)−1 = qxq−1 (2.21)

where q = ba is a 0+2 vector. Note that we can always assume that q is a

unit bivector (a unit quaternion in this case). So if the angle between the

lines is θ
2

and we write q = cos
θ

2
+ e12 sin

θ

2
we obtain a rotation through θ.

In summary then, a rotation in R2 through θ can be written as

Rθ x = qxq−1 (2.22)

where q = cos θ
2
+ e12 sin θ

2
.

2.5.2 Rotations in R3

When describing rotations in R2, we worked with Cl(0,2) though as exercise

2.5 showed, this choice is not important and we could just as well have cho-

sen Cl(2,0). So for rotations in R3 we will use the algebra Cl(0,3) and leave
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it as an exercise to show that Cl(3,0) also works perfectly well.

Let e1, e2, e3 be an orthonormal basis for R3. Bearing in mind equation

(2.21), we look at transformations of the form x → qxq−1 where q = ab is

the product of two 1− vectors. Then as before, q is the sum of a scalar term

and a bivector, i.e. q is a quaternion. Furthermore the expression qxq−1

is unchanged when q is multiplied by a non-zero scalar and so we may as-

sume that q is a unit quaternion, i.e. if q = q0 + q1e23 + q2e31 + q3e12 then

|q2
0|+ |q2

1|+ |q2
2|+ |q2

3| = 1.

Therefore we can write

q = cos
θ

2
+sin

θ

2
p

where p is a unit, (pure) bivector such that p2 = −1. (We sometimes call a

bivector pure if we want to emphasize that it has no scalar part.) p takes

the place of i in the complex plane. But in fact p contains much more infor-

mation as it gives us the axis of rotation in R3.

To show that we have a rotation, we need also to show that if x is a 1−
vector then so is Rθ x = qxq−1. This can be done by calculating the coeffi-

cients of Rθ x in full, thus verifying that there is no 3−component. But there

is another much neater way, variations of which we will later use.

Recall the inversion operation x → x̃ in Cl(0,3). It is an anti-automorphism

such that x̃ = x for x a 1−vector. It follows that x̃ =−x for a 3−vector x. Not-

ing that if q is a unit quaternion q−1 = q̃, then if

y= Rθ x = qxq−1 = qxq̃

ỹ= â(q x ˜ )q = ˜̃q x̃ q̃ = qxq̃ = y

so that y has no 3−vector term, i.e. y is a 1−vector.

As an example, take p = e23 so that q = cos θ
2
+sin θ

2
e23. Then a straight-

forward calculation gives (in vector format)

Rθ x = Rθ




x1

x2

x3


=




1 0 0

0 cosθ −sinθ

0 sinθ cosθ







x1

x2

x3
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i.e. Rθ is a rotation about the e1 axis as expected.

More generally, to find the axis of rotation we need to find the invariant

vector x, i.e. to solve the equation qxq−1 = x i.e. solve the equation qx = xq.

Write q = q0 + q1 p with p a bivector. Since e123 commutes with all

elements of Cl(0,3), the equation qxe123 = xqe123 implies that (pe123)x =
x(pe123) (we may assume that q 6= 1 in which case q1 6= 0.) But pe123 is a

1−vector which commutes with x and therefore it must be a multiple of x.

So the axis of rotation is the line defined by the 1−vector pe123 or (better)

the line defined by the axial bivector p.

Finally it is worth noting that in R3 every matrix in SO(3) is a rotation.

(This is not true in Rn when n > 3.)

To show this, suppose that A ∈ SO(3). Then since AT = A−1, the eigen-

values of A have modulus 1. Likewise the characteristic polynomial of A has

real components which means that the eigenvalues come in conjugate pairs,

i.e. if eiα is an eigenvalue, so is e−iα. Since there are 3 eigenvalues, one

must be real and so equal to ±1. The eigenvalues must then be ±1, eiα, e−iα.

Finally since the determinant of A is +1, the eigenvalues must be 1, eiα, e−iα.

So A is a rotation with axis of rotation the line of eigenvectors corresponding

to the eigenvalue 1.

It is perhaps worth emphasizing too, that describing a rotation in terms

of (unit) quaternions is very much simpler than messing about with Euler

angles. The quaternion q = cos θ
2
+ sin θ

2
p contains all the information we

need to describe a rotation.

Exercise 2.8 Show that in R3, the affine map

x → Rx+a (where R is a rotation and a ∈ R3)

can be written as the product of two reflections. (This exercise will be extended

to R1,3 in the next chapter when we look at the Poincaré group.)

Note that writing a rotation (about the origin) as a product of two reflec-

tions, requires knowing two vectors in the plane of rotation. For example if
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R is a rotation in the y, z-plane, R is given by the map

x → qxq−1 where q = cos
θ

2
+sin

θ

2
e23

We can then take a = e2 and b =−cos θ
2

e2 +sin θ
2

e3. Then q = ab. But other

choices of a and b are certainly possible.

2.5.3 Rotations in R4

In general we will not be interested in rotations in Rn when n > 3, since

geometric ideas are more difficult to see. However the case n = 4 does have

some interest for at least two reasons. Firstly, although the Euclidean met-

ric on R4 has quite different properties to the Minkowski metric, at least

the dimensions are the same and this does lead to some similarities (largely

because both cases contain ordinary 3−space.)

Secondly it turns out to be possible to describe general isometries in

SO(4) in terms of quaternion maps, just as it is in SO(3). This is due to

the fact that we can take as a model for R4, the space Cl−(0,3).2 In other

words we can take a basis to be e1, e2, e3, e123. The action of quaternions on

R3 then extends in a very natural way to an action on R4.

An extra bonus with this approach is that we derive geometric properties

which will resurface when we later come to look at the geometry underlying

spin 1/2 particles.

The central idea is that of a double rotation in R4 3. This means the fol-

lowing. Suppose that M is a 2−dimensional subspace of R4 and M⊥ its (also

2−dimensional) ortho-complement. If we have rotations in each of these sub-

spaces, they combine to give an isometry of R4. If we choose a basis for each

of these subspaces, the isometry can be written in matrix form as



cosα −sinα

sinα cosα

cosβ −sinβ

sinβ cosβ


 .

2We will also see later that this space is an excellent candidate for the space of Pauli

spinors.
3A full account of the theory of double rotations can be found, e.g. in [2].
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This is a double rotation in the orthogonal planes M and M⊥.

An interesting special case of this occurs when α = ±β. Then the two

rotations are called isoclinic. In this case we can also ask whether the two

rotations are in the same ‘sense’ or in the opposite ‘sense’. If u and v are

two vectors in the plane, ‘sense’ means ‘from u to v’ or vice versa. This is

just the idea of an orientation in the plane, we discussed when describing

bivectors. We therefore need to have an order on the basis {e1, e2, e3, e123}. If

we take e123 as the last basis vector, this essentially means an orientation of

e1, e2, e3 which is just a matter of choosing either the right hand rule or the

left hand rule. We will choose the right hand rule so that the order of the

basis is simply {e1, e2, e3, e123}.

Now suppose that

q = q0 + q1e23 + q2e31 + q3e12 = q0 + q1i+ q2 j+ q3k

is a quaternion. If x ∈ R4, write x = x1e1 + x2e2 + x3e3 + x4e123. A simple

calculation shows that left multiplication by q is given by the matrix Lq

where

Lq =




q0 −q3 q2 −q1

q3 q0 −q1 −q2

−q2 q1 q0 −q3

q1 q2 q3 q0


 .

This means that the isoclinic matrix (in the case β=α)




cosα −sinα

sinα cosα

cosα −sinα

sinα cosα




is just left multiplication by Lq with q = cosα+sinαk.

Similarly right multiplication by q corresponds to the matrix

Rq =




q0 q3 −q2 −q1

−q3 q0 q1 −q2

q2 −q1 q0 −q3

q1 q2 q3 q0
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which means that the isoclinic matrix (in the case β=−α)




cosα −sinα

sinα cosα

cosα sinα

−sinα cosα




is now right multiplication by q−1 (where again q = cosα+sinαk).

Exercise 2.9 Show that all left and right multiplication matrices above (Lq1

and Rq2
) commute with each other. Can you see why without calculating the

matrix products?

There is a general result (, that any isometry in SO(n) can be written

as the product of at most
n(n−1)

2
simple rotations in one of the coordinate

planes (the so-called Givens rotations.4 In R4 such a rotation in the e1, e2

plane is of the form

A =




cosθ −sinθ

sinθ cosθ

1 0

0 1




In this case we can write

A =




cos θ
2

−sin θ
2

sin θ
2

cos θ
2

cos θ
2

−sin θ
2

sin θ
2

cos θ
2







cos θ
2

−sin θ
2

sin θ
2

cos θ
2

cos θ
2

sin θ
2

−sin θ
2

cos θ
2




= LR

where L (resp. R) is a left (resp. right) multiplication matrix by a quater-

nion. This leads to the basic result.

Theorem 2.1 All matrices X ∈ SO(4) are of the form X = Lq1
R−1

q2
where

q1, q2 are unit quaternions.

4See [3], chapter 5 for an efficient way to obtain these Givens rotations.
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Alternately we can say that every 4−dimensional rotation is the product

of a left isoclinic and a right isoclinic rotation.

In a sense this result is to be expected. The group SO(n) is an
n(n−1)

2
−parameter

family so that SO(4) is a 6−parameter group. The group H1 of unit quater-

nions is a 3−parameter group so that the direct sum H1 ⊕
H1 is a 6-parameter

group describing rotations in R4 by left and right multiplication as described

above. The total number of parameters being equal for the two groups, the

groups must be the same (though actually H1 ⊕
H1 is the two-fold covering

group of SO(4) and so should be written as Spin(4).) This is not an entirely

watertight argument but can be made so with a few additional topological

arguments.

Having looked at the cases where we had a Euclidean metric on R4, let

us turn to the (more useful) case of the Minkowski metric.

2.6 Lorentz transformations in R1,3

(See e.g. Lounesto, [1], chapter 9.)

First recall some of the basic ideas and notation in R1,3. Take a basis

e0, e1, e2, e3 for R1,3 so that in the Clifford algebra Cl(1,3)

e2
0 = 1, e2

1 = e2
2 = e2

3 =−1

A vector in R1,3 is written as

x = x0e0 + x1e1 + x2e2 + x3e3 =




x0

x1

x2

x3


 . (2.23)

We will sometimes write ct for x0 or even just t since we usually assume that

c = 1.

The scalar product of two vectors in R1,3 is given by

〈x, y〉 = x0 y0− x1 y1− x2 y2− x3 y3
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so that

〈x, x〉 = (x0)2 − (x1)2 − (x2)2 − (x3)2.

In physics we introduce the quadratic form, i.e. the metric tensor

g =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 (2.24)

in which case

〈x, y〉 = xT gy=
3∑

µ,ν=0

gµνxµyν. (2.25)

Suppose that we have two inertial systems. An event described by the vector

x in the first system corresponds to a vector x′ in the second. We can write

x′ = Lx+a or x′µ =
∑

L
µ
νxν+aµ (2.26)

where a is a constant vector and L is a linear transformation L : R1,3 → R1,3

which preserves the inner product. That is

〈Lx,Ly〉 = 〈x, y〉.

This last condition is equivalent to the condition:

LT gL = g.

Such a transformation L is called a Lorentz transformation.

2.6.1 Some examples of Lorentz transformations

Lorentz transformations fall into one of four sets, depending on whether the

direction of time, e0, is preserved (or not) and whether the orientation of the

4−volume is preserved or not. We will discuss this at some further length in

the next chapter but for the time being let us consider just those transfor-

mations which preserve the e0 direction (so that the matrix element L0
0
> 0)

and which have determinant 1, i.e. in the usual notation, transformations in

SO(1,3). As in R4, these transformations are basically rotations but there

are two cases. If the plane of rotation is in physical space R3, i.e. the sub-

space spanned by e1, e2, e3, these are ordinary rotations, while in the second
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case, the plane contains e0. Then the transformations are sometimes called

‘imaginary’ rotations, but more commonly they are called boosts. We look at

each case in turn.

1. (Space) rotations

Space rotations are in the subspace of R1,3 spanned by e1, e2, e3. So they

will be written as 4×4 matrices but their proprties are just those of rotations

in R3.

So for example, the rotation the e2 − e3 plane, i.e. about the e1 or x-axis,

through an angle θ is given by the matrix

R(θ)=




1 0 0 0

0 1 0 0

0 0 cosθ −sinθ

0 0 sinθ cosθ


 (2.27)

which is conventionally written in exponential form as

R(θ)= eJ1θ (2.28)

where

J1 =




0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0


 (2.29)

We say that J1 is the (infinitesimal) generator of R(θ).

Similarly for the other two planes, e3 − e1 and e1 − e2 the generators are

J2 =




0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0


 , J3 =




0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


 . (2.30)

A general rotation in the plane with (unit) normal n, i.e. about the axis given

by n and through an angle θ is given by

Rn(θ)= eJ·nθ
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where J is the vector (J1, J2, J3).

Just as R3 rotations can be expressed in the form x → qxq̃, so rotations

in R1,3 can also be written in this way but since x is no longer a vector in

R3 a little care must be taken. We will look at this in detail in the following

chapter.

2. Boosts

In most physics texts, a boost in the e1 direction is written as

x′0 = γ(x0 −βx1)

x′1 = γ(−βx0+ x1)

x′2 = γx2

x′3 = γx3

where

γ=
(
1− v2

c2

)− 1
2

, β= v

c
. (2.31)

Since γ2−γ2β2 = 1, we may put

γ= coshφ, γβ= sinhφ (2.32)

and we then have



x′0

x′1

x′2

x′3


=




γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1







x0

x1

x2

x3


=




coshφ −sinhφ 0 0

−sinhφ coshφ 0 0

0 0 1 0

0 0 0 1







x0

x1

x2

x3


 (2.33)

In terms of the parameter φ, a boost in the x−direction can also be writ-

ten in exponential (generator) form as

B1(φ)= e−K1φ where (2.34)

K1 =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 . (2.35)
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In the same way, for boosts in the y and z directions, the generators are

K2 =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


 , K3 =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


 . (2.36)

A general boost in the direction of the unit vector n, with parameter φ is

then given by

Bn(φ)= e−K ·nθ (2.37)

where K is the vector (K1,K2,K3).

The matrices Ji,K j, define the Lorentz Lie algebra and satisfy the com-

mutation relations

• [J1, J2]= J3 and cyclically,

• [K1,K2]=−J3 and cyclically,

• [Ji,K i]= 0 etc,

• [J1,K2]= K3 and cyclically.

How should we express boosts in terms of the Clifford algebra Cl(1,3)?

There are a number of possible approaches but one which looks appeal-

ing is to look at boosts as ‘imaginary’ rotations and then follow the ideas

which led to rotations being described by quaternions. Let us see how this

approach works. (Note however that this is not the standard way of doing

things! So it also has the advantage of novelty.)

A boost is normally defined as a movement in one direction. For simplic-

ity let us suppose that we have a boost in the e1 direction. Of course the e0

component also changes so what we have is movement in the e0 − e1 plane

(this is why boosts are called imaginary rotations.) Since (space) rotations

are the products of reflections, boosts may also be considered in this way.

So let us consider again reflections in the plane but this time in the e0−e1

plane, so that the metric is now the Minkowski metric, i.e. we are working in
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the Clifford algebra Cl(1,1). If l is the line 〈n, x〉 = 0 5, with n a unit vector,

then it is straightforward to verify that the reflection of a point r in the line

l is again given by the the equation

r′ =−nrn−1. (2.38)

Note however that, since the metric is no longer Euclidean, there is a re-

striction on the line l because its (normal) vector n must have an inverse. If

n = n0e0 +n1e1 this means that

n2 = ‖n‖2 = (n0)2 − (n1)2 6= 0. (2.39)

Then if n2 6= 0 we have n−1 = n

‖n‖2
as before.

So we are not to consider reflections through lines on the light cone. This

makes physical sense as otherwise we could reflect from inside the light cone

to its exterior and it is difficult to make much physical sense of this.

Since a boost is to be considered as an ‘imaginary’ rotation in the e0 − e1

plane and a rotation is the product of two reflections, consider two lines

l1 : 〈a, x〉 = 0, l2 : 〈b, x〉 = 0 (2.40)

with a and b their unit normals respectively. Then as with ordinary re-

flections (see equation (2.21) above) we should consider the product of the

reflections in l1 followed by l2. This gives the transformation

Bx = (ba)x(ba)−1 = uxu−1 (2.41)

where

u = ba = (b0e0 +b1e1)(a0e0 +a1e1) (2.42)

= (b0a0 −b1a1)+ (b0a1 −b1a0)e01. (2.43)

Note that u is not a quaternion because of the presence of the e01 term.

5The inner product 〈·, ·〉 is therefore the inner product inherited from Cl(1,3) or alter-

nately, from g.
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To clarify these ideas a bit more, let us write this transformation in ma-

trix form. First, since a is a unit vector we have (a0)2 − (a1)2 = 1 so that we

can write

a = coshα e0 +sinhα e1

and similarly for b, also a unit vector

b = coshβ e0 +sinhβ e1.

(For reasons which become clearer in the next chapter, we will take the +
sign for both cosh terms.)

Then

u = ba = (coshαcoshβ−sinhαsinhβ)

+ (sinhαcoshβ−coshαsinhβ)e01

= coshθ+sinhθe01

where θ =α−β is the ‘angle’ between the two lines (or vectors a, b.)

A simple calculation gives

ue0 = (coshθ+sinhθe01)e0 = coshθe0 −sinhθe1 =
[

coshθ

−sinhθ

]
= e0u−1 (2.44)

and similarly

ue1 = e1u−1 =
[
−sinhθ

coshθ

]
. (2.45)

Combining these last two equations we find that

Bx = uxu−1 =
[

cosh2θ −sinh2θ

−sinh2θ cosh2θ

][
x0

x1

]
. (2.46)

Finally since the boost B is in the e0 − e1 plane, it can be written as a 4×4

matrix acting on R1,3 as

B =




coshφ −sinhφ 0 0

−sinhφ coshφ 0 0

0 0 1 0

0 0 0 1


 (2.47)
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(where we have written φ= 2θ). which is the Lorentz boost given in equation

(2.33).

Alternately in Clifford algebra notation, we can write

Bx = uxu−1 where u = cosh
φ

2
+sinh

φ

2
e01. (2.48)

A general boost has a (unit) direction vector u = u1e1 +u2e2 +u3e3 and can

again be written as

Bx = uxu−1 (2.49)

with

u = cosh
φ

2
+sinh

φ

2
e0u. (2.50)

A useful point to keep in mind, is that in Clifford algebra notation, boosts

are in the subspace spanned by 1, e01, e02, e03, while rotations are in the sub-

space spanned by 1, e23, e31, e12.

Exercise 2.10 Show that if B is a boost and R as rotation, then RBR−1 is a

boost. What is its direction?

(Algebraically this is a straightforward consequence of the previous re-

mark. Geometrically this is also easy to understand as RBR−1 is simply B

when viewed in the new coordinate system defined by the rotation R.)

Exercise 2.11 If B is a boost and R a rotation then there exists another boost

B′ such that BR = RB′.

The product of two boosts. The subspace spanned by 1, e01, e02, e03

is not closed under multiplication. Whereas the product of two rotations is

another rotation (because the subspace spanned by 1, e23, e31, e12 is closed

under multiplication), the product of two boosts will involve terms in this

second subspace, i.e. terms which behave like rotations. So the following

result seems reasonable.
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Theorem 2.2 If B1, B2 are boosts then there is a boost B and a rotation6 R

such that

B1B2 = BR

Further, the axis of rotation of R is orthogonal to the plane determined by the

direction vectors of B1 and B2.

(Note that from exercise 11 we could just as well have asked for a decom-

position B1B2 = RB′ - same R but different B).

Proof: Most proofs of this important result are technically quite chal-

lenging as they use 4× 4 matrix calculations. These tend to obscure the

basic ideas.

However, armed with Clifford algebra ideas, we will see that the deriva-

tion is really quite simple. The end result is of course the same and neces-

sarily tricky when it comes to describing R and B but this is unavoidable.

What is avoidable is an obscure proof.

The reason for this simplicity is that, for this proof, Clifford algebra al-

lows us to describe Lorentz transformations as 2×2 real matrices. We will

need the general matrix result - the polar decomposition theorem - but in

the 2×2 case this is trivial to derive.

Now let us go (fairly gently) through the main ideas.

The first thing to note is that this is essentially a (real) 2−dimensional

problem. The reason is the following. Consider two boosts B1, B2 in the

(unit) directions, u1, u2. These vectors span a plane and we can take as

basis vectors for the plane, e1 = u1 and e2 ⊥ e1 so that we have the following

picture.

6R is called the Thomas rotation or precession, or sometimes the Thomas-Wigner rota-

tion or more economically (and meanly) the Wigner rotation. Its existence still causes some

controversy with some calling it a paradox. See e.g [4], pp 38-43.
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e1 = u1

e2

u2

θ

u2 = cosθe1 +sinθe2.

So we don’t need all of Cl(1,3) to describe the two boosts; just Cl(1,2)

will do. Furthermore since boosts (and rotations) are even elements of the

algebra, Cl+(1,2) is in fact the right setting. This algebra is spanned by

e01, e02, e12 (as well as 1).

It is easy to verify that Cl+(1,2) is just M(2,R) - all 2×2 real matrices.

This can be seen by writing

e01 =
[
1 0

0 −1

]
, e02 =

[
0 1

1 0

]
, e12 =

[
0 −1

1 0

]
(2.51)

which together with I = I2 span all of M(2,R).

We can then write the two boosts as

B1 = cosh
s

2
+sinh

s

2
e01 (2.52)

B2 = cosh
t

2
+sinh

t

2
cosθe01 +sinh

t

2
sinθe02 (2.53)

so that in the representation given by (2.51),

B1 =
[
cosh s

2
+sinh s

2
0

0 cosh s
2
−sinh s

2

]
=

[
e

s
2 0

0 e−
s
2

]
(2.54)

53



and

B2 =
[
cosh t

2
+sinh t

2
cosθ sinh t

2
sinθ

sinh t
2

sinθ cosh t
2
−sinh t

2
cosθ

]
. (2.55)

It is important to see that the matrix expression for any boost in the plane

is a symmetric matrix as there is no e12 term.

So

A = B1B2 =
[

e
s
2

(
cosh t

2
+sinh t

2
cosθ

)
e

s
2 sinh t

2
sinθ

e−
s
2 sinh t

2
sinθ e−

s
2

(
cosh t

2
−sinh t

2
cosθ

)
]

(2.56)

=
[
a b

c d

]
say. (2.57)

Note that B1B2 has determinant 1 and in general is not symmetric, which

immediately shows that B1B2 is not a pure boost.

At this stage we could invoke a standard result in matrix theory, which

states that if A is a square matrix with positive determinant, then there

exists an orthogonal matrix R (with determinant 1), and a positive definite

(symmetric) matrix H such that A = HR. This is the polar decomposition of

A and the decomposition is unique (see e.g. [4], chapter 4.2).7

This result is not very hard to prove but in the 2×2 case, the decomposi-

tion is actually very simple to construct. It can be obtained as follows.

If A = HR as in the decomposition above, then ART = H is symmetric

and this condition is enough to find R and H. Since RT is a rotation (being

orthogonal, with determinant 1), it must be of the form

RT =
[

u v

−v u

]
with u2+v2 = 1.

Then

H = ART =
[
a b

c d

][
u v

−v u

]

=
[
au−bv av+bu

cu−dv cv+du

]

7The result is actually wider than that, but this version is all we need.
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and since H is symmetric

av+bu = cu−dv, i.e. (a+d)v = (c−b)u

so that we can take

u = k(a+d), v = k(c−b) (2.58)

where k is a normalizing constant given by

k = 1
√

(a+d)2 + (b− c)2
(2.59)

(as u2+v2 = 1).

So we now have the rotation component R of B1B2

R = 1
√

(a+d)2+ (b− c)2

[
a+d −(c−b)

c−b a+d

]
. (2.60)

This is the Thomas-Wigner rotation.

As for the symmetric (positive definite part),

H = ART = k

[
a(a+d)−b(c−b) a(c−b)+b(a+d)

c(a+d)−d(c−b) c(c−b)+d(a+d)

]

= 1
√

(a+d)2+ (b− c)2

[
a2 +b2+1 ac+bd

ac+bd c2 +d2+1

]
.

Since H is symmetric withe determinant 1, H is a pure boost and the decom-

position

B1B2 = HR (2.61)

is the required decomposition of B1B2.

We have of course, still to write this decomposition (2.61) in terms of the

original parameters for B1 and B2 but from (2.56) and (2.57) we have
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a = e
s
2

(
cosh

t

2
+sinh

t

2
cosθ

)
, (2.62)

b = e
s
2 sinh

t

2
sinθ, (2.63)

c = e−
s
2 sinh

t

2
sinθ, (2.64)

d = e−
s
2

(
cosh

t

2
−sinh

t

2
cosθ

)
. (2.65)

. These substitutions give R and B. For example, if we write

R =
[
cosφ −sinφ

sinφ cosφ

]

where now φ is the Thomas-Wigner angle, then (see (2.60)),

tanφ= c−b

a+d

=
−sinh s

2
sinh t

2
sinθ

cosh s
2

cosh t
2
+sinh s

2
sinh t

2
cosθ

gives an expression for φ.

The expression for the boost B is similar, but messy and is left to the

brave reader.
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Chapter 3

Groups

3.1 Introduction1

Group theory is of fundamental importance in modern physics. Among many

examples, it is the language of the standard model for particle physics. It is

also basic to the description of diverse areas from crystallography to the sym-

metries observed in the physical world and consequent conservation laws.

Physicists just cannot do without groups.

Groups may be finite or infinite. Finite groups find applications in de-

scribing discrete symmetries such as parity or time reversal. Permutation

groups are basic to the quark model and through their Young diagrams, are

essential in describing the irreducible representations of unitary groups.

Infinite groups may be discrete or continuous and it is with continu-

ous groups that we are mostly concerned.2 The most important continuous

groups in physics are the Lie groups. Lie groups have the great advantage

that they can be linearized. This involves imposing a Lie multiplication on

the vector space, tangent to the group at the identity. Studying the proper-

ties of Lie groups can then often be replaced by studying the resultant Lie

algebra and this is now an area in liner algebra which is generally regarded

1There is any number of excellent books on group theory with applications to physics; for

example [1] and [2].
2There are discrete infinite groups such as the group of integers under addition, but they

will not be of interest here.
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as an easier field of study.

Examples of Lie groups of interest to physicists are the following.

1. The unitary group U(n) of all n×n complex, unitary matrices, i.e. ma-

trices A such that A−1 = AH , where AH = A
T

is the conjugate trans-

pose of A. These are precisely the matrices which preserve the usual,

conjugate-linear, inner-product on Cn. U(n) contains the subgroup

SU(n) (the special unitary group) of matrices with determinant 1.

2. The orthogonal group O(n) and its special subgroup SO(n). This is the

equivalent of the unitary group for real spaces. So O(n) consists of all

matrices A such that A−1 = AT . As discussed in the previous. chapter,

SO(n) contains the rotations in Rn and furthermore every element of

SO(n) is a product of rotations. O(n) includes reflections as well.

3. For more general metrics which define the space Rp,q and the associ-

ated Clifford algebra Cl(p, q), there are the more general orthogonal

groups O(p, q) and SO(p, q). Of these, the case of R1,3 is fundamen-

tal as the groups now contain the Lorentz transformations. By adding

translations, we arrive at the Poincaré groups.

4. If n is even we can add a symplectic structure on Rn. Then we can look

for matrices which preserve this structure. If we restrict ourselves to

orthogonal matrices, we obtain the (compact) symplectic group on Rn.

In the case n = 6, this is the group of transformations which preserve

Hamilton’s equations.

5. Finally we have the conformal group. In the case of R1,3, this is the

largest group which preserves the structure of Maxwell’s equations

and so is basic to electromagnetic theory.

In each of these cases there is a corresponding Lie algebra and this algebra

may be used to obtain the required results for the group.

However, in the low-dimensional cases of interest to us, each group sits

inside a Clifford algebra and this algebra, being associative, is much easier
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to handle than its Lie counterpart.3

This chapter then is concerned with the study of the most important

examples from each of these families - important in the sense that they have

immediate applications to physics. In each case we will see that the group of

interest lies naturally inside a Clifford algebra of similar dimension to that

of the group. This algebra can be given a matrix representation and it is this

representation which provides us most easily with the group properties we

need.

3.2 Spin(3) - the covering group of SO(3)4

Since the two Clifford algebras Cl+(p, q) and Cl+(q, p) are isomorphic so too

are the two groups Spin(n,0) and Spin(0,n). So we will write them more

simply as Spin(n). Spin(n) is the two-fold covering group of SO(n).

The conventional way of representing Spin(3) is as SU(2). The reason is

as follows. Firstly, identify R3 as 2×2 Hermitian, trace-zero matrices5, e.g.

by

x = (x1, x2, x3)↔ A =
[

x3 x1 − ix2

x1 + ix2 −x3

]
.

Then a rotation in R3 can be implemented by a matrix U ∈ SU(2) and the

rotation is given by

A →UH AU

Since U is determined only up to a ± sign, this gives the two-fold represen-

tation of SO(3) by SU(2).

There are some drawbacks with this approach. For a start, there is a

loss of symmetry in R3 as the x3 or z direction has been singled out as the

diagonal element. Of course any component would do just as well but the

fact remains that one component has to be chosen.

3This is hardly surprising since in many cases the Lie product is simply the commutator

product inside an associative algebra. So the Lie product does little more than complicate

the issue.
4See e.g. Lounesto, op.cit., chapter 19. for a general overview of the Spin and Pin groups.
5See chapter 1. The Pauli spin matrices now span this space.
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The second issue is more problematic and illustrates quite well what

happens when you stray too far from a basis-free picture. Given a rotation

in one of the coordinate planes, it is easy to construct the relevant unitary

matrix (up to a sign of course). But given a rotation about an arbitrary axis,

the solution is more tricky. Even worse still is the problem of starting with

an arbitrary SU(2) matrix and deriving the actual rotation in R3 which it

represents. This means finding the axis and angle of rotation. Of course this

can be done but it involves finding the eigenvalues and eigenvectors of the

matrix (and it is here that you are glad that you are only working with 2×2

matrices).

By the way, if you prefer the positive euclidean metric on R3, i.e. you are

happy to work in the Clifford algebra Cl(3,0), the above approach (and its

problems) is hard to avoid. As we saw in chapter 1, to find the natural repre-

sentation of Cl(3,0) you start with the Pauli matrices 6 to give a basis for the

algebra and are then led inexorably to the isomorphism between Cl(3,0) and

M(2,C) - the algebra of 2×2 complex matrices. The above representations of

rotations by SU(2) matrices now follows.

Suppose instead that we work in Cl(0,3). We saw in Chapter 2 that

every rotation in R3 is the product of two reflections, so that we can write a

rotation Rθ as

Rθ : x → (ab)x(ab)−1 (3.1)

with a, b ∈ R3.

Then q = ab is a bivector in Cl(0,3), i.e. a quaternion. Since Rθ is un-

changed when we scale q by q → λq, with λ > 0 we can assume that q is a

unit quaternion (qq̃ = 1) so that q−1 = q̃. So Rθ is given by

Rθ : x → qxq̃ (3.2)

with q ∈ H1, the set of unit quaternions. H1 forms a group under multipli-

cation and is therefore another candidate for the covering group Spin(3). Of

course the two groups H1 and SU(2) are isomorphic and the real question

is: which one is the most natural, or simplest, representation for describing

rotations.

6Cl(3,0) is often referred to as the Pauli algebra.
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Our contention is that H1 is the better. The problems with SU(2) de-

scribed above, no longer exist for H1. The reason is that the way a (unit)

quaternion is written, automatically provides a description of the axis and

rotation angle of the rotation. For if we write7

q = cos
θ

2
+ p sin

θ

2
(3.3)

where p is a unit, pure quaternion then θ is the angle of rotation and

p = p1e23 + p2e31 + p3e12

gives the axis of rotation. Note too that p is a bivector, i.e. is an axial vector

in physicists’ language, and not an ordinary polar or 1−vector. This is just

as it should be.

Finally we no longer have to write the vector x ∈ R3 as a Hermitian, trace-

zero matrix as we had to with SU(2). We simply write x = x1e1+x2e2+x3e3.

in the term qxq̃. What could be more natural?

(This is another hint that choosing the negative metric on R3 might have

unintended benefit.)

3.3 Spin(4) - the covering group of SO(4)

The group SO(4) does not arise very often in physics, compared to its more

favoured relatives, SO(3), SU(2), SU(3) and even SO(6). This is largely be-

cause when working in R4 it is almost invariably the case that we impose

the Minkowski metric on the space. However, its covering group Spin(4) is

usually written as SU(2)×SU(2) and as seen above, this implies a close con-

nection with rotations in R3. So it seems worthwhile to look a little more at

the group Spin(4).

Despite these somewhat negative comments, R4 does have a role to play

when describing rotations. We will see this in more detail in the next chap-

ter but there are two immediate clues why this should be so.

7We need half angles here as q appears twice in equation (3.2).
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Firstly SU(2) acts on C2, the two (complex) dimensional space of Pauli

spinors. This space can be regarded as ‘equivalent’ to R4 and furthermore,

relativity issues which impose the Minkowski metric, do not arise. Secondly

(and this is just another way of looking at C2), there is a natural real 4−
dimnensional space associated with R3, namely Cl−(0,3) - the space of odd

vectors in Cl(0,3). If e1, e2, e3 is a (orthonormal as ever) basis for R3 then

e1, e2, e3, e123 is a natural basis for Cl−(0,3). Note too that with our choice

of inner-product on Cl(0,3) (see Definition 1.1, above), we have a negative-

definite, (i.e. not hyperbolic) metric on Cl−(0,3). So Cl−(0,3) is essentially

R4. It follows that Spin(4) does have a role to play in ordinary space.

As we saw in chapter 2, every orthogonal map in SO(4) can be expressed

geometrically as the product of isoclinic rotations and in turn each such ro-

tation can be written as either left or right multiplication by a quaternion q

in H1 acting on R4 with the basis e1, e2, e3, e123. Since left and right multi-

plication commute we have the result that Spin(4) is isomorphic to the direct

sum H1 ⊕
H1.

To summarize: a rotation R in R4 can be expressed as

Rx = q1xq−1
2

where x ∈ R4 is written as x = x1e1 + x2e2 + x3e3 + x4e123 and q1, q2 are unit

quaternions.

3.4 The Lorentz groups8

Lorentz transformations on R1,3 were defined in chapter 2. The group of all

Lorentz transformations (called the full Lorentz group) is O(1,3). We have

already seen the important examples of rotations and boosts, but there are

two other important ones.

1. Time reversal T: this is the Lorentz transformation

T :




x0

x1

x2

x3


→




−x0

x1

x2

x3


 .

8For an extensive and detailed analysis of these groups - as well as the Poincaré group -

see [3].
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2. Space inversion (parity) P: similarly P is the Lorentz transformation

P :




x0

x1

x2

x3


→




x0

−x1

−x2

−x3


 .

These two transformations do not belong to the connected component of the

Lorentz group (for example because the determinants of their matrix repre-

sentations are −1).

Let us now consider the full Lorentz group O(1,3) and some of its impor-

tant subsets. Note first that if L is a Lorentz transformation, its determinant

is ±1. (This follows immediately from the defining relation g = LT gL where

g is the Minkowski metric on R1,3). So we have the first classification of

Lorentz transformations into two types

• Proper transformations, where det(L) = +1. These include rotations

and boosts.

• Improper transformations where detL = −1. These include space and

time inversion.

Lorentz transformations can also be classified according to whether or not

they reverse the ‘arrow of time’, i.e. according to the sign of L0
0
= 〈e0,Le0〉 of

the transformation L. So we have

• Orthochronous transformations, where L0
0
≥ 1. Examples of these are

rotations, boosts and space inversion.

• Anti-orthochronous transformations where L0
0
≤−1. These include time

reversal.

So the Lorentz group O(1,3) can be partitioned into four disjoint components

L
↑
+, L↑

−, L
↓
+, L↓

−

where the symbols ↑, ↓, +, − indicate respectively that

L0
0 ≥ 1, L0

0 ≤−1, det(L)=+1, det(L)=−1.

Note that L↑
− = PL

↑
+ and L

↓
+ = PTL

↑
+ (where P is space inversion and T is

time reversal).
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3.4.1 Subgroups of the Lorentz group

Of the four above components of the Lorentz group, only L
↑
+ is a subgroup

(it is the component which contains the identity). Other subgroups can be

made up by joining various components. This leads us to the following clas-

sification of the Lorentz groups.

• The orthochronous proper Lorentz group

SO↑(1,3)= L
↑
+ = {L ∈ SO(1,3) : L0

0 ≥ 1}.

• The proper Lorentz group

SO(1,3)= L+ = L
↑
+

⋃
L
↓
+

= L
↑
+

⋃
PTL

↑
+.

• The orthochronous Lorentz group

O↑(1,3)= L↑ = L
↑
+

⋃
L↑
−

= L
↑
+

⋃
PL

↑
+

= {L ∈O(1,3) : L0
0 ≥ 1}.

• The (full) Lorentz group

O(1,3)= L
↑
+

⋃
L
↓
+

⋃
L↑
−

⋃
L↓
−

= L
↑
+

⋃
PTL

↑
+

⋃
PL

↑
+

⋃
TL

↑
+.

3.4.2 Representations of the Lorentz (and covering) groups

by quaternion matrices

The principal Lorentz groups of interest have been listed above and we know

from chapter 1 that their two-fold covering groups are the following.

Pin(1,3) is the covering group for the full group O(1,3); Spin(1,3) for

SO(1,3) and Spin↑(1,3) for the orthochronous group SO↑(1,3). As suggested

earlier, Clifford algebra makes it easy to deal with theses covering groups.
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Lorentz Group O(1,3)

L
↑
+

Prop. orthoc. Lorentz
L↓
− = PTL

↑
+

PL
↑
+ TL

↑
+

Covering Group Pin(1,3)

Proper Lorentz

O↑(1,3)= orthochronous)

SO(1,3)

Spin↑(1,3)

e0Spin↑(1,3) e123Spin↑(1,3)

e0123Spin↑(1,3)
Spin(1,3)
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The Lie algebra only really handles SO↑(1,3). On the other hand, the Clif-

ford algebra Cl(1,3) can be used to describe the entire Lorentz group. Cl(1,3)

is the algebra of 2×2 quaternion matrices and it is with these matrices that

we will represent the groups.

Because all the Lorentz groups are subgroups of the Clifford group Γ(1,3),

we start with a description of that group.

3.4.3 The Clifford group Γ(1,3)

Recall from chapter 1 that an element of Γ(1,3) is a product of (invertible)

vectors in R1,3 and so (depending on the number of vectors in the product)

will be either even or odd. That is we can write

Γ(1,3)=Γ
+(1,3)

⋃
Γ
−(1,3) (3.4)

and this means that we only need to describe Γ
+(1,3) because for example,

Γ
−(1,3)= e0Γ

+(1,3).

Begin with an element g ∈Γ
+(1,3). Since g ∈ Cl+(1,3) we can write

g =α+βe =
[
α −β
β α

]
(3.5)

with α, β quaternions. We can distinguish two cases.

Case 1: α= 0. Then g =βe =
[

0 −β
β 0

]
with β 6= 0. Note that in this case

g̃ = ẽβ̃= β̃e

(since ẽ = e and e commutes with all quaternions).

We need to check that g ∈ Γ(1,3), i.e. that the map x → gxg−1 is a map

from R1,3 → R1,3. Since the map is unchanged under scaling, we may assume

that |β| = 1 . Then g−1 =−β̃e and if x ∈ R1,3,

gxg−1 = (βe)x(−β̃e)= ·· · =−βxβ̃ which is in R1,3.9

9because e commutes with quaternions and also ex =−xe.
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So g does belong to Γ(1,3) and furthermore the map consists of a space inver-

sion together with a rotation in R3. So in particular, this map is in O↑(1,3)

but not in SO↑(1,3).

Case 2: α 6= 0. To simplify the argument, write

g =α+βe = (1+γe)α (3.6)

where γ=βα−1. α ∈Γ(1,3) (since the map x →αxα−1 is a rotation in R3). So

we may assume that α= 1 and we need only find conditions on γ for g = 1+γe

to be in Γ(1,3).

Note too that

(1+γe)(1−γe)= 1+γ2

from which we deduce that if γ2 =−1 then g is not invertible, while if γ2 6= −1

then g is invertible with

g−1 = (1+γe)−1 = (1+γ2)−1(1−γe). (3.7)

So now the important question is: what are the conditions on γ for the map

x → gxg−1 to map R1,3 → R1,3.

Take the case x = e0 and to make the algebra clearer, let us write the

terms in quaternion representation form. Then

ge0 g−1 = (1+γ2)−1

[
1 −γ
γ 1

][
1 0

0 −1

][
1 γ

−γ 1

]
(3.8)

= (1+γ2)−1

[
1−γ2 2γ

2γ γ2−1

]
(3.9)

which must be of the form

[
t p

p −t

]
with t real and p pure.

This implies that

γ2 = 1− t

1+ t
(3.10)

i.e. γ2 is real and therefore γ must be pure.

That this condition is then sufficient for g to be in Γ(1,3) is left as part of

the following exercise.
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Exercise 3.1 Show that if γ is pure, γ2 6= −1, then the map x → gxg−1 maps

R1,3 to R1,3.

So we have the following description of Γ+(1,3).

Γ
+(1,3) consists of elements of the form (with α, β quaternions).

1.

[
0 −β
β 0

]
=βe or

2.

[
α −pα

pα α

]
= (1+ pe)α where p is pure and p2 6= −1.

Corollary Since Γ
−(1,3) = e0Γ

+(1,3), Γ−(1,3) consists of elements of the

form

1.

[
0 −β
−β 0

]
= e123β or

2.

[
α −pα

−pα −α

]
where p is pure with p2 6= −1.

3.4.4 The spin group Spin(1,3)

Recall that g ∈ Spin(1,3) means that g ∈ Γ
+(1,3) with gg̃ = ±1. From the

above there are two cases.

Case 1: g =βe. Then g̃ = β̄e so that

gg̃ = |β|2e2 =−|β|2.

So |β| = 1 i.e β= u is a unit quaternion and g = ue.

Exercise 3.2 Show that in this case

ge0 g−1 =−e0.

Deduce that the Lorentz transformation defined by g is the composition of a

rotation in R3 and the time reversal operator. So g ∉ Spin↑(1,3).
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Case 2: In this case g =α+βe with γ=βα−1 pure. Then

gg̃ = (α+βe)(ᾱ+ β̄e)

=
(
|α|2 −|β|2

)
+

(
αβ̄+βᾱ

)
e

from which we deduce that |α|2 − |β|2 = ±1 and that αβ̄ is pure. It follows

that g must be in one of the two forms

1. g =
[

cosh
φ

2
u −sinh

φ

2
p u

sinh
φ

2
p u cosh

φ

2
u

]
or

2. g =
[

sinh
φ

2
p u −cosh

φ

2
p u

cosh
φ

2
p u sinh

φ

2
p u

]
.

where u is a unit quaternion and p is now a pure, unit quaternion.

Note that case 1 is in fact subsumed in case 2 so that Spin(1,3) consists

exactly of the matrices in case 2.

3.4.5 The spin group Spin↑(1,3)

The two sets of matrices which make up Spin(1,3) are disconnected and only

elements of the first set can be continuously reached from the identity. It

is for this reason especially that we can deduce that Spin↑(1,3) consists of

matrices of the form [
cosh

φ

2
u −sinh

φ

2
p u

sinh
φ

2
p u cosh

φ

2
u

]
.

Note that an element in Spin↑(1,3) can be decomposed in the obvious way as

[
cosh

φ

2
u −sinh

φ

2
p u

sinh
φ

2
p u cosh

φ

2
u

]
=

[
cosh

φ

2
−sinh

φ

2
p

sinh
φ

2
p cosh

φ

2

][
u 0

0 u

]
= BR (3.11)

where B =
[

cosh
φ

2
−sinh

φ

2
p

sinh
φ

2
p cosh

φ

2

]
represents a boost, with parameter φ in

the direction given by p, necessarily a bivector (axial vector) as boosts are

regarded as imaginary rotations, and R =
[
u 0

0 u

]
is a rotation. This is pos-

sibly as simple a way there is, of showing that every (proper, orthochronous)
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Lorentz transformation can be expressed as the product of a boost and a ro-

tation.

Exercise 3.3 (The Pin(1,3) group).

Show that the elements of the Pin group fall into one of four classes.

1.

[
cosh

φ

2
u −sinh

φ

2
p u

sinh
φ

2
p u cosh

φ

2
u

]
,

2.

[
sinh

φ

2
p u −cosh

φ

2
p u

cosh
φ

2
p u sinh

φ

2
p u

]
,

3.

[
cosh

φ

2
u −sinh

φ

2
p u

−sinh
φ

2
p u −cosh

φ

2
u

]
,

4.

[
sinh

φ

2
p u −cosh

φ

2
p u

−cosh
φ

2
p u −sinh

φ

2
p u

]
.

3.5 The Poincaré group

The (full) Lorentz group consists of all linear transformations on R1,3 which

preserve the Minkowski metric. If we ask instead for affine transformations

which preserve the metric, we obtain the (full) Poincaré group. It is also

known as the inhomogeneous Lorentz group and may be written as IO(1,3).

This latter notation allows us to specify certain components of the group, us-

ing the notation for the corresponding part of the Lorentz group. For exam-

ple we can write ISO↑(1,3) for those affine transformations in the Poincaré

group whose corresponding Lorentz transformation is in SO↑(1,3). Likewise,

the various Spin and Pin groups can be enlarged to their affine version, writ-

ten ISpin, IPin respectively.

Definition 3.1 If L is a Lorentz transformation and a ∈ R1,3, define the

Poincaré transformation (L,a) on R1,3 by

(L,a) : x → Lx+a. (3.12)
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It follows easily that the Poincaré transformations form a group with iden-

tity element (I,0) and with

(L,a)−1 = (L−1,−L−1a) (3.13)

The Poincaré group is a 10-parameter, non-compact group.

Note that if we want to consider elements in the covering groups10 we

would replace L by its 2×2 quaternion matrix, e.g. if L ∈ Spin↑(1,3) then L

is replaced by [
cosh

φ

2
u −sinh

φ

2
p u

sinh
φ

2
p u cosh

φ

2
u

]

and a by [
a0 a1e1 +a2e2 +a3e3

a1e1 +a2e2 +a3e3 −a0

]
.

Exercise 3.4 Show that the subgroup of translations, i.e. R1,3, is a normal

subgroup of the Poincaré group. This is an important result when we want

to construct unitary representations of the Poincaré group. It is the first step

in showing that the Poincaré group is the semidirect product of the additive

group R1,3 with the Lorentz group.

Exercise 3.5 Consider the operation given by equation (3.12) which defines

the group operation for the Poincaré group. Show that this idea can be

extended to provide a more general multiplicative structure on Cl+(1,3)×
Cl−(0,3).

The importance of the Poincaré group lies in the fact that all inertial

frames connected by translation, boosts and rotations, i.e. by all (proper,

orthochronous) Poincaré transformations, are equivalent so that (at least

locally) the laws of physics are form-invariant under these transformations.

10It is often much more convenient to do this as the quaternion representation of Lorentz

transformations simplifies the mathematics.
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3.6 The conformal group in R1,3

Conformal transformations are maps on a space, which preserve angles. To-

gether they form the conformal group on a vector space. Their importance

can be seen from the fact that the conformal group in R1,3 is the largest

group which leaves Maxwell’s equations structurally invariant ([4,5]).

The study of the conformal group in Rp,q usually involves the conformal

compactification of the space because this allows the transformations to be

represented by linear transformations in the new space which normally has

dimension 2 more than the original space. (See e.g. [6,7,8].) So for example

the conformal group of Minkowski space, R1,3 leads to its isomorphism with

SO(2,4). But this embedding into a higher dimensional space comes at the

expense of the geometric properties of the transformations. This is partic-

ularly a problem in R1,3 where we might well prefer to keep the geometric

nature of the various types of transformations in sight.

However, we will show that this linearization procedure can be achieved

with no loss of geometric insight if, instead of using compactification, we let

the conformal transformations act on two copies of the associated Clifford

algebra. Although we will be only concerned with the conformal group of

Minkowski space (where the geometry is clearest and we are not burdened

with extra notation), generalization to the general case is straightforward.

Note that there is not complete unanimity as to what constitutes the

conformal group. Most authors restrict it to a connected component. One

advantage of a Clifford algebra approach, is that it naturally leads to a de-

scription of the covering group and even allows the inclusion of operators

such as inversions, which are not normally included in the conformal group,

even though they are conformal transformations.

Our aim then is to show that the conformal group (more properly, the cov-

ering group of the conformal group) can be realized by the action of Cl(1,3)

on the vector space Cl(1,3)
⊕

Cl(1,3). Although this larger space can be

viewed as the vector space of the Clifford algebra Cl(2,3) (which is the ap-

proach taken by Lounesto and Latvamaa, [9]), this is unnecessary. Imposing

an algebraic structure tends to obscure the more important geometric ideas

and also raises problems of interpretation - e.g., what does the extra gener-
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ator represent physically or geometrically?

This section is taken from Gresnigt and Renaud [10].

3.6.1 Conformal transformations

The 10-parameter Poincaré group is the semi-direct product of the 6−parameter

Lorentz group with the 4−parameter group of space-time translations. The

Poincaré group may then be enlarged to the conformal group by adding di-

latations

x → ρx (ρ > 0)

as well as special conformal transformations

x → x+〈x, x〉a
σ(x)

, where σ(x)= 1+2〈a, x〉+〈a,a〉〈x, x〉

which correspond to local scale changes.

Exercise 3.6 The special conformal transformations may also be obtained

as the product of an inversion

I :→ x−1 = x

〈x, x〉

followed by a translation and another inversion.

The generators of the (identity component of the) conformal group may be

realized as differential operators acting on Minkowski space. The operators

corresponding to Lorentz transformations (Mµν), translations (Pµ), dilata-

tions (D) and special conformal transformations (Kµ) satisfy the following

commutation relations
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[Mµν, Mσρ = gµρMνσ− gµσMνρ+ gνσMνρ− gνρMµσ

[Pλ, Mµν]= gλµPν− gλνPµ

[D, Mµν = 0

[Kλ, Mµν]= gλµKν− gλνKµ

[Pµ,Pν]= 0

[D,Pµ]=−Pµ

[Pµ,Kν]= 2(Mµν− gµνD)

[D,Kµ]= Kµ

[Kµ,Kν]= 0

Note that there is some divergence between authors. Some require that

the generators be Hermitian in which case the imaginary number i makes

an occasional appearance in these equations. Since we are dealing with

Lie, i.e. anti- symmetric, products it is perhaps more logical to define these

generators to be skew-Hermitian. This has the added bonus that only real

algebras ever have to be used. In this context, we follow the definitions in

Barut and Raczka [7] and Lounesto [8].

3.6.2 The Clifford algebra representations

We regard Cl(1,3) as acting on the vector space Cl(1,3)
⊕

Cl(1,3) by left mul-

tiplication. It is then straightforward to verify that the above commutation

relations are satisfied by the following operators.

Mµν(x, y)= 1

2
(eµνx, eµνy)

Pµ(x, y)= (eµy,0)

Kµ(x, y)= (0, eµx)

D(x, y)= 1

2
(−x, y)

where x, y ∈ Cl(1,3).

Although the inversion operator is not in the identity component, it too

has a very natural representation in this context as

I(x, y)= (y, x).
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It then follows that Kµ = IPµI.

Since these operators are defined through the action of the associative

algebra Cl(1,3), they can be expected to have extra algebraic properties.11

As an example, the translation generators Pµ satisfy the property

PµPν = 0

(which trivially implies that [Pµ,Pν] = 0.) As is shown below in this section,

this property is important when we want to show that Pµ generates a trans-

lation in the direction eµ.

The transformations that arise from these generators are now easy to

describe geometrically.

3.6.3 Lorentz transformations

It is well known that the elements Mµν generate (the proper orthochronous)

Lorentz transformations on R1,3. In the Clifford algebra setting, where we

could define Mµν =
eµν

2
, this is particularly simple. For example, a boost

in the direction (n1,n2,n3), with velocity v = tanhφ (remember that we are

using units with c = 1), may be represented as

x → x′ = axa−1

where a = exp(φn) and n = n1e01 +n2e02 +n3e03. Similarly spatial rotations

through an angle θ, are of the same form but now a = exp(θne) with n de-

scribing the axis of rotation and e = e0123.

3.6.4 Translations

Consider now the generator Pµ defined by

Pµ(x, y)= (eµy,0)

Clearly P2
µ = 0 so that

exp(tPµ)(x, y)= (x+ teµy, y)

11As a general rule, if a Lie algebra structure is imposed on an associative algebra via

[A,B]= AB−BA, some properties of AB may be lost.
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More generally, if a = (aµeµ) is a vector in R1,3, then

exp(taµPµ)(x, y)= (x+ taµeµy, y)

and in particular

exp(taµPµ)(x,1)= (x+ ta,1)

so that Pa = aµPµ generates the translation operation Ta : x → x+a in R1,3

when this space is identified with the hyperplane R1,3 ⊕
(1) in Cl(1,3)

⊕
Cl(1,3),

(see figure 3.1).

It might also be worth pointing out, that there is no algebraic reason why

we should only consider translations in the direction of a 1−vector. If u is

any element of Cl(1,3), we can define an operator Pu by

Pu(x, y)= (uy,0)

and this generates a translation in Cl(1,3)
⊕

Cl(1,3). This then leads to a

generalization of the conformal group and it would be interesting to charac-

terize this extended group further.

3.6.5 Special conformal transformations

The generator Kµ behaves much like Pµ, but on the second component space

of Cl(1,3)
⊕

Cl(1,3). It too generates a translation Ub : y→ y+b in R1,3 when

the space in identified with the hyperplane (1)
⊕

R1,3, this time of the form

exp(taµKµ)(1, y)= (1, y+ ta)

This illustrates an advantage of our approach. The special conformal trans-

formations act in an entirely similar way to translations, but on the second

component subspace rather than the first. In that sense, they are no more

non-linear than translations.

Again we can generalize special conformal transformations to operators

Ku defined by

Ku(x, y)= (0,ux)
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Cl(1,3)

Cl(1,3)

(x,0) (1,0) (x+a,0)

(0, y)

(0,1)

(0, y+b)

Ub

Ta

Figure 3.1: Geometric representation of the translations and special con-

formal transformations on the space Cl(1,3)
⊕

Cl(1,3). The generators Ta

and Ub act on the hyperspaces R1,3 ⊕
(1) and (1)

⊕
R1,3 respectively.

3.6.6 Dilatations

The operator D defined by D(x, y)= 1
2
(x, y) generates the transformations

exp(tD)(x, y)=
(
e−

1
2 x, e

1
2 y

)

which, in the special cases where either x or y is 0, can represent dilatations

of 1−vectors in R1,3. Again, there is no algebraic reason why dilatations

cannot be considered on all of Cl(1,3) or in fact, on all of Cl(1,3)
⊕

Cl(1,3).
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3.6.7 Inversions

Although inversions are not part of the connected component of the confor-

mal group (and hence do not appear in the conformal Lie algebra), they are

conformal transformations which in our picture, interchange the two compo-

nent subspaces and thus provide a link between special conformal transfor-

mations and translations.

I

Cl(1,3)

Cl(1,3)

To summarize: This provides an alternative linearization procedure for

the conformal group of Rp,q. To achieve linearization, we let the conformal

transformations act on two copies of the associated Clifford algebra instead

of the standard procedure which involves compactifying Rp,q, (where the

conformal transformations are then represented by linear transformations

in Rp+1,q+1).
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In particular when we consider the conformal transformations of Minkowski

space R1,3, it highlights the geometrical advantages provided by this Clif-

ford algebra approach. Representing the conformal algebra in R1,3 in terms

of Cl(1,3) rather than some larger Clifford algebra, preserves and in fact

emphasizes the geometric nature of conformal transformations.
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Chapter 4

Spin and group representations

4.1 Introduction

1

The conventional approach used to describe spin 1
2

particles is based on

describing the space of Pauli spinors as a complex, two-dimensional, space

on which the Pauli spin matrices act as the spin operators. Higher level

spin, s, is similarly defined on complex spaces of dimension 2s+1. This the-

ory meshes very elegantly with the theory of irreducible representations of

the covering group spin(3)= SU(2) of the rotation group SO(3).

This approach has been extraordinarily successful but, based as it is on

complex spaces, lacks any obvious geometric interpretation. An alternate

approach to describe spin 1, favoured by a number of authors, uses a Clif-

ford algebra, based on the space R3. This idea will be expanded on in the

next section. The aim is to develop a real theory based on real vector spaces.

Such an approach is immediately more geometric and therefore easier to

interpret. It has a number of useful consequences, one of which is that it

establishes the role of quaternions to describe general rotations in R3. The

scalar part of the quaternion gives the angle of rotation while the pure part

describes the axis and therefore too, the plane of rotation. There is little

doubt that such a description is much easier to interpret and handle than

the more cumbersome use of matrices based on Euler angles. All in all this

1Group representations - on which the theory of spin is based - is extensively covered in

[1]. It is not a book for the fainthearted.
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means that the geometry of spin 1 particles is quite easy to describe.

Recall that the groups SU(2), Spin(3) and H1 - the group of unit quater-

nions, are all isomorphic. When working with the Clifford algebra arising

from R3, H1 is the easiest to use.

When it comes to spin 1
2
, the situation is not so clear. The Clifford al-

gebra approach to the Dirac equation as proposed by a number of authors,

uses Cl+(1,3), the even part of the Clifford algebra Cl(1,3), to describe the

Dirac spinors. An obvious conclusion from this is that this space should also

contain the Pauli spinors. So we have to find a four-dimensional subspace

of Cl+(1,3) and the only clear candidate is the space of quaternions. The

problem with this approach is that quaternions are objects which describe

rotations. It is not at all obvious that they also describe the objects which

are themselves being rotated since these latter objects should at the very

least include ordinary (polar) vectors and these are not in Cl+(1,3). In fact

it is generally accepted that the pure part of a quaternion should be inter-

preted as an axial vector. (See e.g. [2], chapter 5.4.)

In this chapter we will be especially interested in describing spin 1
2

and

its relationship with spin 1. The case of spin 0 is relatively trivial and higher

spins can usually be understood better in terms of the composition of lower

spin particles. We will see this in the case of spin 1 below.

The choice of signature of the metric in R3 is still a matter of debate and

in any case is not that important for R3. Since the spacetime signature is

usually 2 taken to be +,−,−,−, we will follow this convention when dealing

with R3 and work with the Clifford algebra Cl(0,3).

4.2 Description of spin 1

The spin 1 representation of SO(3) is the usual representation of rotations

by 3×3 real matrices. As described in Chapter 2, a rotation in R3 may be

considered as equivalent to two successive reflections. Since a reflection is

2Well at least by a reasonable number of authors.
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described by

x −→−axa−1

where x and a are vectors in R3, a rotation can be described by

x −→ (ba)x(ba)−1 = qxq−1 (4.1)

where q = ba is the product of two vectors and so is of the form q = q0 +
q1e23 + q2e31 + q3e12, i.e. a quaternion.

Clearly we can assume that q has unit norm in which case q−1 = q̃ and

the map can be written as x :−→ qxq̃. We can write

q = cos
θ

2
+sin

θ

2
p

where θ is the angle of rotation and p is a unit, pure quaternion which de-

scribes the plane of rotation.

So geometrically, rotations are described by quaternions, which act on

the space R3 = 〈e1, e2, e3〉 in Cl(0,3) according to equation (4.1).

Note that we can trivially extend R3 to Cl−(0,3) = {e1, e2, e3, e123}, the

space of all odd elements of Cl(0,3). The map (4.1) extends to a map from

Cl−(0,3)−→ Cl−(0,3). Because e123 commutes with all elements of Cl−(0,3),

under this map Cl−(0,3) splits into two subspaces; R3 and the one dimen-

sional subspace spanned by e123. On R3 the map describes a rotation while

on the one-dimensional subspace, the map is the identity. This will become

quite relevant when we deal with spin 1
2
.

4.3 Description of spin 1
2

Normally to describe the spin s representation of SU(2), we need a complex

representation space of dimension 2s+1. In the case of integer spin, a basis

for this space can always be chosen so that all the matrices in the represen-

tation are real. In this case, the space can be regarded as a real vector space

of dimension 2s+1. (So for example, in the case s = 1 above, the representa-

tion space can be chosen to be R3 rather than C3.)
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This idea does not carry over to half-integer spin s. In this case, the

complex space must be made “twice as large” to become real. So we need a

real representation space of dimension 2× (2s+1). In particular for s = 1
2
,

the representation space must be four-dimensional real space. What should

that space be in the Clifford algebra setting?

We are guided by two ideas. Firstly, two spin 1
2

representations can be

combined to give a spin 1 representation according to the well known for-

mula
1

2
⊗ 1

2
= 0⊕1. (4.2)

This suggests that the spin 1
2

representation should also act on vectors, i.e.

the representation space for spin 1
2

should be a four dimensional space which

contains R3.

Secondly, in the spin 1 equation, x −→ qxq̃, q appears twice. Looking at

equation (4.2), this indicates that the spin 1
2

map should be something like

x −→ qx or x −→ xq̃.

If we accept these heuristic arguments, the spin 1
2

map should be

x −→ qx (or x −→ xq̃)

where x is in some 4-dimensional real space which contains R3. Since q is an

even vector in Cl(0,3), the only possible candidate for this space is Cl−(0,3).

So we will take the spin 1
2

representation of the group of unit quater-

nions, H1, to be the map

πq : x −→ qx, x ∈ Cl−(0,3). (4.3)

Exercise 4.1 Show that this representation is equivalent to the map

π̃q : x −→ xq̃ (4.4)

under the reversion map u −→ ũ in Cl(0,3). So the choice of representations

is not important at this stage (but see the final comment in this section).

Let us consider some of the geometry of the map πq given by (4.3).
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Write again q = cos
θ

2
+ psin

θ

2
with p a unit, pure quaternion. Under πq,

Cl−(0,3) splits into two 2-dimensional subspaces. The first, M1, is the plane

of the rotation (in R3). This plane has a normal vector determined by p. On

M1, πq acts as a rotation through an angle θ
2
.

The second subspace M2, is the orthogonal complement of M1 in Cl−(0,3).

It is the 2-dimensional subspace spanned by pe123 and e123. On M2, πq also

acts as a rotation through an angle θ
2
.

πq

M1

πq

M2

Now consider the map π̃q : x −→ xq̃. A straightforward calculation shows

that Cl−(0,3) splits into the same two subspaces M1 and M2 but π̃q acts on

these in a slightly different way. On M1, π̃q and πq are the same. But on M2,

π̃q is the inverse rotation to πq i.e. it rotates vectors in M2 in the opposite

direction.
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π̃q

M1

π̃q

M2

All this makes it easy to interpret the formula

1

2
⊗ 1

2
= 0⊕1

geometrically.

The map
1

2
⊗ 1

2
corresponds to the composite map πqπ̃q (or π̃qπq) : x −→

qxq̃. On M1 the two rotations add to give a net rotation through an angle

θ. However on M2, the rotations cancel to give the identity map. In other

words πqπ̃q splits into the spin 1 map on R3 plus the identity (spin 0) map

on the subspace spanned by e123.

It is also of some interest to note that the two 1
2

maps in (4.2) are slightly

different. One refers to πq and the other to π̃q. Perhaps physicists should be

writing

1

2
⊗ 1̃

2
= 0⊕1.

4.4 Higher spin values

We will not be overly interested in higher values of the spin-s representa-

tions of Spin(3)= H1. This is largely because the dimension of the spin space

very quickly becomes too high for any real geometric ideas to shine through.

However we will briefly look at the next two cases s = 2 and s = 3/2. (We

treat them in this order since the real dimensions of their representation
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spaces are 5 and 8 respectively.)

Probably the simplest way, for us, to construct high dimensional spin

representations is to use the equation3

s1

⊗
s2 =

s1+s2⊕

sk=|s1−s2|
sk (4.5)

which describes how the tensor product of two representations can be de-

composed into its irreducible components. (Strictly speaking this equation

is for complex representations. For real representations, extra copies of the

sk component sometimes appears.)

4.4.1 Case s = 2

Here our starting point is the equation obtained from (4.5)

1
⊗

1= 0
⊕

1
⊕

2 (4.6)

which means that the spin 2 representation will be found as one of the

components of the tensor product of two spin 1 representations. Since ten-

sor products can profitably be defined in terms of bilinear functionals, this

means that we should start with bilinear functionals on the spin 1 represen-

tation space, i.e. on R3.4 Furthermore bilinear functionals may themselves

be expressed in terms of matrices and some geometric ideas are more easily

expressed there (e.g. eigenvalues and determinants).

So we take for the representation space of 1⊗1, the space M(3,R) of 3×3

real matrices. Then equation (4.6) gives for the dimensions of the component

subspaces

9= 1 + 3 + 5 (4.7)

and we need to identify each of these subspaces in matrix terms.

3See e.g. [3], chapter 4.
4Using bilinear functionals avoids the messy construction of tensors based on the tensor

products e1 ⊗ e j of basis elements.
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Note that the tensor product representation in the space 1⊗1 (of bilinear

functionals at this stage) can be expressed as

(
πq

)
(x, y)= f (qxq̃, qyq̃) (4.8)

= f (Rqx,Rq y) (4.9)

where Rq(x)= qxq̃ is the rotation induced by q.

Writing f in terms of a matrix A, f (x, y)= xT A y, we can write the repre-

sentation πq on M(3,R) as

πq A = RT
q ARq (4.10)

It is now easy to describe the three component subspaces in 1⊗1. In matrix

terms they are given by

0↔multiples of the identity I

1↔ skew matrices

2↔ symmetric matrices with trace 0.

Exercise 4.2 Show that each of these three subspaces has the correct dimen-

sion and are invariant under the group action πq.

4.4.2 Case s = 3
2

For this case we require an 8-dimensional representation for H1.

As in the previous case, we can describe this representation, this time

starting with the decomposition result

1
⊗ 1

2
= 1

2

⊕ 3

2
. (4.11)

So we begin with the tensor product space R3 ⊗
Cl−(0,3), the carrier space

for the representation 1
⊗ 1

2
. This is the 12-dimensional space of bilinear

functionals

f : R3×Cl−(0,3)→ R. (4.12)

The representation of H1 is found by combining the two representations on

R3 and Cl−(0,3) respectively. To keep the notation tidy we call all these
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representations πq leaving it to the context to identify which is which. This

should not cause problems.

Define therefore

(
πq f

)
(x, y)= f (qxq̃, qy) (4.13)

with x ∈ R3 and y ∈ Cl−(0,3).

From equation (4.11) we see that this representation splits into the sum

of two irreducible representations; one (s = 1
2
) will have dimension 4 while

the other s = 3
2

has dimension 8. This is the one we want to describe.

To do that, we have to find a 4-dimensional subspace of R3 ⊗
Cl−(0,3),

invariant under πq. This is straightforward. Define V to be the subspace of

bilinear functionals of the form

fα(x, y)= 〈x, yα̃〉 , α ∈ H. (4.14)

(Note that both x and yα̃ are in Cl−(0,3) so that the inner product is well

defined.)

Then a short calculation gives

πq fα = f q̃α (4.15)

so that V is an invariant subspace corresponding to the (sub)representation

s = 1
2
.

The orthogonal complement V⊥ of V will then serve as the 8-dimensional
3
2

representation space for H1.

Let us now describe this representation. As in the spin 2 case, it is easier

to decribe if we replace bilinear functionals by matrices, i.e. we write

f (x, y)= xT A y (4.16)

where now x ∈ R3, y ∈ Cl−(0,3) and so, A is a 3×4 matrix.

Next, note that in the case above where fα(x, y) = 〈x, yα̃〉, we have the

following result
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Exercise 4.3 fα(x, y)= xT Aαy where

Aα =




α1 α0 α3 −α2

−α2 −α3 α0 α1

−α3 α2 −α1 α0


 (4.17)

and α=α0+α1i+α2 j+α3k.

Also when we regard R3 ⊗
Cl−(0,3) as a space of matrices, the inner

product on that space becomes

〈A,B〉 =Trace (ATB)

as can easily (though a trifle messily) be verified. So the matrices in the

representation space V⊥ are 3×4 matrices A such that A ⊥ Aα for all α ∈ H.

Another straightforward exercise shows that these matrices are there-

fore of the form

A =
[
u | B

]
(4.18)

where B =
[
bi j

]
is 3×3 with trace 0, and u = [b23−b32, b31−b13, b12−b21]T .

A final remark: It is tempting to see into this characterisation of 3×4

matrices (given by (4.18)), the idea that the only important matrix is the

trace-zero matrix B, since A can be derived from B. These matrices B con-

stitute an 8-dimensional space and the temptation is to use this space as our

representation space.

But this idea should be suppressed since the actual role of this space is in

the spin 2 representation as described previously. Furthermore, the group

action on the matrices B is wrong. The correct action on matrices A =
[
u | B

]

is the action

πq A =q OT
q ALq (4.19)

where Oq is the rotation in R3 induced by q and Lq is left multiplication by

q in Cl−(0,3).
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4.5 The spin 1
2

representation of the Lorentz

group

The Dirac equation which we will be looking at in chapter 6, is the funda-

mental equation which describes relativistic spin 1
2

particles. For a proper

understanding of the equation, it is important to first understand the irre-

ducible spin 1
2

representation of the Lorentz group. Conventionally there

are two such representations, denoted as (1
2
,0) and (0, 1

2
) (see e.g. Ryder [3],

chapter 2.3). These are representations over complex spaces and as such, are

inequivalent. However we will show that, regarded as real representations,

they are now equivalent, and so we are justified in calling the representa-

tion, the (real) spin 1
2

representation of the Lorentz group.

In this section we will look in some detail at this representation and in

particular the roles Pauli and Dirac spinors play. It turns out that if we only

want the representation of the (sub)-Lorentz group SO(1,3) then we need

only use Pauli spinors for the representation space. But if we want the rep-

resentation of the full Lorentz group, this space is too small and we have to

introduce Dirac spinors. This approach illustrates the fundamental fact that

Dirac spinors are composed of two Pauli spinors.

4.5.1 The spin 1
2

representation of Cl+(1,3)

We start by discussing briefly the technique by which the irreducible repre-

sentations of the Lorentz group are traditionally obtained. To begin with,

we should note that these representations are defined in terms of the Lie

algebra of the group. The consequence is that only the connected component

of the Lorentz group is relevant and extensions of its representations to the

whole Lorentz group must be done separately. As we will see, the Clifford

algebra approach avoids this (admittedly small) problem.

In the following we will restrict ourselves to the spin 1
2

representation as

this is where the bulk of the new ideas occur (that is, the ideas of developing

a theory which includes both rotations and boosts).
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The traditional method is as follows. Start by regarding Lorentz trans-

formations as being made up of rotations and boosts. Rotations as we have

seen in chapter 3 form the group SO(3) (not O(3) since we want to remain in

the connected component of the Lorentz group). This rotation group has the

covering group SU(2).

Next, boosts are regarded as imaginary rotations. Though they do not

form a group, their generators may be combined with the generators of the

rotation group, in a way as to form two copies of SU(2). This of course is just

an algebraic trick whose sole virtue (admittedly a large one) is to simplify

the mathematical development.5

This leads to the two spin 1
2

representations of the restricted Lorentz

group through its two-fold covering group SL(2,C). This representation still

acts on C2.

However it does not provide a representation for the whole Lorentz group

O(1,3) since, for example, time reversal is not included. In order to accommo-

date this transformation, an extension of the representations to C4 = C2⊕C2

is necessary.

The representation theory as expressed in Clifford algebra, is different.

We still start with Spin(3) = SU(2) but this time expressed as H1. This acts

as we saw in chapter 2, on Cl−(0,3) by left multiplication. It would then be

possible to extend this action (still on Cl−(0,3) to give a representation of the

restricted Lorentz group (see exercise 4.3) but there is another, more natural

procedure.6 This is to define a representation of Cl+(1,3) on the direct sum

space Cl−(0,3)⊕Cl−(0,3). When we come to the study of the Dirac equation,

this space will be seen as the natural space of Dirac spinors.

To extend the representation πq of H1 on Cl−(0,3), we need to define the

group action πe (where as usual e = e0123). We can do this as follows.

5So we find statements such as “the Lorentz group is essentially SU(2)×SU(2)” which is

not merely wrong but misleading - since for example, one group is compact while the other

is not. Try explaining this to a bright student.
6Natural in the sense that it is coordinate-free.
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Definition 4.1 For q1 + q2e ∈ Cl+(1,3), define

πq1+q2e

[
α

β

]
=

[
q1α− q2β

q2α+ q1β

]
(4.20)

with α, β ∈ Cl−(0,3).

More simply, we extend the definition of π above by defining

πe

[
α

β

]
=

[
−β
α

]
. (4.21)

Exercise 4.4 Show that this definition does lead to a representation of Cl+(1,3).

Show further that this representation is faithful (i.e. 1−1) by showing

that πu = I =⇒ u = 1.

Note that restricting π to Spin(1,3), we obtain a representation of the (cov-

ering group of the) restricted Lorentz group SO(1,3).

Before continuing to a representation of the full Lorentz group, O(1,3),

let us consider the results so far and contrast them with the conventional

representation of the restricted Lorentz group.

The conventional treatment gives two spin 1
2

representations of SL(2,C),

denoted by (1
2
,0) and (0, 1

2
) and these representations are not equivalent.

These lead to two types of spinors (sometimes called “dotted” and “undotted”

spinors). In the Clifford algebra setting these correspond to two choices for

πe, namely πe = ±
[
0 −1

1 0

]
. An important deviation from the conventional

treatment is that these two representations are now equivalent.

For if we define

π1
e =

[
0 −1

1 0

]
, π2

e =
[

0 1

−1 0

]

then defining U =
[
1 0

0 −1

]
it is trivial to show that Uπ1 =π2U .

So this distinction between two classes of spinors disappears. This is one

of the more notable differences between the two approaches. (If we look back
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at chapter 1.2.4, U is nothing more than time reversal as might have been

expected.)

4.5.2 The spin 1
2

representation of Cl(1,3)

We can now consider the spin 1
2

representation of the full Lorentz group. As

in the restricted case, there is just one representation. Again, the easiest

path is via a representation of the full Clifford algebra Cl(1,3).

The importance of the full Lorentz group is that it contains the Lorentz

transformations of time reversal and space inversion. We know from chap-

ter 2 that these transformations are generated respectively by the elements

e0 and e123 acting as generalised inversions. Since e123 = e0e, it suffices to

extend the representation π to πe0
. But this is easy (again using the idea of

time reversal).

Theorem 4.1 Let π be the spin 1
2

representation of Cl+(1,3) on Cl−(0,3)⊕
Cl−(0,3) 7 as defined above. Extend π to all of Cl(1,3) by defining

πe0

[
α

β

]
=

[
α

−β

]
. (4.22)

Then π is a representation of Cl(0,3) on Cl−(0,3)⊕Cl−(0,3).

The proof is straightforward. All that needs showing is that π2
e0
= I and that

πe0
πe i

=−πe1
πe0

for i = 1,2,3.

So we now have a representation of the Clifford algebra Cl(1,3). Since

the full Lorentz group is contained in the algebra, it provides a epresenta-

tion of the group itself.

It is clear now why we gave Cl(1,3) the matrix representation in chap-

ter 1. This representation is the most natural one for dealing with spin 1
2

7It is tempting to identify Cl−(0,3)⊕Cl−(0,3) with Cl−(1,3) which of course can be done

as the dimensions agree. But this is misleading. Cl−(0,3) contains the Pauli spinors and

these are not relativistic objects. Combining them in pairs is still a non-relativistic con-

struction.
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objects, in other words, for describing the Dirac equation. This will be seen

later in chapter 6.

4.6 One-parameter groups

In this section, we discuss some of the 1-parameter groups which are gener-

ated by transformations in coordinate space. These groups in turn, induce

other 1-parameter groups, this time defined on function spaces. The fact

that the first groups are defined on spaces such as R3 or R1,3 means that

results and ideas from Clifford algebra can be used to describe them more

geometrically. As is well known, 1-parameter groups are of fundamental

importance in physics since invariance under the group action leads to con-

servation laws.

4.6.1 Rotation groups

We will start with one of the simplest examples, rotations in R3. For a fixed

axis of rotation (or equivalently, a plane of rotation), given by a pure, unit

quaternion p (i.e. an axial vector), rotations in that plane through an angle

θ can be written in the form (see chapter 2).

Rθ x = qxq̃ (4.23)

where q is the quaternion q = cos
θ

2
+ psin

θ

2
.

This is a 1-parameter group since RθRφ = Rθ+φ. We can write this in

exponential form since q = exp

(
θp

2

)
. Then (4.23) becomes

Rθ x = exp

(
θp

2

)
x exp

(−θp

2

)
. (4.24)

The generator for this group can be found as follows. For small θ we have to

order O(θ2)

Rθ x =
(
1+ θp

2

)
x

(
1− θp

2

)

= x+ θ

2
(px− xp)
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so that

R′
0 (x)= d

dθ
Rθx

∣∣∣∣
θ=0

= 1

2
(px− xp).

R′
0 the generator of the group Using more common notation and recalling

that the axis of rotation is part of its definition, we write Jp = R′
0. It follows

that

Rθ x = exp
(
θ Jp

)
x. (4.25)

Exercise 4.5 Derive (4.25) by showing that (Rθ) satisfies the differential

equation

R′
θ
= R′

0 Rθ.

Exercise 4.6 In the case of rotations in the x1− x2 plane, choose p = e12 and

verify that in this case

R′
0 =




0 −1 0

1 0 0

0 0 0




and that

Rθ = exp
(
θR′

0

)
.

(Of course the more usual notation would be to write the generator as J3 since

it generates rotations about the x3 axis.)

Note that we do not write generators in the form iA with A Hermitian, but

instead write them as anti-symmetric operators. This is a reminder that

there is no need to introduce complex numbers to describe rotations.

Operators on coordinate space induce operators on spaces of functions as

shown by the following diagram

R3 R3

Y

R

R∗ f
f

R∗ f is the operator induced by R.

So the 1-parameter group (Rθ) induces another 1-parameter group, writ-

ten (Uθ) defined on functions via

(Uθ f )(x)= f (Rθx)
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Exercise 4.7 Verify the group property Uθ+φ =UθUφ.

As in the case of the group (Rθ) we are interested in the generator for the

group (Uθ) as well as its corresponding exponential form.

To find the generator, again consider Uθ for small values of θ. Then to

order O(θ2) and using the notation of (4.25),

(Uθ f )(x)= f (Rθ x)= f (x+θJpx)

= f (x)+θJpx ·∇ f

giving the generator A of (Uθ) as

(A f )(x)= Jpx ·∇ f (4.26)

As before we then have the exponential form

Uθ = exp(θA) (4.27)

Exercise 4.8 (Keeping in touch with reality!) In the case where Rθ is a rota-

tion about the x3 axis we saw above that the generator for (Rθ) is

R′
0 =




0 −1 0

1 0 0

0 0 0


 .

Using equation (4.26) show that the generator for (Uθ) is given by

(A f )(x)= x1 ∂ f

∂x2
− x2 ∂ f

∂x1
.

(The more usual notation would be to write A f as J3 f with

J3 = x1 ∂

∂x2
− x2 ∂

∂x1

and where the complex i has been omitted.)
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4.6.2 Boosts in a specified direction

This next example consists of boosts B = Bt in a fixed direction. From chap-

ter 2 we know that these can be written as Bt : x → L txL−1
t with

L t =
[

cosh t
2

−sinh t
2

p

sinh t
2

p cosh t
2

]

which describes a boost with velocity v given by

cosh t = 1
√

1− v2

c2

and in the direction given by the pure, unit quaternion p (actually as is seen

below, the direction is more accurately specified by pe). It is easily verified

that this is indeed a 1-parameter group acting on R1,3.

As in the first example (L t) induces a 1-parameter group ( again written

as (Ut)) on the space of functions on R1,3 according to the diagram

R1,3 R1,3

Y

Bt

Ut f
f

Let us now look for the generators and exponential forms of these two groups.

Start with (Bt) and work as before. First we have for small t

L t = I + t

2

[
0 −p

p 0

]
+O(t2)

which gives

L′
0 =

1

2

[
0 −p

p 0

]
= pe

2

for the generator of (L t). Similarly a small calculation gives

Btx =
(
1+ t

2
pe

)
x

(
1− 1

2
pe

)
+O(t2) (4.28)

= x+ te

2
(px+ xp) +O(t2) (4.29)
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(recalling that ex =−xe)

so that

B′
0x = e

2
(px+ xp)

and B′
0 is the generator for (Bt). As in the first example we also have the

exponential forms

L tx = exp

(
tpe

2

)
x and (4.30)

Btx = exp

(
tpe

2

)
xexp

(
− tpe

2

)
. (4.31)

Again the more common notation would be to write Kp = B′
0.

Now consider the group (Ut) on a space of functions. Again for small

values of t we have

(Ut f )(x)= f (Btx)= f (x+ tKpx)+O(t2)

= f (x)+ tKpx ·∇ f +O(t2)

giving the generator of (Ut) as

(A f )(x)= Kpx ·∇ f

(Note the clear similarity with (4.26) in the case of the rotation group.)

Exercise 4.9 Consider the case of a boost in the x1 direction (so that we

choose p = e23). Show that

B′
0x = x0e1 + x1e2

or writing B′
0 as a 4×4 matrix

B0 =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




Deduce that the generator for (Ut) can then be written as

K1 f = x0 ∂ f

∂x1
+ x1 ∂ f

∂x0
.
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4.6.3 Translation groups

For a fixed vector a ∈ R1,3, we can define the translation 1-parameter group

(Tt) by

Tt : x → x+ ta.

These are affine rather than linear transfromations so will not have an ex-

ponential form.

These in turn define a translation group on functions as

(Ut f )(x)= f (x+ ta) (4.32)

and since f (x+ ta)= f (x)+ ta ·∇ f +O(t2), the generator for (Ut) is given by

P f = a ·∇ f . (4.33)

The exponential form is therefore

Ut = exp t(a ·∇). (4.34)

Summary: to summarize the groups looked at so far; there are three sym-

metry 1-parameter families of groups defined on function spaces. Their gen-

erators may be written (in the more usual notation) as

Rotations:

J23 = x2 ∂

∂x3
− x3 ∂

∂x2
, J31 = x3 ∂

∂x1
− x1 ∂

∂x3
, J12 = x1 ∂

∂x2
− x2 ∂

∂x1

Boosts:

K01 = x0 ∂

∂x1
+ x1 ∂

∂x0
, K02 = x0 ∂

∂x2
+ x2 ∂

∂x0
, K03 = x0 ∂

∂x3
+ x3 ∂

∂x0
,

Translation:

Pµ =
∂

∂xµ
, µ= 0,1,2,3.

Note that the P and J generators commute with the energy operator H = P0

and so have a special place in quantum mechanics. These commutation prop-

erties all follow from Clifford algebra ones. For example J23 commutes with

P0 because e23e0 = e0e23.
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4.6.4 Two other examples

There are two further examples of 1-parameter groups which are not so com-

monly studied but which still merit some attention. The first is the dilata-

tion group

Dt x = et x x ∈ R1,3 (4.35)

and its associated group on functions

(Ut f )(x)= f (et x). (4.36)

It is straightforward to show that the generator of (Ut) is

(D f )(x)= x ·∇ f (x)

and so, Ut = eD .

Exercise 4.10 Show that

[D,Pµ]=−Pµ.

The second example can be considered as a refinement of the rotation group.

Define Rθ, this time on the space Cl−(0,3) by

Rθ x = qx where q = cos
θ

2
+ psin

θ

2
(4.37)

for some fixed pure, unit quaternion p.

(We have already seen in chapter 2 that Rθ defines the spin 1
2

represen-

tation of Spin(3).)

We can write this immediately in exponential form

Rθ x = exp

(
θp

2

)
x

giving the group generator as
px

2
.
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The induced 1-parameter group on functions is

(Uθ f )(x)= f (Rθx)= f (x)+θ px ·∇ f +O(θ2) (4.38)

so that the generator is (A f )(x)= px

2
·∇ f .

(Recall that when working in Cl−(0,3), and with the usual notation,

x ·∇ = x1 ∂

∂x1
+ x2 ∂

∂x2
+ x3 ∂

∂x3
+ x4 ∂

∂x4
.

Exercise 4.11 (Rotations in the x2 − x3 plane). Take p = e23. Show that in

this case
px

2
·∇ f = 1

2

(
x2 ∂ f

∂x3
− x3 ∂ f

∂x2

)
+ 1

2

(
x1 ∂ f

∂x4
− x4 ∂ f

∂x1

)
.

We could just as well have defined Rθ by

Rθ x = xq̃ = xexp−
(
θp

2

)
x.

In this case the generator for (Uθ) would be (A f )(x)=− xp

2
·∇ f .

Exercise 4.12 Repeat exercise 4.8 for this case and notice that combining

the two rotations (i.e. to obtain x → qxq̃) gives the right generator for the

rotation group of section 4.6.1.

4.7 Representations of the Lorentz and Poincaré

group

4.7.1 Representations of the Lorentz group

8 The fundamental problem with finding representations of the Lorentz group,

is that the group is not compact. This means that all the nice results for com-

pact groups, such as irreducible representations are all finite dimensional,

do not always apply. In particular there are irreducible, infinite dimensional,

8For a fairly comprehensive treatment of the Lorentz group, see [4].
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representations. Let us look a little more closely at this problem.

The irreducible representations in fact fall into two categories. First,

there are finite dimensional representations but they are not unitary. Sec-

ondly, there are unitary representations but they are infinite dimensional.

These two categories are quite different and have to be studied separately.

Some finite dimensional cases. We will start with the first category

because here the irreducible representations are straightforward to describe.

Conventionally this is because one uses the “Weyl unitary trick” which goes

as follows.

The rotation generators (Ji) and the boost generators (K i) (see 4.6.1 and

4.6.2 above) can be combined to define two new sets of generators (A i) and

(Bi) by

A i =
1

2
(Ji + iK i)

Bi =
1

2
(Ji − iK i)

and both the families (A i) and (Bi) now generate SU(2) and furthermore, the

families commute. This means that the Lie algebra of the Lorentz group can

be identified with that of SU(2)
⊕

SU(2). Since the irreducible representa-

tions of SU(2) are indexed by the spin number j = 0, 1
2
,1, . . ., the irreducible

representations of the Lorentz group are now indexed by the pairs ( j, j′) with

j, j′ = 0, 1
2
,1, . . .. Just as for SU(2), the low dimensional representations can

be nicely described in Clifford algebra terms, so too we can describe the cor-

responding ones for the Lorentz group.

Two important examples are the following.

1. (1
2
,0) and (0, 1

2
) which describe right and left Weyl spinors and

2. (1
2
, 1

2
) - the four vector representation.
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Recall that the real dimension of the spin j representation of SU(2) is

2 j+1, if j = 0,1,2, . . . ,

2(2 j+1), if j = 1

2
,

3

2
, . . .

We therefore see that both the (1
2
,0) and (0, 1

2
) are 4-dimensional while the

(1
2
, 1

2
) representation is 8-dimensional.

These representations are easy to describe in Clifford algebra form since

the j = 1
2

representation of H1 = SU(2) is simply left (or right) multiplication.

The (1
2
,0) representation. In the same way that the SU(2) representa-

tion on C2 can be extended to a representation of SL(2) still on C2, so we can

start with the left multiplication representation of H1 on Cl−(0,3) defined

by left multiplication

πq : α→ qα

and extend it to a map (still denoted by π)

πq1+q2e : Cl−(0,3)→ Cl−(0,3).

The question is now, how to define πe? Since e commutes with all ele-

ments in Cl+(0,3) (in which lies the Lorentz group L+), we need an oper-

ator on Cl−(0,3) which commutes with all operations of left multiplication

by quaternions. The only candidate is right multiplication and since e2 =−1,

this must be right multiplication by a unit, pure quaternion p. This leads to

the following extension of π to all of Cl+(0,3)

πq1+q2e : α→ q1α+ q2αp.

Exercise 4.13 Show that π is a representation.

2. Show that this representation too is faithful.

3. Show that two different choices of p lead to equivalent representations.

To do this, choose p1, p2 two unit, pure quaternions. Call their corresponding

representations as defined above, π1 and π2.

105



Since p1, p2 correspond to unit vectors in R3, either can be rotated to the

other, i.e. there exists a unit quaternion q such that qp1 q̃ = p2. Then define

the orthogonal map on Cl−(0,3) by Ux = xq̃ and show that Uπ1 =π2U .

The (0, 1
2
) representation is essentially the same but this time using right

multiplication to give firstly the representation of H1 on Cl−(0,3) via

πq : α→αq̃.

Again if we fix a pure, unit quaternion p, then π extends to give the (0, 1
2
)

representation representation of Cl+(1,3) as

πq1+q2eα=αq̃1− pαq̃2.

(The reason for the negative sign will appear in the theorem below.) As in

the previous case, different choices of p give equivalent representations.

There is a divergence here between the conventional treatment and the

Clifford algebra one. In the usual treatment, the two spin 1/2 represen-

tations are not equivalent. But in the Clifford algebra setting, they are

equivalent and the isometry which provides this equivalence is the rever-

sion map. More exactly we have the following theorem (whose proof is left

to the reader)

Theorem 4.2 Let p be a unit, pure quaternion and write the two represen-

tations as

πl
q1+q2eα= q1α+ q2αp (4.39)

πr
q1+q2eα=αq̃1− pαq̃2. (4.40)

Then if C is the reversion map on Cl(0,3),

Cπl
q1+q2e =πr

q1+q2eC. (4.41)

Why is there this divergence, i.e. why are the two representations. inequiv-

alent in the usual treatment but equivalent in the Clifford algebra one?

The reason is that in the complex case, we require an intertwining oper-

ator U such that Uπl = πrU to be a unitary map and this requires U to be

complex linear. In the Clifford setting, we only require it to be real linear.
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This is a weaker requirement.

The (1
2
, 1

2
) representation This 8-dimensional representation of the Clif-

ford algebra Cl+(1,3) is just the representation of the algebra as 2×2 quater-

nion matrices, as defined in chapter 1. Being 2×2 matrices, elements act on

vectors [
α

β

]

with α, β in Cl−(0,3). Its usefulness will become more apparent when we

come to study the Dirac equation.

Infinite-dimensional cases (See e.g. [1], chapter 17.)

Turn now to infinite-dimensional representations of the Lorentz group

(now written as L ). These are usually obtained as induced representations

of a smaller subgroup - typically the stabiliser subgroup of an element from

the set that L acts on. The basic ideas are as follows.

Suppose that L acts on a set X . Usually this will be R1,3. Start with the

following two definitions.

Definition 4.2 Let x0 ∈ X = R1,3. The orbit of x0 is

orb(x0)= {Lx0 : L ∈L } (4.42)

i.e. all vectors in R1,3 which can be reached from x0 by a Lorentz transforma-

tion.

Definition 4.3 The stabilizer of x0 is the set of group elements which fixes

x0, i.e.

Lx0
=Stabilizer(x0)= {L ∈L : Lx0 = x0} (4.43)

Exercise 4.14 The following result is very useful. Suppose that a group G

acts on a space X , If two elements of X are in the same orbit, then their

stability groups are the same. Show this by showing that if gx0 = x1 then

g−1Gx1
g =Gx0

.
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Suppose still that a group G acts on X , the action being written as x → gx.

Let x0 ∈ X and write K for the stabilizer subgroup of x0. If we define a map

φ : G/K →Orb(x0), gK → gx0

then it is easy to check that φ is well defined (g1K = g2K =⇒ g1x0 = g2x0),

1−1 and onto. Furthermore the following diagram is commutative which

means that we can identify the group action on X with the group action on

G/K .

G/K G/K

X X

g

φ φ

g

So to classify all the stability subgroups of L , it suffices to find all the

orbits and the stability group of any member of an orbit.

There are six types of orbits (here m ≥ 0).

(i) O+
m = {x : x2 = m2,m > 0, x0 > 0},

(ii) O−
m = {x : x2 = m2,m > 0, x0 < 0},

(iii) Oem = {x : x2 =−m2,m > 0},

(iv) O+
0
= {x : x2 = 0, x0 > 0},

(v) O−
0 = {x : x2 = 0, x0 < 0},

(vi) O0
0
= {0}.

We can consider representations which correspond to mass shells as orbits

(examples (i) to (iii) above), or where the orbits are part of the light cone

(examples (iv) to (vi).

To develop the general idea of an induced representation, it suffices to

look at case (i).
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Fix m > 0 and consider the point x0 = me0 = (m,0,0,0) ∈ R1,3. Any Lorentz

transformation which fixes x0 must be a rotation in R3 and so Orb(x0) can be

taken to be Spin(3)= H1. Though this is not a very important point, we will

often work with the covering groups rather than (in this case) the rotation

group SO(3). It is quite easy to skip from one to the other and we will do this

without further explanation. So elements of L as well as points in R1,3 will

be written in 2×2 quaternion form and the action x → gx, as x → LxL−1.

Finally, again for simplicity, we will only consider the connected compo-

nent L
↑
+ of L . This keeps the basic ideas simple.

We need what is sometimes called a Borel section, which we can take to

be a function c as defined below.

Suppose that G acts on X . Write the stabiliser subgroup of a point x0 as

K . For each x ∈ X , choose c(x) ∈G in such a way that c(x)x0 = x and c(x0)= e

(group identity). Let π be a representation of K on a vector space V . Take

a space of functions φ : X → V and define the operator Ug (g ∈ G) on these

functions by

(Ug f )(x)=π
(
c(x)−1 gc(g−1x)

)
f (g−1x). (4.44)

Then g →Ug is a representation of G.

(Much has been omitted here! We need a measure on X and a more pre-

cise definition of the space of functions, so as to make it a Hilbert space in

which case the representation is now unitary. See [1] for details.)

Now consider the case G = L , X = Orb(me0) and K = H1. From the

definition of X =O+
m, an arbitrary element of X can be written (uniquely) as

x = m

[
coshφ sinhφ p

sinhφ p −coshφ

]

(where p is a unit pure quaternion and we can assume that φ≥ 0.)

So there is a 1−1 map between elements of X and pure boosts Bx where

Bx =
[

cosh
φ

2
−sinh

φ

2
p

sinh
φ

2
p cosh

φ

2

]
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and furthermore it is easy to show that

Bxx0B−1
x = x.

We can now define the Borel section function c defined above by

c : x = m

[
coshφ sinhφ p

sinhφ p −coshφ

]
→ Bx =

[
cosh

φ

2
−sinh

φ

2
p

sinh
φ

2
p cosh

φ

2

]
. (4.45)

Having found c, we now look at equation (4.44) for the induced representa-

tion g →Ug of L . Note that it suffices to consider the case where g is a boost

B, since every Lorentz transformation L is of the form L = BU with U a ro-

tation, and our assumption is that we already have a representation for the

rotation group. From equation (4.44), we see that we first have to calculate

c(B−1x) where B is a boost.

So let B be a boost and write B′ = c(B−1x). Then

B′x0 = B−1x

i.e. BB′x0 = x = Bxx0

∴B−1
x BB′ =U for some U ∈ H1.

So

B−1Bx = B′U−1. (4.46)

This equation shows that U arises from writing the product of two boosts

as the product of a boost and a (Thomas-Wigner) rotation (as discussed in

chapter 2).

It is now straightforward to describe the representation given by equa-

tion (4.44). We have

c(x)−1Bc(B−1x)= c(x)−1BB′

= c(x)−1B(B−1BxU from (4.46)

= c(x)−1BxU

=U since c(x)= Bx.

Since U corresponds to a unit quaternion q, we can finally write (4.44) in the

form

(UB f )(x)=πq f (B−1x) (4.47)
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with q arising as the Wigner angle defined by B and x.

For example, consider the spin 1
2

representation of H1 given by left mul-

tiplication by (unit) quaternions. Then the induced representation of L is

given by

(UB f )(x)= qf (B−1x) (4.48)

4.7.2 The Poincaré group

(See e.g. [1], chapter 17.2.)

In chapter 3.5 we looked at the Poincaré group as it might be repre-

sented in the Clifford algebra Cl(1,3), following on from the observation that

Lorentz transformations can be expressed in that algebra. Here we will look

very briefly at the way group representations can be built up from those of

the underlying Lorentz group L .

We will restrict the discussion to the proper, orthochronous Lorentz group

L . This extension of Lorentz representations is actually quite easy as the

Poincaré group is the semi-direct product of the additive group R1,3 with L .

So the only real problem facing us is how to write the irreducible represen-

tations of R1,3 in Clifford algebra form.

Classically these representations are of the form

a → exp(i 〈a, t〉) (4.49)

for some fixed t ∈ R1,3. Further since we can write an element (L,a) in the

Poincaré group P as

(L,a)= (I,a)(L,0)

It follows that a representation of P will be of the form

π(L,a)φ(x)= exp(i 〈a, t〉)πLφ(x). (4.50)

To write this in Clifford algebra form we therefore only need to replace the

imaginary i. Since it is clear that we need an even element which commutes
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with all other even elements and which squares to −1, the only candidate is

the pseudoscalar e = e0123. Apart from that the theory reads exactly as does

the conventional theory.

4.8 Notes and references

1. Barut, A. O. and Raczka, R. Theory of group representations and applica-

tions (1986), World Scientific.

2. Lounesto, P. op. cit.

3. Ryder, L. op. cit.

4. Sibel Başkal, Young S Kim and Marilyn E Noz, Physics of the Lorentz

group, IOP Concise Physics (2015).
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Chapter 5

Maxwell’s equations

5.1 Introduction

We are now in a position to consider some of the basic equations in relativis-

tic quantum physics, with a particular interest in the way these shed light

on the Dirac equation which will be studied in more detail in the follow-

ing chapter. Of interest here are Maxwell’s equations and the allied Klein-

Gordon equation and the Proca equations. Each of these equations or sets

of equations, can be expressed very simply in Clifford algebra form and it

is this very simplicity which highlights the connections (and differences) be-

tween them.

As usual we choose natural units with c =ħ= 1.

5.2 The Klein-Gordon equation

This is the simplest of the three as it is concerned with real-valued functions

only. (The others have vector or spinor arguments.)
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First in R1,3, write as usual the space-time derivatives as

∂µ =
∂

∂xµ
=

(
∂

∂t
,∇

)
, (5.1)

and ∂µ =
(
∂

∂t
,−∇

)
. (5.2)

With respect to a fixed (orthonormal) basis (eµ) in R1,3, the four-gradient or

Dirac operator is then defined by

d = e0∂
0+ e1∂

1+ e2∂
2+ e3∂

3 = e0∂0 − e1∂1 − e2∂2 − e3∂3. (5.3)

With the obvious notation it follows that

d2 = ∂2

∂t2
−∇2 =ä the D’Alembertian operator.

The Klein-Gordon equation for a particle of mass m can then be written as

(d2+m2)ψ= 0.

Exercise 5.1 Find conditions on the 1-vector k in R1,3 for the function

ψ(x)= cos(k · x+φ)

to satisfy the Klein-Gordon equation.

There are problems however with the Klein-Gordon equation when trying to

describe single particles. These problems arise as the equation is a scalar

equation. They are largely overcome by using the Dirac equation as we will

see.
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5.3 Maxwell’s equations

There is a number of ways by which Maxwell’s equations can be written.1 In

the simplest cases they can be expressed in the form2

div E = ρ

div B = 0

curl E+
∂B

∂t
= 0

curl B−
∂E

∂t
= J.

Here E is the electric field, B the magnetic field and ρ, J are the charge and

current densities respectively. The second equation implies the absence of

magnetic monopoles.

Ignoring topological issues3, the second and third equations imply that

the exists a vector potential

A = (Aµ)=
(
A0, A

)
(5.4)

such that

B = curl A (5.5)

and E =−
(
∂A

∂t
+∇A0

)
. (5.6)

However (Aµ) is not uniquely determined by the second and third equations.

If χ is any scalar function then we can define the gauge transformation

A′ = A−∇χ, (5.7)

A0′ = A0 + ∂χ

∂t
(5.8)

1Maxwell’s equations can be concisely expressed in the language of differential forms.

(See e.g. [1], chapter 4.6.) In many respects this is very similar to the Clifford algebra

technique which we describe here.
2Here and in much of what follows, we write vectors in underlined form when it seems

more usual and appropriate - even when there is strictly no necessary reason, e.g. if they

are considered as elements of a Clifford algebra.
3See e.g. [1], chapter 3, if you don’t want to ignore them.
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and this transformation leaves E and B invariant.

Different choices for χ lead to different gauge conditions. From the Clif-

ford algebra point of view, the most interesting is the Lorenz condition

∂0A0 +divA = 0. (5.9)

The reason for this will appear shortly.

Let us now recast Maxwell’s equations in Clifford algebra form.4

Begin by defining the electromagnetic field tensor F as a bivector in

Cl(1,3) as

F = E1e01 +E2e02 +E3e03 +B1e23 +B2e31 +B3e12. (5.10)

Then

dF = (e0∂0 − e1∂1 − e2∂2 − e3∂3)
(
E1e01 +E2e02 +E3e03 +B1e23 +B2e31 +B3e12

)

=
(
−div E

)
e0

+
(
∂0E1−∂2B3+∂3B2

)
e1 + cyclic terms

+
(
−div B

)
e123

+
(
∂0B1+∂2E3−∂3E2

)
e023 + cyclic terms.

Comparing these terms with those in Maxwell’s equations leads us to define

the (source) 1-vector J

J = (Jµ)=
(
ρe0 + J1e1 + J2e2 + J3e3

)

and Maxwell’s equations become

dF =−J. (5.11)

Note now that the absence of monopoles (div B = 0) follows directly from the

assumption that J or dF is a 1-vector. (In general dF, the derivative of a

bivector, could have been a 1+3 vector.)

4See Lounesto, [2], chapter 8.
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As before, we use the fact that the 3-component parts of dF are zero, to

define the scalar and vector potentials. This means that we should introduce

a 1-vector A = (Aµ) in which case

dA = (e0∂0 − e1∂1 − e2∂2 − e3∂3)
(
A0e0 + A1e1 + A2e2 + A3e3

)

= ∂0A0 +div A)

+ (∂0A+∇A0)1e01 +·· ·
− (curl A)1e23 +·· ·

or by (5.5), (5.6)

dA = L−F (5.12)

where

L = ∂0A0 +div A. (5.13)

We see now that the Lorenz condition on (Aµ) (see (5.9)) is equivalent to the

requirement that dA is a bivector, i.e. has no scalar part.

Assuming the Lorenz condition, Maxwell’s equations become

F =−dA (5.14)

dF =−J. (5.15)

Since F is determined by the potential A, we can write Maxwell’s equations

in terms of A (and the source J). By equation (5.12),

äA = d2A = d(dA)= dL−dF = d(∂0φ+div A)+ J. (5.16)

This shows the usefulness of applying the Lorenz condition on (φ, A) since

with this condition, (5.16) now simplifies to

äA = J. (5.17)

Notice too how gauge invariance is now trivial to verify. If A′ = A +dψ for

some arbitrary function ψ then

dA′ = dA+äψ

= (L+äψ)−F

which expresses dA′ as a 0+2 vector and therefore F is unchanged.
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5.3.1 Proca equations

Maxwell’s equations describe massless particles (photons) of spin 1. To de-

scribe massive, spin 1 particles (e.g. the W± bosons of weak interaction),

we need to use instead, the Proca equations. These are a modification of

Maxwell’s equations with a mass term added. They are usually expressed

as follows.5

Begin with a potential 1-vector A = (Aµ). The Proca equations are then

Fµν = ∂µAν−∂νAµ (5.18)

∂µFµν+m2Aν = 0. (5.19)

(5.18) defines the anti-symmetric field tensor F which as in the Maxwell case

is obtained from a 1-potential.

From (5.19) it follows that

m2∂νAν = 0 (5.20)

and if m 6= 0 this means that ∂νAν = 0.

Let us now put all this into Clifford algebra form.

Start with a 1-vector A. Then as in (5.12) we can write

F = L−dA (5.21)

with F the tensor field (now a bivector) given by (5.18) and

L = ∂0A0 +divA

as before.

So now (5.20) tells us that L = 0 in which case the Proca equations be-

come

F =−dA (5.22)

(d2 +m2)A = (ä+m2)A = 0. (5.23)

5See Ryder [3], chapter 2.8.
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Note how the presence of the mass term destroys gauge invariance. Unlike

Maxwell’s equations which are gauge invariant, Proca’s equations are not.

(This is to be expected on the alternative argument that A should have

only 3 degrees of freedom as befits a particle of spin 1.)

5.3.2 Energy conservation laws

The energy (per unit volume) contained in an electromagnetic field is

u = 1

2

(
E2 +B2

)
. (5.24)

A theorem due to Poynting gives a relationship between the change in the

energy stored in the field and the work which has to be done on charges

by the field and energy flow. In differential form it can be expressed as

Poynting’s theorem

∂

∂t

(
E2+B2

2

)
+div(E×B)+ J ·E = 0. (5.25)

The proof is a straightforward application of Maxwell’s equations. (See

[4], chapter 8.)

Let us see now how a neat proof can be obtained in Clifford algebra. This

method also brings out two interesting ideas.

Begin with Maxwell’s equations in the form

dF =−J.

Multiplying by F,

FdF =−F J. (5.26)
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Now consider this equation in component form. A small calculation gives

FdF =
(
−E ·

∂E

∂t
−B ·

∂B

∂t
+E ·curlB−B ·curlE

)
e0

+
(
(divE)E1 + (divB)B1

)
e1 +·· ·

+
(
−E · (

∂B

∂t
+curlE)+B · (

∂E

∂t
−curlB)

)
e123

+
(
divB)E1 −divE)B1

)
e123

+
(
(divB)E1 − (divE)B1

)
e023 +·· ·

while

F J =
(
−E · J

)
e0

+
(
B× J

)
1 e1 +·· ·

+B · Je123

+
(
E× J+ρB

)
1 e023 +·· ·

Comparing the e0 terms gives

−1

2

∂

∂t

(
E2 +B2

)
+E ·curlB−B ·curlE = E · J (5.27)

and from the vector identity

div(E×B)=−E ·curlB+B ·curlE

we obtain Poynting’s theorem, (5.25).

So the Clifford algebra form for Maxwell’s equations gives us the energy

conservation law very directly. But it gives us more since that law only

requires equating the e0 terms in FdF and −F J. For example equating the

other scalar term, i.e. the e123 term, gives

E ·
∂B

∂t
−B ·

∂E

∂t
+E ·curlE+B ·curlB = B · J (5.28)

although it is not clear just what physical conservation law this describes.

Exercise 5.2 In a similar vein, consider the 1-vector and 3-vector terms and

find two more “Poynting type” results.

120



So this is one advantage that a Clifford algebra approach has: it not only

provides a simple algebraic proof of Poynting’s theorem but also gives us ex-

tra results.

Furthermore, essentially the same procedure can be applied to obtain

other conservation laws in different circumstances. We shall see this in the

next chapter when we consider the Dirac equation. The Dirac equation also

has a conservation law, conservation of probability current, and we will show

how to obtain this result in an identical manner.6

A question arises: can we deduce Maxwell’s equations (dF = −J) from

these conservation laws (FdF =−F J)? In other words, is multiplication by

F a reversible process? (For aesthetic reasons it would be nice to deduce field

equations from conservation laws.)

When F is thought of as a tensor, this question does not make immediate

sense. Although tensor products can be defined, tensors are not usually in-

terpreted as operators on some vector space (though of course they act that

way through interior products) which can be multiplied, i.e. composed, in

the way that operators can.

However in Clifford algebra terms, F is an element of the algebra Cl(1,3)

and the question of whether or not F has an inverse F−1 (i.e. satisfying

FF−1 = F−1F = I) is perfectly reasonable. It turns out that invertibility or

not of the electromagnetic filed F is a very natural property of the field.

Being an element of Cl(1,3), we can write the bivector F as a 2×2 quater-

nion matrix. This simplifies matters considerably as the question now be-

comes one of matrix inversion. We can then use well-known results in matrix

theory which tell us just when a 2×2 block matrix has an inverse.

Since E and B are to be represented as (pure) quaternions, we will sim-

plify the notation a little by writing

E = E1e01 +E2e02 +E3e03 =−(E1e23 +E2e31 +E3e12)e =−pE e, (e = e0123)

6A common procedure is by way of the adjoint Dirac equation. But this is not needed and

is really an unnecessary complication.
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and similarly B = pB.

Then

F =−pE e+ pB =
[

pB pE

−pE pB

]
(5.29)

where pE, pB are pure quaternions.

Assume that F 6= 0.

Suppose first that F is singular. We can consider two cases.

Case 1: pE = 0. Then F = pB and by assumption pB 6= 0. But then

F−1 = p−1
B =− pB

p2
B

. So this case cannot arise.

Case 2: pE 6= 0. A standard result in matrix theory7 is that if

X =
[

A B

C D

]

is a matrix in block form with A invertible, then

X is invertible ⇐⇒ D−CA−1B is invertible.

So since F is singular, we must have

pB + pE p−1
B pE = 0 (5.30)

so that (
pE p−1

B

)2 =−1. (5.31)

This means that

pE p−1
B = p (5.32)

for some pure, unit quaternion p.

Since the norm on quaternions is multiplicative, this means that

‖pE‖ = ‖pB‖
7See e.g. [5], p.44
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and since too, we can rescale F (we are only assuming that F is non-singular)

we can assume that

‖pE‖ = ‖pB‖ = 1.

Since pE, pB are pure, this implies that

p2
E = p2

B =−1.

(Note that in terms of E and B this means that E2 −B2 = 0.)

From equation (5.32), we then have

−pE pB = p (5.33)

and applying reversion,

−p̃B p̃E = p̃ (5.34)

or

pB pE = p. (5.35)

Subtracting (5.33) and (5.35) gives

pE pB + pB pE = 0

in other words, 〈pE, pB〉 = 0, or E ·B = 0.

To summarize: if F is singular then E2 −B2 = 0, and E ·B = 0.

The converse is also true, for if E2 −B2 = E ·B = 0 then

F2 =
(
−Ee+B

)2 =
(
E2 −B2

)
−2E ·B = 0.

and so F cannot have an inverse, i.e. F is singular.
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5.3.3 Plane wave solutions of Maxwell’s equations

Start with the source-free (J = 0) Maxwell equations in the form

dF = 0.

Then

äF = d2F = 0 (5.36)

and so F (i.e. all its components) satisfy the wave equation.

We look for basic plane wave equations, i.e. solutions of the form

F = F0 cos(k0x0 −k1x1 −k2x2 −k3x3 +φ)= F0 cos(ωt−k · x+φ) (5.37)

where F0, k, ω = k0,φ are constants, with k2 = ω2, i.e. k is a null vector in

R1,3.

(When working in Clifford algebra it is often advisable not to use an ex-

ponential form unless it is clear just what the imaginary i should be. The

reason for this caution is that not only do we need i2 = −1 but also (prefer-

ably at least) that i should have nice commutation properties with the other

elements of interest, which are often bivectors. Furthermore since we will

also be interested in the polarization of waves, using the real cosine form is

more geometrically natural than the “complex” exponential form.)

From (5.37) we see that

∂0F =−ωF0 sin(ωx0 −k1x1 −k2x2 −k3x3 +φ)

and for i = 1,2,3

∂iF = kiF0 sin(ωx0 −k1x1−k2x2 −k3x3 +φ)

which gives

dF =−ksin(ωx0 −k1x1 −k2x2 −k3x3 +φ). (5.38)

Since dF = 0, it follows that

kF0 = 0 (5.39)

and because k is null, we can expect non-trivial solutions.
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Expanding equation (5.39) and writing

F0 = E1
0e01 +·· ·+B1

0e23 +·· ·

gives the system of equations

k ·E0 = 0

k0E0+k×B0 = 0

k ·B0 = 0

k0B0−k×E0 = 0.

Assuming that k 6= 0, it then follows that k,E0,B0 form an orthogonal sys-

tem with ‖E0‖=‖B0‖ which is right-handed if k0 > 0 and left-handed if k0 < 0.

Exercise 5.3 Conversely, suppose that E and B are orthogonal vectors of

equal lengths in R3. Choose k orthogonal to E and B. Define k0 = ±‖k‖ ac-

cording as the system k,E,B is right- or left-handed. Show that kF = 0.

5.4 Polarization

From equation (5.39) we see that a single electromagnetic wave is a trans-

verse wave with the electric and magnetic fields orthogonal to each other

and to the direction of the wave, determined by k. Such waves are called

plane or linearly polarized. Conventionally we choose the plane of polariza-

tion to be the plane determined by E and k (or if we use the term linearly

polarized, by the line containing E).

The physics of polarization becomes more interesting when it comes to

dealing with the superposition of two or more waves. For simplicity we will

restrict ourselves to the case of two waves, and where the waves are moving

in the same direction which we choose to be e3, so that we can write k as

(0,0,k,ω) in each case.

Since for a single wave its magnetic component is determined by its elec-

tric component (because k0B0 = k×E0), we need only consider how the elec-

tric fields of two waves interact.
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Consider then two waves with electric fields

E1 = E1
0 cos(ωt−kz+φ1)u1 (5.40)

and E2 = E2
0 cos(ωt−kz+φ2)u2 (5.41)

where E1
0,E2

0 are constants and u1,u2 are (unit) vectors in the e1− e2 plane.

A simple calculation shows that in the case u2 = u1, then E1 +E2 can be

written in the form

E1+E2 = A cos(ωt−kz+φ′)u1

so that the sum of two collinear waves is again linearly polarized.

Assume now that u2 ⊥ u1. Furthermore since only relative phases are of

importance, we can also assume that φ1 = 0 and the waves are now

E1 = E1
0 cos(ωt−kz)u1 (5.42)

and E2 = E2
0 cos(ωt−kz+φ)u2, φ ∈ [0,2π). (5.43)

Conventionally we distinguish three cases.

Case 1: Linear polarization. Suppose first that φ= 0. In this case

E = E1+E2 = (E1
0u1+E2

0u2)cos(ωt−kz)

= A cos(ωt−kz)v

for some constant A and (unit) vector v orthogonal to e3. So the sum E1+E2

is again linearly polarised. The two waves are said to be in phase.

A similar argument occurs when φ= π. Again the sum is linearly polar-

ized but now we say that the two waves are out of phase.

In each of these two cases, the direction of the electric vector E is fixed.
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Case 2: Circular polarization. Suppose now that φ = π/2 and that

E1
0 = E2

0 (=E0 say.) Then

E = E1+E2 = E0

(
cos(ωt−kz)u1 −sin(ωt−kz)u2

)

The magnitude of E is constant with |E| = E0 but the direction now varies

with time. E now rotates in a circle and we therefore call the polarization

circular polarization.

Case 2: Elliptical polarization. The two cases above are special cases

of the general polarization state of the sum of the two waves. The general

case is called elliptical polarization and in this case the vector E is a function

of time t and describes an ellipse. Details can be found in [4], chapter 9.

5.4.1 Jones vectors and the Clifford algebra Cl(0,3)

A different way to represent polarized states due to Jones (see e.g. [6]) is

interesting for a number of reasons, one of which is its similarity with the

way spin 1
2

quantum states can be written. Sakurai [7] discusses this in de-

tail and uses this very similarity to argue why complex spaces are needed

for a mathematical basis for quantum mechanics. We will discuss this later

and at this stage will confine ourselves to giving a brief outline of how Jones

vectors are used to describe polarization states (especially those above), and

what these vectors correspond to in a Clifford algebra. Explanations of how

and why we make this correspondence, is deferred to chapter 7 where it will

be discussed in more detail (though in the context of quantum states).

Jones vectors

Consider again a monochromatic plane wave travelling in the z direction.

The electric field of the wave can be written in complex exponential form as

E =
[
E1(t)

E2(t)

]
=

[
E10ei(ωt−kx+φ1)

E20ei(ωt−kx+φ2)

]

=
[

E10eiφ1

E20e1φ2

]
ei(ωt−kz).
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The Jones vector for this state is then defined to be

J =
[

E10eiφ1

E20e1φ2

]
(5.44)

and provides a concise description of the amplitude and phase of E in the x

and y directions. Because there is some leeway in the way we can describe

these properties, the usual method is to assume that J is a unit vector in C2

whose first component is real.

Typical examples of Jones vectors are:

1. Linear polarization in the x (horizontal) direction.

JH =
[
1

0

]
. (5.45)

2. Linear polarization in the y (vertical) direction.

JV =
[
0

1

]
. (5.46)

3. Linear polarization at an angle ±π
4

to the x axis (diagonal direction).

JD± = 1
p

2

[
1

±1

]
(5.47)

4. Circular polarization.

JC± = 1
p

2

[
1

±i

]
. (5.48)

(The sign depending on whether we have left or right circular polar-

ization.)

There are also “Jones matrices” which are projection maps in C2 onto Jones

vectors. Since they are wholly determined by the corresponding vector, they

do not add very much to the theory. However, very importantly, they remind

us that in cases such as these, where vectors can be rescaled and where the

(absolute) phase is not important, there are advantages in replacing the vec-

tors with their corresponding 1-dimensional projection in C2 (or more simply

128



identifying vectors with lines.)

With this idea in mind, we replace the 2-(complex)-dimensional space

C2 with the four (real) dimensional space Cl−(0,3) with orthogonal basis

{e1, e2, e3, e123}. Each of the Jones vectors, or more accurately the corre-

sponding Jones (projection) matrix, is then described by a two-dimensional

projection onto a subspace of Cl−(0,3). In some cases the projection may

look a bit arbitrary but there is method to this and a deeper explanation will

be given when we come to describe the Stern-Gerlach experiment later. Suf-

fice to say at this stage that we follow Sakurai [7] where he uses polarization

vectors to provide a justification for his description of the Stern-Gerlach spin

states.

The Jones vectors as given above, correspond to the following projections

(which for the sake of comparison, are given the same symbol.)

1. JH is the projection onto the subspace 〈e1, e2〉 (i.e. spanned by e1, e2).

JH =




1

1

0

0


 . (5.49)

2. JV is the projection onto the subspace 〈e3, e123〉.

JV =




0

0

1

1


 . (5.50)

3. JD+ is the projection onto the subspace 〈 e1+e3p
2

,
e2+e123p

2
〉.

JD+ = 1

2




1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


 . (5.51)
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4. JD− is the projection onto the subspace 〈 e1−e3p
2

,
e2−e123p

2
〉.

JD− = 1

2




1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


 . (5.52)

5. JC+ is the projection onto the subspace 〈 e2−e3p
2

,
e1+e123p

2
〉.

JC+ = 1

2




1 0 0 1

0 1 −1 0

0 −1 1 0

1 0 0 1


 . (5.53)

6. JC− is the projection onto the subspace 〈 e2+e3p
2

,
e1−e123p

2
〉.

JC− = 1

2




1 0 0 −1

0 1 1 0

0 1 1 0

−1 0 0 1


 . (5.54)

5.5 Lagrangians

8 When working with relativistic fields, it is often convenient to start with

the Lagrangian function L which defines the field and then use L to obtain

necessary results. For example, the Euler-Lagrange equations applied to L

yield the defining equations for the field (such as Maxwell’s equations for

the electromagnetic field). Another important use of the Lagrangian is to

verify that local gauge invariance holds. In this case, we need only look at

the invariance of L as all else will follow.

Lagrangians are functions of the fields φi defined on R1,3, and their first

order partial derivatives ∂µφi =
∂φi

∂xµ
.

8See [8] for a much deeper analysis of Lagrangians in Clifford algebras.
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In this section we will confine ourselves to the Klein-Gordon and Maxwell

Lagrangians. These are enough to give you an idea of how useful Clifford

algebra terminology can be, and especially how compact the ideas are ex-

pressed. In the next chapter we will look at the Lagrangian for the Dirac

field, where ideas become more interesting.

5.5.1 The Klein-Gordon Lagrangian9

This is the Lagrangian for a spin 0 field and so there is just one scalar field

φ and the Lagrangian is a function L(φ,
∂φ

∂xµ
). The Euler Lagrange equation

is then

∂µ

(
∂L

∂(∂µφ)

)
= ∂L

∂φ
.

This case is particularly transparent when we use the notation of Clifford

algebras. For a start, since we want L to be relativistically invariant, the

dependence of L on the partial derivatives of φ must in fact be a dependence

on dφ, So L must be of the form L = L(φ,dφ).

The Euler-Lagrange equation now becomes much simpler

d

(
∂L

∂(dφ)

)
= ∂L

∂φ
. (5.55)

Since the Klein-Gordon equation is linear, we expect the Lagrangian to be

quadratic (in φ and dφ). So we are led to the definition of the Klein-Gordon

Lagrangian as

L = LKG(φ,dφ)= 1

2
(dφ)2 − 1

2
m2φ2. (5.56)

(As usual, the factor 1
2

is purely conventional and may be omitted if you pre-

fer.)

Then from equation (5.55)

d

(
∂

∂(dφ)

(
1

2
(dφ)2 − 1

2
m2φ2

))
= ∂

∂φ

(
1

2
(dφ)2 − 1

2
m2φ2

)

9See e.g. [4], chapter 10 for a more detailed introduction to this case.
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i.e.

d(dφ)=−m2φ

giving äφ+m2φ= 0 and we have the Klein-Gordon equation.

Note how simple the Lagrangian looks when expressed in terms of dφ

instead of the customary
∂φ

∂xµ
.

5.5.2 The Maxwell Lagrangian

Recall from (5.14) and (5.15) that we can write Maxwell’s equations (in vac-

uum) as

F =−dA, dF =−J.

Finding the Lagrangian for Maxwell’s equations is therefore just a little

more tricky as we have two (but dependent) fields involved, namely F and

A. So it seems sensible to look for a Lagrangian just in terms of A (whose

components at least are independent) and the partial derivatives ∂µAν.

Again because we want to end up with a linear system, we look for a

Lagrangian which is no more than quadratic in A and dA. This leads us to

try

L = LEM = 1

2
(dA)2 +〈J, A〉. (5.57)

As in the previous case, we have

∂L

∂(dA)
= dA =−F

so that

d

(
∂L

∂L
∂(dA)

∂(dA)

)
=−dF

while
∂L

∂A
= J

(see the following exercise.)

So from the Euler-Lagrange equation we obtain −dF = J which is Maxwell’s

equation.
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Exercise 5.4 To verify that ∂L
∂A

= J, show that (in the more usual notation)

if f (A)= 〈J, A〉 then ∇ f = J.
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Chapter 6

The Dirac Equation

6.1 Introduction

It is no exaggeration to say that the Dirac equation which describes spin 1
2

particles, is the very cornerstone of relativistic quantum mechanics. It is

however a complex theory with particles described by Dirac spinors which

are four-component, complex vectors.

Against that we have the view that, to describe a theory geometrically, it

should be a real theory, that is, one based on real vector spaces. As we saw

in Chapter 3, a real theory which describes the spin 1
2

ideas can be achieved,

based on using the space Cl−(0,3) rather than C2 to describe Pauli spinors.

So it is not unreasonable to hope for an extension of these ideas to describe

Dirac spinors.

In a search for a more geometric theory, the pioneering works of Hestenes

[1] and others (see e.g. [2]), have demonstrated the important role that Clif-

ford algebras should play in the geometric interpretation of Dirac’s basic

ideas and results. In particular the algebra Cl(1,3) plays a central role.

In his reformulation of the Dirac equation, Hestenes had to find a re-

placement for the complex number i. He found this in the bivector element

e12 (in our notation; γ12 in his) and was then able to construct a more ge-

ometric theory of Dirac particles in which complex Dirac spinors were re-

placed by elements of the real 8-dimensional subspace Cl+(1,3) of the Clif-
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ford algebra Cl(1,3).

Let us firstly look at the traditional physicists’ viewpoint and then at

Hestenes’ approach and some of the more immediate consequences which

stem from his approach.

6.2 The traditional physicists’ viewpoint

In co-ordinate space, the (free particle) Dirac equation may be written as

γµ∂µψ+ imψ= 0 (6.1)

(see e.g. Ryder [3]). Here as usual,

∂µ =
∂

∂xµ
(6.2)

and the γµs are 4×4 complex matrices which satisfy the conditions

(
γ0

)2 = 1,
(
γi

)2
=−1, i = 1,2,3 (6.3)

and the commutation relations

γµγν+γνγµ = 0, µ 6= ν. (6.4)

The vector ψ ∈ C4 is called a Dirac spinor.

6.3 Hestenes’ (real) Dirac equation

Hestenes [1] reformulated the Dirac equation as a real equation in the Clif-

ford algebra Cl(1,3) (which he calls the space-time algebra, STA). In his

notation, the basis vectors are again written as γµ, so as to closely mirror

Dirac’s notation. Being the basis vectors for Cl(1,3), the γµs will satisfy

equations (6.3) and (6.4). The Dirac equation is now written as

γµ∂µψ+ imψγ0 (6.5)

where i = γ2γ1 and ψ ∈ Cl+(1,3).
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So the 4-complex-dimensional Dirac spinor space is replaced by the real

8-dimensional space Cl+(1,3).

Two consequences arise from this approach.

1. The operator γµ∂µ behaves as a 1-vector which means that γµ∂µψ is

now an odd vector and so is no longer a Dirac spinor. (This is why the extra

term γ0 appears on the right in equation (6.5)). This is in contrast with the

original Dirac theory where γµ∂µψ is still a spinor (equal to −imψ).

2. A more basic question is: why choose Cl+(1,3) to represent spinors?

Certainly it is (real) 8-dimensional as required and has the attraction of be-

ing closed under multiplication (as opposed to Cl−(1,3)) but this is not a

sound geometric argument. In fact, Cl−(1,3) contains the 1-vectors and it

would be expected that any geometric interpretation would most likely start

with these vectors.

To understand this basic problem of what geometric meaning we can give

to Dirac spinors, it is useful to look at the connection between Dirac and

Pauli spinors. As we have already seen, Pauli spinors have an immediate

geometric interpretation and this connection might help in the Dirac case.

6.4 Dirac and Pauli spinors

The conventional relationship between Pauli and Dirac spinors is elegantly

presented in Ryder, [3]. It is based on the representation of the Lorentz

group and briefly goes as follows.

Consider first, the restricted Lorentz group; this is the component of the

Lorentz group connected to the identity. Alternately it can be defined as the

subgroup of transformations which are orthochronous (preserve the direc-

tion of time) and proper (preserve orientation). Its two-fold covering group

is SL(2,C) which therefore acts naturally on Pauli spinors (when regarded

as elements of C2).
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However, if we include the parity transformation which on R1,3 would be

P =




1

−1

−1

−1


 ,

this representation space is too small and has to be expanded to C4 = C2 ⊕
C2,

i.e. to pairs ψ=
[
ξ

η

]
of Pauli spinors.

In a Clifford algebra setting, we have already seen in chapter 3, that

M = Cl−(0,3) is (geometrically) an appealing choice for the space of Pauli

spinors. This means that we should choose ψ =
[
ξ

η

]
with ξ, η ∈ M. Alter-

nately we can write ψ = ξ+ηe which is a general element of Cl−(1,3). So

Dirac spinors are precisely the odd elements of the Clifford algebra Cl(1,3).

It is worth pointing out here that the parity transformation P given

above is now represented as a generalised reflection (see Chapter 2), by the

element e123 (or γ123 if you prefer.) For if we consider the map

P : Cl−(1,3)→ Cl−(1,3), P : x →−e123x(e123)−1

then

P(e0)= e0, P(e i)=−e i, i = 1,2,3

as required.

In the same way, the map T which reverses the arrow of time is the

Lorentz transformation

T =




−1

1

1

1




which can be represented as a reflection by e0.
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6.5 The Dirac equation

Let us go back to the first issue regarding Hestenes’ equation (6.5), which

was raised in section 6.3 above. This was that the operator

d = e0∂0− e1∂1− e2∂2− e3∂3

interchanges odd and even elements so that its action on a Dirac spinor is

no longer a Dirac spinor. Hestenes ‘solved’ this problem by introducing the

extra term γ0 = e0 in equation (6.5), but there is another, more natural, way

around the problem.

Recall from chapter 1, the following representation for Cl(1,3).

1=
[
1 0

0 1

]
, (6.6)

e0 =
[
1 0

0 −1

]
, e1 =

[
0 i

i 0

]
, e2 =

[
0 j

j 0

]
, e3 =

[
0 k

k 0

]
, (6.7)

e23 =
[

i 0

0 i

]
, e31 =

[
j 0

0 j

]
, e12 =

[
k 0

0 k

]
, (6.8)

e01 =
[

0 i

−i 0

]
, e02 =

[
0 j

− j 0

]
, e03 =

[
0 k

−k 0

]
, (6.9)

e023 =
[

i 0

0 −i

]
, e031 =

[
j 0

0 − j

]
, e012 =

[
k 0

0 −k

]
, (6.10)

e123 =
[

0 −1

−1 0

]
, (6.11)

e0123 = e =
[
0 −1

1 0

]
. (6.12)

To this end we will use this representation of Cl(1,3) as 2× 2 quaternion

matrices and instead define the Dirac d operator to be

d = ∂0e0 −∂1e1 −∂2e2 −∂3e3

= ∂0

[
1 0

0 −1

]
−∂1

[
0 i

i 0

]
−∂2

[
0 j

j 0

]
−∂3

[
0 k

k 0

]

(where again ∂0 =
1

c

∂

∂t
though we will usually assume that c =ħ= 1.)
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(If you prefer, write γµ for eµ etc. This will now accord more with con-

ventional notation. On the downside however, it replaces the traditional

eµ notation in Clifford algebras, with Dirac’s gamma matrix notation. The

point is not important; choose whichever notation you prefer.)

In terms of components where we write ψ=
[
ξ

η

]
this becomes

dφ= d

[
ξ

η

]
= ∂0

[
ξ

−η

]
−∂1

[
iη

iξ

]
−∂2

[
jη

jξ

]
−∂3

[
kη

kξ

]
. (6.13)

Note that d2 is the d’Alembertian operator

d2 =✷= 1

c2

∂2

∂t2
− ∂2

∂x12
− ∂2

∂x22
− ∂2

∂x32
.

It is important to note as well that with this definition of d, we no longer

have an associative law of the form

d(ψφ))= (dψ)φ (where φ is a constant in Cl(1,3)).

In fact it is easily seen that d(ψe)=−(dψ)e. But we still have

d(ψq)= (dψ)q

when q is a quaternion. (Essentially this is because q commutes with e.)

Exercise 6.1 Derive the above two properties of the d operator.

So, for spin 1
2

particles, we will take the Dirac equation to be

dψ+mψu = 0 (6.14)

where d is defined by (6.13), m ≥ 0 and u is a fixed unit, pure quaternion,

so that u2 = −1. Unless specifically mentioned, we normally assume that

m 6= 0.

Note that as in the classical setting, the spinor ψ (and its components ξ

and η) satisfy the Klein-Gordon equation, because

d2ψ= d(dψ)=−d(mψu)=−m(dψ)u = m2ψu2 =−m2ψ

i.e. ✷ψ+m2ψ= 0.
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To summarize, the Dirac equation is formulated as

dψ+mψu = 0 (6.15)

where ψ ∈ Cl−(1,3) and u is a constant unit pure quaternion. Compar-

ing this with the classical Dirac equation, we see that u takes the place of

i. Note however that u does not commute with ψ. This is an interesting

departure from the classical viewpoint.

How important is the choice of u? Apart from being a unit, pure, quater-

nion, the choice is not critical. For if u′ is another unit pure quaternion,

there is a rotation Λ (which can therefore be regarded as a quaternion) such

that

ΛuΛ−1 = u′.

(Think in terms of vectors. Given any two unit vectors in R3, one can always

be rotated to the other.)

If we write ψ′ =ψΛ
−1 then an easy calculation shows that

dψ′+mψ′u′ = 0. (6.16)

This means the the choice of u is to a large extent arbitrary; it is up to indi-

vidual observers to each choose their own u in the same way that observers

choose their own orthonormal bases. We will return to this point later.

Exercise 6.2 Verify equation (6.16).

Let us now look at a few simple cases.
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6.5.1 A Dirac particle at rest1

Recall that in the standard theory (and with the usual notation), the Dirac

particle at rest obeys the equation

γ0 p0ψ= mψ

where γ0 (in the standard representation) is

[
I2 0

0 −I2

]
and p0 = i∂t. This

has the solution

ψ=
[
ψP e−imt

ψN e+imt

]

with ψP , ψN constant vectors in C2.

So we say that there are two positive and two negative energy solutions.

Since ψP , ψN ∈ C2 they describe spin 1
2

particles.

In our formulation, start with ψ=ψ(t) satisfying

dψ+mψu = 0, u2 =−1. (6.17)

Since (✷+m2)ψ= 0 and ✷= ∂2

∂t2
, this gives

ψ=ψ0e−umt +ψ1eumt (6.18)

with ψ0 =
[
ξ0

η0

]
and ψ1 =

[
ξ1

η1

]
(constant) elements of Cl−(1,3).

Then from (6.18)

mψu =
[
ξ0

η0

]
mue−umt +

[
ξ1

η1

]
mueumt

while

dψ=−
[
ξ0

−η0

]
mue−umt +

[
ξ1

−η1

]
mueumt.

1See e.g. [3], chapter 2.5
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Substituting in (6.17) now gives

η0 = 0, ξ1 = 0.

So ψ is of the form

ψ= ξe−umt + (ηe)eumt

where ξ, η are constant elements in the Pauli spinor space M = Cl−(0,3).

There are therefore two basic solutions of the form

ψP = ξexp(−umt); ψN = (η e) exp(umt) (6.19)

with ξ, η ∈ M. These correspond to the classical positive and negative energy

solutions respectively. As expected, to interpret spin geometrically, the un-

derlying space C2 has been replaced by M.

Note that ψP and ψN belong to different subspaces since from (6.19)

ψP ∈ M while ψN ∈ Me. This distinction is not so clear in the conventional

formulation.

The spin 1
2

nature of these solutions should be clear. For a fixed choice

of u, the solutions are invariant under left multiplication by elements of H1

(the unit quaternion group), and so, form a (real) 4-dimensional space in-

variant under the group action of H1. As we remarked in chapter 3, this

provides the natural geometric setting for describing the spin 1
2

representa-

tion of SO(3).

6.5.2 Plane wave solutions

Let us recall the basic features of a (traveling) plane wave.

A plane wave in R1,3 is described by a function of the form

φ(x)= f (k0x0 −k1x1 −k2x2 −k3x3)= f (k0t−k · x)

where

x = x0e0 + x1e1 + x2e2 + x3e3 = x0e0 + x ∈ R1,3
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and f : R → Cl(1,3) is a function of one variable only.

The vector k gives the direction of propagation (and so is assumed non-

zero); k0 is the (angular) frequency so that k0 = 2π

T
where T is the period.

(For that reason we always assume that k > 0). ‖k‖ is the (angular) wave

number so that ‖k‖ = 2π

λ
where λ is the wavelength. Finally the speed of the

wave is
k0

‖k‖
. The profile of the wave is determined by the function f .

Here we are interested in plane wave solutions of the Dirac equation.

Start with the Dirac equation dψ+mψu = 0 and let

k = k0e0 +k1e1 +k2e2 +k3e3 ∈ R1,3

so that k2 = k2
0−k2

1−k2
2−k2

3.

Let f : R → Cl−(1,3) and look for solutions of the form

ψ(x)= f (k0x0−k1x1 −k2x2 −k3x3)= f (k0t−k · x).

Note that

✷ψ= k2 f ′′

so that k2 = 0 only gives the trivial solution. Assuming that k2 6= 0, we obtain

from the Klein-Gordon equation

f ′′+
(

m2

k2

)
f = 0. (6.20)

Now k2 < 0 gives unbounded solutions so that we may assume that k2 > 0,

i.e. that k is time-like. Then from (6.20), f is a linear combination of the

functions exp

(
±um

‖k‖
(k0t−k · x)

)
which is more conventionally (and famil-

iarly) written as

f (t)= exp±u(Et− p · x)

where E = mk0

‖k‖
is the energy of the wave and p =

m k

‖k‖
= p1e1 + p2e2 + p3e3

its momentum. Note that

E2−‖p‖2 = m2
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as required.

Consider first solutions of the form

ψ=
[
ξ0

η0

]
exp−u(Et− p · x)

where ψ0 =
[
ξ0

η0

]
= ξ0 +η0e is a constant element in Cl−(1,3). (These are the

so called “positive” energy solutions for u. Replacing u by −u we obtain the

“negative” energy solutions for u.)

Substituting in the Dirac equation leads to the following linear system

which provides a relationship between ξ0 and η0.

[
E−m p

−p E+m

][
ξ0

η0

]
=

[
0

0

]
(6.21)

where we now write (with a slight abuse of notation) p = p1e23 + p2e31 +
p3e12.

Exercise 6.3 Show that the Dirac equation leads to equation (6.21) and ver-

ify that this equation has non-trivial solutions by showing that the coefficient

matrix has zero determinant.

Solving (6.21) gives

pξ0 = (E+m)η0 or equivalently pη0 = (m−E)ξ0 (6.22)

so that the general solution can be expressed as

ψ=
[
E+m

p

]
ξexp−u(Et− p · x)

with ξ ∈ Cl−(0,3).

(The fraction
p

E+m
should be compared with the term

σ · p

E+m
which ap-

pears in the conventional treatments. See, e.g Ryder, [3]).
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Similarly, the “negative” energy solutions are

ψ=
[
E+m

p

]
ξeexp+u(Et− p · x)

again with ξ ∈ Cl−(0,3).

Note that in the small momentum limit p → 0 we obtain again the solu-

tions (6.19) for a particle at rest.

6.6 Invariance of the Dirac Equation

It is a fundamental belief, held by all physicists, that the important equa-

tions in physics must be invariant, in the sense that equivalent observers

describe exactly the same equation (though in their own coordinate system).

This belief is regarded as so basic and intuitive that in many instances (per-

haps the large majority even) this is rarely even mentioned. The main excep-

tion to this, is in books whose main emphasis lies in the physical application

of group theory (or symmetries). Such groups include groups of transfor-

mations such as Galilean, Lorentz or Poincaré which are necessary for the

description of equivalence between observers.

One explanation for this apparent lack of obvious interest, is that in

many cases invariance is actually almost trivial to establish. The reason for

this is that the unknowns of interest are functions (of space, time or space-

time) whose values are scalars. In such cases the following diagram shows

that invariance is little more than applying the chain rule of differentiation.

O O′

R( or C)

g

φ
φ′

In this diagram we have observers O and O′ whose coordinate frames xµ

and x′ν are connected by a transformation g. The observer O wants to solve

for φ (given in terms of a differential equation, say) while O′ is similarly

interested in solving for the same function, denoted in the primed coordi-

nate system as φ′. Equivalence of the two observers requires that φ=φ′ ◦ g.
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Showing the equivalence of the two differential equations for φ and φ′ usu-

ally amounts to little more than using the chain rule

∂φ

∂xµ
= ∂x′ν

∂xµ
∂φ′

∂x′ν
(6.23)

and noting that
∂x′ν

∂xµ
is given by g.

Equations such as the Klein-Gordon equation and Schrodinger’s equa-

tion are all instances of this case.

But when it comes to the Dirac equation, the situation is complicated by

the fact that spinors are not scalar valued. The appropriate diagram now

looks like this.

R1,3 R1,3

V V

L

ψ ψ′

S(L)

This diagram illustrates the situation where an observer O is looking for a

solution ψ to the Dirac equation and similarly an observer O′ looks for a

corresponding solution ψ′. Both ψ and ψ′ are spinors meaning that they are

functions defined on R1,3 with values in spinor space denoted (temporarily)

by V . L is the Lorentz transformation which relates the two observers and

their coordinate systems xµ, x′ν.

The complication is that now we have to find a map S(L) : V → V to

make this diagram commutative, i.e. such that

S(L)(ψ)=ψ′(L)

and that furthermore with this choice of S(L), ψ′ again satisfies the Dirac

equation.

(Though we do not need this result, it is easy to see that the map L →
S(L) must define a representation of the Lorentz group on V .)

In the conventional setting for the Dirac equation, spinors are 4-dimensional

complex vectors so we must find a representation of the Lorentz group on
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C4. This can be done, though the construction is not obvious since there

is no clear link between the (real) space R1,3 and the (complex) space C4.

For this reason many authors who discuss the invariance of the Dirac equa-

tion, avoid describing this representation and are content with pointing the

reader elsewhere for details.

Finally there is one more point where authors are not unanimous. For

the observers O and O′, the Dirac equation is conventionally written as (with

ħ= c = 1)

iγµ∂µφ−mφ= 0, iγ′
µ
∂µφ

′−mφ′ = 0 (6.24)

Since all observers should be free to choose their Dirac γ matrices indepen-

dently, it might be thought that we should not assume that γ′µ = γµ. How-

ever, all systems of γ matrices are unitarily equivalent, i.e. there is a unitary

matrix U such that

UHγµU = γ′
µ

for all µ.

So we will assume that γ′µ = γµ as U can be absorbed into the definition of

S(L).

As we will now see, in the Clifford algebra setting for the Dirac equation

this extra complication is entirely absent. The reason for this is that Dirac

spinors take values in Cl−(1,3) and any Lorentz transformation L on R1,3

naturally induces the transformation S(L) on Cl−(1,3) as follows. Since L

can be written in the form

Lx = gxg−1, g ∈ M2(H)

(see chapter 2), we can choose S(L)= g (by which we mean left multiplication

by g). The diagram now becomes

R1,3 R1,3

Cl−(1,3) Cl−(1,3)

L

ψ ψ′

g

We can now verify that the Dirac equation is the same for both observers,

i.e. we now show that if
(
e0

∂ψ

∂x0
− e1

∂ψ

∂x1
− e2

∂ψ

∂x2
− e3

∂ψ

∂x3

)
+mψu = 0 (6.25)
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then (
e0

∂ψ′

∂x′0
− e1

∂ψ′

∂x′1
− e2

∂ψ′

∂x′2
− e3

∂ψ′

∂x′3

)
+mψ′u = 0 (6.26)

(Note that in equation (6.26) we do not need a different u′ because we can

use the same basis vectors eµ for each observer as discussed above.)

Because there are two sets of indices, xµ and x′ν, we will show this in

some detail.

Start with equation (6.25). Write x′ = Lx. Multiplying by g gives

−mgψu =
(
ge0 g−1

)(∂gψ

∂x0

)
−

(
ge1 g−1

)(∂gψ

∂x1

)
−·· ·

or −mψ′(x′)u = Le0
∂ψ′

∂x0
−Le1

∂ψ′

∂x1
−·· ·

since (gψ)(x)=ψ′(Lx)=ψ′(x′).

From the chain rule

∂ψ′

∂xµ
=

∑
ν

∂x′ν

∂xµ
∂ψ′

∂x′ν
=

∑
ν

Lνµ
∂ψ′

∂x′ν

so that

−mψ′(x′)u = Le0

∑
ν

Lν0
∂ψ′

∂x′ν
−Le1

∑
ν

Lν1
∂ψ′

∂x′ν
−·· ·

=
∑
ν

(Lν0Le0 −Lν1Le1 −·· · )
∂ψ′

∂x′ν
.

Comparing this with equation (6.26), we see that we need to show that

L00Le0 −L01Le1 −·· · = e0

and for i = 1,2,3 that

L i0Le0 −L i1Le1 −·· · =−e i.

Writing Leν as a column vector, this is the same as showing that

[Le0 |Le1 |Le2 |Le3]




L00 L01 · · · · · ·
−L01 −L11 · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·


= [ e0 | − e1 | − e2 | − e3]
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or more compactly, writing η=




1

−1

−1

−1


 for the Minkowski metric

LηLT = η

and this result holds because LT is also a Lorentz transformation.

6.7 The prediction of Dirac antiparticles

The classical Dirac equation describes both particles and antiparticles. We

see this in the example of a particle at rest, where we have both positive

energy (e−imt) and negative energy (e+imt) solutions. Negative energy par-

ticles, initially regarded as an embarrassment, were brilliantly interpreted

by Dirac as positive energy, anti-particles.

The Clifford algebra approach gives a different perspective to this idea.

When we go from −umt to +umt, it is not m that changes to −m but u that

changes sign. Geometrically, u represents an oriented plane in which case

−u represents the same plane but with opposite orientation. One choice (ar-

bitrary no doubt) represents a particle and the other, its anti-particle. There

is no need to introduce the idea of negative energy which is confusing at best.

Suppose for example, that we have a solution ψ of the Dirac equation

dψ+mψu = 0. Then recalling that d(ψe)=−(dψ)e, we have

d(ψe)=−(dψ)e =−(−mψu)e

= mψue = m(ψe)u

or

d(ψe)+m(ψe)(−u)= 0

so that ψe is a solution of the Dirac equation where u has been replaced by

−u.

One interpretation then, is that the map ψ→ ψe might be seen to con-

vert particles to anti-particles in the conventional setting. (See e.g. Ryder
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[3], chapter 11.2.) It would be interesting to follow this up although there

are some problems with this idea. Still it’s a good example of how Clifford

algebra brings up some questions very naturally.

6.8 The particle probability density function

Recall that from the classical Dirac equation

γµ∂µψ+ imψ= 0

we can define a “current” vector

jµ =ψγµψ

such that the conservation law

∂µ jµ = 0

holds. In particular

j0 = |ψ0|2 +|ψ1|2 +|ψ2|2 +|ψ3|2

is positive and serves as the probability density for the particle in question.

We will now derive a corresponding current vector and conservation law.

This will be expressed in a way which invites comparison with the electro-

magnetic energy conservation law which results from Maxwell’s equations.

Recall that this conservation law can be written (in the source-free case)

as
∂

∂t

(
E2 +B2

2

)
+div (E×B)= 0

with
E2 +B2

2
the electromagnetic energy density and E×B the electromag-

netic flux (Poynting’s vector).

Return now to the Dirac equation

dψ+mψu = 0, ψ=
[
ξ

η

]
.
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Then multiplying throughout by ψ̃ (recall that ψ̃ is the reversion of ψ as

defined in chapter 1)

ψ̃dψ+mψ̃ψu = 0.

Now ψ̃ψ is even, invariant under reversion and therefore has no bivector

part (i.e. has scalar and pseudoscalar components only). Consequently ψ̃ψu

is a pure bivectors so that Rl
(
mψ̃ψu

)
= 0, and therefore

Rl
(
ψ̃dψ

)
= 0.

Since ψ= ξ+ηe, (ξ, η ∈ M = Cl−(0,3)),

ψ̃= ξ̃+ ẽη̃= ξ̃+ eη̃= ξ̃− η̃e.

Then

ψ̃dψ= (ξ̃− η̃e)
(
∂0(ξ−ηe)− e23∂1(η+ξe)− e31∂2(η+ξe)− e12∂3(η+ξe)

)

= (ξ̃∂0ξ+ η̃∂0η)

+ (η̃∂0ξ− ξ̃∂0η)e

+ (η̃e23∂1ξ− ξ̃e23∂1η)+ cyclic terms

− (ξ̃e23∂1ξ+ η̃e23∂1η)e− cyclic terms.

The second and fourth terms have no real parts so that

Rl
(
ψ̃dψ

)
=Rl

(
(ξ̃∂0ξ+ η̃∂0η)+ (η̃e23∂1ξ− ξ̃e23∂1η)+ cyclic terms

)
.

Now write

ξ= ξ0e123 +ξ1e1 +ξ2e2 +ξ3e3 = ξ0e123 +ξ

so that

ξ̃=−ξ0e123 +ξ1e1 +ξ2e2 +ξ3e3 =−ξ0e123 +ξ

and similarly for η. Then after a little algebra we obtain

Rl
(
ψ̃dψ

)
=−

(
∂0

(‖ξ‖2 +‖η‖2

2

)
+div

(
ξ×η+η0ξ−ξ0η

))

where ‖ξ‖2 = ξ2
0 +ξ2

1 +ξ2
2 +ξ2

3 and similarly for ‖η‖2.

151



So we have the conservation law for the Dirac equation in a form remi-

niscent of Maxwell’s energy conservation law

∂0

(‖ξ‖2 +‖η‖2

2

)
+div

(
ξ×η+η0ξ−ξ0η

)
= 0.

This also illustrates that the term ‖ξ‖2 +‖η‖2 corresponds to j0 = |ψ0|2 +
|ψ1|2 +|ψ2|2 +|ψ3|2 in the usual formulation.

As in the case of the energy conservation law for Maxwell’s equations, we

can ask whether the Dirac equation can be re-obtained from the conservation

law

ψ̃dψ+mψ̃ψu = 0

which is equivalent to asking whether left multiplication by ψ̃ is invertible.

Again we explore this idea using the representation of Cl(1,3) as 2×2 quater-

nion matrices, given in chapter 1 (equations (1.9) - (1.15)).

This representation gives the quaternion matrices

ξ̃=−ξ0e123 +ξ1e1 +ξ2e2 +ξ3e3 =
[

0 q1

q1 0

]

where q1 = ξ0 +ξ1i+ξ2 j+ξ3k.

Similarly

η̃e =
[

q2 0

0 −q2

]

where q2 = η0+η1i+η2 j+η3k.

So the question becomes whether the matrix

X =
[

q2 q1

q1 −q2

]

is invertible. (At this stage, the reader should compare the problem with the

corresponding one for Maxwell’s equations. The similarity is striking.)
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Assume that X is singular, i.e. not invertible. There are two case.

Case 1: q2 = 0. Then X =
[

0 q1

q1 0

]
and if q1 6= 0, we have

X−1 =
[

0 q−1
1

q−1
1 0

]
which contradicts the assumption that X is singular.

So q1 = 0 which means that ψ= 0.

Since we may assume that ψ 6= 0, case 1 cannot occur.

Case 2: q2 6= 0. Recall (see chapter 5.3) that if

X =
[

A B

C D

]

with A invertible, then X is invertible iff D−CA−1B is invertible.

So here X is singular iff q2+ q1q−1
2 q1 = 0.

This condition is equivalent to the requirement that (q−1
1 q2)2 =−1, which

means that

q−1
1 q2 = p

for some unit, pure quaternion p. From this we deduce that ‖q1‖ = ‖q2‖
which we may also assume by normalization, to be 1. Likewise we also have

Rl(q̃1q2) = 0. In terms now of ξ and η we can summarize this argument by

saying the following.

Let ψ =
[
ξ

η

]
. The operation of left multiplication by ψ̃ is not invertible

precisely when

‖ξ‖ = ‖η‖ and ξ⊥ η.

So we have another striking similarity (the first was the energy conservation

law) between the Dirac field and the electromagnetic one. In electromag-

netism, the field tensor F = (E, B) is null if E2 = B2 and E ·B = 0. Similarly

in the Dirac field we can call a Dirac spinor ψ =
[
ξ

η

]
null if ‖ξ‖ = ‖η‖ and

ξ ⊥ η. Clearly this condition is Lorentz invariant, i.e. all observers will

agree on whether the field is null or not.
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6.9 The massless case - Weyl equations

Consider the Dirac equation with m = 0. We look for solutions correspond-

ing to Weyl spinors in C2, i.e. with four real degrees of freedom. As we will

see, these solutions are in the Pauli space M = Cl−(0,3) and describe Weyl

fermions with different “handedness”.

We start with the equation

dψ= 0 (6.27)

where ψ= ξ+ηe, ξ, η ∈ M. Note that u no longer appears in the equation.

Then

0= ∂0

[
ξ

−η

]
− (e23∂1 − e31∂2− e12∂3)

[
η

ξ

]
.

Define ∂s (the space derivative) to be

∂s = e23∂1 + e31∂2 + e12∂3

so that

∂0ξ−∂sη= 0 (6.28)

∂0η+∂sξ= 0. (6.29)

Let u be a unit pure quaternion (but note that u is no longer connected

to the Dirac equation - u is chosen by the observer) and define the operators

∂± by

∂±φ= ∂0φ±∂sφu.

Let

ψ+ = ξ+ηu, ψ− = ξ−ηu.

Then it follows from (6.28), (6.29) that

∂+ψ+ = ∂0(ξ+ηu)+∂s(ξ+ηu)u

= (∂0ξ−∂sη)+ (∂0η+∂sξ)u

= 0
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and similarly

∂−ψ− = ∂0(ξ−ηu)−∂s(ξ−ηu)u

= (∂0ξ−∂sη)− (∂0η+∂sξ)u

= 0.

We can call these equations,

∂+ψ+ = 0, ∂−ψ− = 0 (6.30)

the Weyl equations and ψ± the corresponding Weyl spinor solutions. Note

that ψ± ∈ M. They behave like Pauli spinors.

Note: 1. u is an arbitrary, pure, unit quaternion. It doesn’t (at this stage)

need to be related to u in the Dirac equation (which in any case doesn’t ap-

pear in the Dirac equation when m = 0.)

2. Under the map u → ũ =−u, the Weyl spinors ψ± are exchanged.

3. Consider the first Weyl equation ∂+ψ+ = 0. If we give the (energy -

momentum operator) interpretation

p0 = u∂0, pi =−u∂i, i = 1,2,3

the Weyl equation becomes

(p0 − p1e23 −·· · )ψ+ = 0

which means that ψ+ can be interpreted as a right handed spinor (see Ryder,

[3], equation 2.95). Similarly ψ− is a left handed spinor.

Exercise 6.4 The derivation of the Weyl equations (6.24) and (6.25) can be

generalized to the general Dirac equation and gives the so-called Weyl form

of the Dirac equation.

∂+ψ+ =−mψ−u (6.31)

∂−ψ− =−mψ−u (6.32)

so that ψ+ and ψ− are coupled only through their mass terms.
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6.9.1 Plane wave solutions of the Weyl equations

Consider the massless Dirac (or Weyl) equation dψ= 0. We look for solutions

of the form

ψ(x)=ψ0 f (k0x0 −k1x1 −k2x2−k3x3) (6.33)

with ψ0 a constant (Dirac) spinor.

Since ✷φ= 0, we must have k2 = k2
0−k2

1−k2
2−k2

3 = 0

i.e. k = k0e0 +k1e1 +k2e2 +k3e3 is a null vector.

Choose u, a unit, pure quaternion (again different observers will choose

u differently). Let us look for basic solutions of the form

ψ(x)=
[
ξ0

η0

]
exp−u(k0x0−k1x1−k2x2−k3x3)

with k2 = 0. A short calculation gives

0= dψ=
[
ξ0

−η0

]
(−k0)exp−u(k0x0−k1x1−k2x2−k3x3)

− e23

[
η0

ξ0

]
(k1)exp−u(k0x0−k1x1−k2x2−k3x3)−·· ·

which leads to the equations

k0ξ0 + (k1e23 +·· · )η0 = 0 (6.34)

k0η0− (k1e23 +·· · )ξ0 = 0 (6.35)

(though these equations are not independent since k is null).

Writing p = k1e23 + k2e31 + k3e12, a pure quaternion, gives (after a sim-

plifying normalisation)

ψ(x)=
[
k0ξ0

pξ0

]
exp−u(k0x0−k1x1−k2x2−k3x3) (6.36)

= (k0− pe)ξ0 exp−u(k0x0−k1x1−k2x2−k3x3) (6.37)

where ξ0 is an arbitrary constant odd vector in M.
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Note that for a fixed k, the solutions are determined by a real 4-dimensional

subspace (k0 + pe)ξ0 with ξ0 ∈ M. So Weyl spinors, like Pauli spinors, are

determined by the 4-dimensional space M = Cl−(0,3) (in the conventional

treatment, this is C2).

From (6.30), we find that the corresponding solutions of the Weyl equa-

tions are

ψ±(x)= (k0ξ0 ± pξ0u)exp−u(k0x0−k1x1−k2x2−k3x3) . (6.38)

These Weyl spinors are in the Pauli spin space M = Cl−(0,3).

6.10 The Dirac Lagrangian

Let us begin by recalling the Dirac Lagrangian in the conventional treat-

ment of the Dirac equation given as (see e.g. [4], chapter 10.2)

γµ∂µψ+ imψ= 0.

The Lagrangian is defined to be

L =ψ
(
γµ∂µψ+ imψ

)
(6.39)

where ψ, ψ are treated as independent field variables. We then obtain triv-

ially,
∂L

∂(∂µψ)
= 0,

∂L

∂ψ
= γµ∂µψ+ imψ.

Applying the Euler-Lagrange equation (to ψ), i.e.

∂µ

(
∂L

∂(∂µψ)

)
= ∂L

∂ψ

gives

γµ∂µψ+ imψ= 0

i.e. the Dirac equation.

All this is rather trivial (and hardly seems worth the effort of defining the

Lagrangian) except that, applying the Euler-Lagrange equation to ψ gives

the adjoint Dirac equation which in conventional form, is

∂µψγµ− imψ= 0.

157



In Clifford terms we can define the Dirac Lagrangian as

L = (dψ+mψu)ψ̃. (6.40)

(Note that there is no guarantee that L is real-valued. All we can say is that

it is an even element in Cl+(1,3). Of course (6.39) also defines, in general, a

complex Lagrangian so this may not be an important issue.)

The order of the terms in (6.40) is important as these may not commute

(we will see shortly why we chose this particular order). As above, we regard

ψ and ψ̃ as independent variables.

Applying the Euler-Lagrange equation to ψ̃, in the form we used in (5.55)

in the case of Maxwell’s equations,

d

(
∂L

∂(dψ̃)

)
= ∂L

∂ψ̃
(6.41)

gives

0= dψ+mψu

i.e. the Dirac equation as expected.

6.10.1 Gauge invariance of the Lagrangian

Consider the global phase transformation

ψ→ψ′ =ψe−θu (6.42)

where θ is a real constant. Then dψ′ = (dψ)e−θu and defining the trans-

formed Lagrangian as

L′ = (dψ′+mψ′u)ψ̃′

we find

L′ =
(
(dψ)e−θu +mψe−θuu

)
e+θuψ̃= L. (6.43)

So L is invariant under this (global) phase transform.

(It is here that we see why the order of terms in (6.40) was important.)
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Now consider local phase transformations

ψ′ =ψe−θ(x)u, x ∈ R1,3.

Let us first look at the conventional way a local phase transformation intro-

duces an extra field if we want the Lagrangian to remain invariant. We will

follow the treatment given by Griffiths, ([4], chapter 10.3).

Here the local gauge transformation on ψ is

ψ′ =ψe−iθ(x), x ∈ R1,3

which after differentiating, gives

∂µψ
′ = ∂µ(ψe−iθ)= e−iθ∂µψ− i(∂µθ)e−iθψ (6.44)

and this extra term means that the Dirac Lagrangian (defined in (6.39))

changes since

L → L′ =ψ′ (γµ∂µψ
′+ imψ′)

= eiθψ
(
γµe−iθ∂µψ− ie−iθγµ(∂µθ)+ ime−iθψ

)

=ψ
(
γµ∂µψ+ imψ− iγµ(∂µθ)ψ

)

= L− iψγµ(∂µθ)ψ.

So a problem arises if we require that L should be invariant under a local

phase transformation. To obtain invariance we need to add an extra term

to L. This leads to the introduction of the 1-vector A = (Aµ) and a new

Lagrangian

L =ψ
(
γµ∂µψ+ imψ

)
− iq(ψγµψ)Aµ (6.45)

where Aµ is the necessary new field and changes under the local phase trans-

formation to

A′
µ = Aµ−

1

q
∂µθ. (6.46)

However even this Lagrangian doesn’t quite suffice since having to include

(Aµ) it must also include a ‘free’ term for (Aµ) itself. This leads to the com-

plete Lagrangian

L =ψ
(
γµ∂µψ+ imψ

)
− i

(
q(ψγµψ)Aµ+

1

4
FµνFµν

)
(6.47)
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where as for Maxwell’s equations, Fµν = ∂µAν−∂νAµ.

How do we see all this in Clifford algebra terms?

From equation (6.40), we start with L = (dψ+ mψu)ψ̃. Then putting

ψ′ =ψe−θ(x)u, we first need to calculate dψ′. We will show this in detail as it

is not obvious at first sight what dθ should be (as it has to be in matrix form).

Write

ψ=
[
ξ

η

]
, so that ψ′ =

[
ξe−θu

ηe−θu

]
.

Then

dψ′ = e0∂0ψ
′− e1∂1ψ

′−·· ·

= ∂0

[
ξe−θu

−ηe−θu

]
− i∂1

[
ηe−θu

ξe−θu

]
−·· ·

=
[
∂0ξ

−∂0η

]
e−θu +

[
ξe−θu(−∂0θ)u

−ηe−θu(−∂0θ)u

]

− i

[
∂1η

∂1ξ

]
e−θu −·· ·− i

[
ηe−θu(−∂1θ)u

ξe−θu(−∂1θ)u

]
−·· ·

=
[
∂0ξ− i∂1η−·· ·
−∂0η− i∂1ξ−·· ·

]
e−θu

+
[
ξ

−η

]
(−∂0θ)e−θu u− i

[
η

ξ

]
(−∂1θ)e−θu u−·· ·

= (dψ)e−θu −∂0θ

[
ξ

−η

]
ue−θu + i∂1θ

[
η

ξ

]
ue−θu −·· ·

= (dψ)e−θu −
[

∂0θ −i∂1θ−·· ·
−i∂1θ−·· · −∂0θ

][
ξ

η

]
u e−θu

= (dψ)e−θu − (dθ)ψu e−θu

where we have defined dθ to be the 2×2 matrix

dθ =
[

∂0θ −i∂1θ−·· ·
−i∂1θ−·· · −∂0θ

]
.

(It is important to get the order of terms right here!)
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Note that dθ is a 1-vector, expressed as a 2×2 matrix according to the

representation we are using for Cl(1,3).

How does the Lagrangian defined by (6.40) change?

L′ = (dψ′+mψ′u)ψ̃′

=
(
(dψ)e−θu − (dθ)ψue−θu +mψue−θu

)
eθuψ̃

=
(
dψ− (dθ)ψu+mψu

)
ψ̃

= L− (dθ)ψuψ̃.

So again, to obtain invariance, we need to introduce a 1-vector A and a new

Lagrangian

L = (dψ+mψu− qAψu)ψ̃ (6.48)

where under the local phase transformation,

A → A′ = A− 1

q
dθ.

With this new Lagrangian (6.48), we find

L′ = (dψ′+mψ′u− qA′ψ′u)ψ̃′

=
(
dψ′+mψ′u

)
ψ̃′− qA′ψ′uψ̃′

=
(
dψ− (dθ)ψu+mψu

)
ψ̃− qA′ψ′uψ̃′

=
(
dψ− (dθ)ψu+mψu

)
ψ̃− q(A− 1

q
dθ)ψe−θuueθuψ̃

=
(
dψ− (dθ)ψu+mψu

)
ψ̃− qAψuψ̃+ (dθ)ψuψ̃

=
(
dψ+mψu− qAψu

)
ψ̃

= L.

So L as in (6.48) is now invariant.

As in the usual treatment, we also want L to include a ‘free’ term for A.

This leads to the complete Dirac-Maxwell Lagrangian

L = LDM = (dψ+mψ− qAψu)ψ̃− u

2
(dA)2. (6.49)
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Exercise 6.5 Following the convention treatment, define the covariant deriva-

tive

Dψ= dψ− qAψu (6.50)

and the transformed derivative,

D′ψ′ = dψ′− qA′ψ′u. (6.51)

Show that

D′ψ′ = (D′ψ)e−θu.
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Chapter 7

Selected topics

In this chapter we look in more detail at three examples which are of basic

importance in physics and where the geometry of Clifford algebras might

well be thought to give a helpful hand in understanding their role and how

they might best be regarded.

The first consists of the Stern-Gerlach experiment. This experiment

which is conceptually quite simple to describe, has no classical counterpart,

and so is regarded as of fundamental importance in showing why classical

mechanics has to give way to quantum mechanics. Some authors (such as

Sakurai) treat this experimental result as leading to an irremedial breach

with classical mechanics and for that reason, analyse the ideas involved in

detail. They are then led to the conclusion that complex vector spaces are

necessary for its description. It is this last point especially which we will

consider here.

The second example concerns the problem of the choice of signature met-

ric, i.e. the choice of which Clifford algebra, Cl(1,3) or Cl(3,1), one should

use. The algebras are not isomorphic and this is relevant as their Pin group

are also non-isomorphic. However in many (if not most) applications, it is

only their even sub-algebras which are used and these are isomorphic (which

means that the Spin groups are also isomorphic). So the difference is prob-

ably minor and this explains why most physicists would say that the choice

of metric is unimportant. Mathematicians, wedded to the differing algebraic

properties of the two algebras would disagree.
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In this section we will show that if we take a more restricted view, the

actions of the algebras are the same. In this view, we do not consider the

whole algebras but only the actions of the even parts on the space of odd

elements. We argue (perhaps not totally convincingly) that when it comes to

applications in physics, this is all that is needed.

Whether or not this view is justified is really a matter of applications in

physics. So the jury is still out.

The third example concerns the group SU(3). Unlike SU(2) which is iso-

morphic to Spin(3) and which therefore can be described via the Clifford al-

gebra Cl(0,3), SU(3) does not arise naturally in any Clifford algebra. Since

it is a group of fundamental importance in elementary particle physics - it is

central to the Standard Model - it would be interesting, to say the least, to

find a geometric setting for the group.

Fortunately, the larger group SU(4) does have a nice Clifford algebra

setting. This is because SU(4) is isomorphic to Spin(6) and therefore can be

described by Cl(0,6). It would seem that the underlying space R6 is too high

a dimensional space for much geometry to peep through, but the analysis of

SU(4) as Spin(6) shows that in this context, R6 splits naturally as R3 ⊕
R3

and now we have more hope of geometric results.

In this section we look at the isomorphism between SU(4) and Spin(6).

This treatment is fairly standard (though some authors do a good job in hid-

ing the geometric ideas involved). SU(3) can then be obtained by fixing a

basis vector in C4 and the problem then becomes one of characterising the

corresponding subgroup of Spin(6). Once this is done, it is useful to see how

the Gell-Mann matrices (which generate SU(3)) look geometrically.

Finally we look at the commutation relations for the Poisson product in

R3. Phase space on R3 is R3 ⊕
R3 and again we see how R6 is better re-

garded in this context, as R3 ⊕
R3.
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7.1 The Stern-Gerlach experiment

7.1.1 Introduction

The Stern-Gerlach experiment is often given as a basic argument why com-

plex vector spaces are necessary to describe spin, and so quantum mechan-

ics generally (see e.g. [1]). The idea in this section will be to replace the

standard 2-dimensional complex space C2 with the 4-dimensional real space

Cl−(0,3) with the usual basis e1, e2, e3, e123. The rationale is, that with a

real vector space, the ideas behind the Stern-Gerlach experiment will have

a clearer geometric meaning.

Instead of describing the experiment using Pauli spinors and spin ma-

trices, we will look at a way of presenting the underlying ideas of the ex-

periment using the spin 1
2

representation of the group of unit quaternions,

H1 rather than the more conventional group SU(2)1. The Pauli matrices are

replaced by elements of Cl+(0,3) while the eigenstates (conventionally given

as two-component complex vectors) become two-dimensional real subspaces

of Cl−(0.3).

7.1.2 The conventional mathematical treatment

Let us briefly recall the mathematical ideas involved, as they are usually

given. A system such as a silver atom, in the presence of an inhomogeneous

magnetic field (e.g. in the z-direction) falls into one of two spin states. Fol-

lowing Sakurai’s notation, these are written as |Sz;+> and |Sz;−>. A sim-

ilar notation holds for fields in the x- and y-directions. Since (pure) states

such as these are usually expressed as unit vectors in some space, the prob-

lem is to obtain vector space expressions for these states in such a way that

the transition probabilities between states φ, ψ are correctly obtained as

| < φ,ψ > |2. If we start with the two possible states |Sz;+ > and |Sz;− >

which we may write more simply as

[
1

0

]
and

[
1

0

]
respectively, then Saku-

rai shows rigorously that the vector space cannot be R2 as it is not large

enough to also contain the states given by the x and y directions. However

the space may be taken to be C2 in which case these other states can then

be described. So (the argument goes), complex vector spaces are necessary

1Recall that H1 is contained in Cl+(0,3) and is generated by 1, i = e23, j=e31, k=e12.
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for a description of spin 1
2

systems.

But, as we have already seen above, spin 1
2

can be described more ge-

ometrically using the Clifford algebra Cl(0,3). So our aim here will be to

show that the results of the Stern-Gerlach experiment can also be described

in terms of this real algebra. Before we do that however, we need to look a

little closer at how we represent states and (spin) operators.

States such as eigenstates of an operator are typically represented by

unit vectors in some complex vector space. Since a complex multiple (of

modulus 1) of this vector represents the same state, we may replace this

state vector by the one-dimensional subspace it generates or better still, by

the projection onto that subspace. This approach (carefully presented by

Jauch [2]) has the advantage that it allows us to describe mixed states as

density operators, i.e by operators W of the form2

Wx =
∑

j

p j 〈ψ j, x〉ψ j (7.1)

or

W =
∑

j

p j ψ j ψ
T
j (7.2)

where p j ≥ 0,
∑

j p j = 1 and
(
ψ j

)
is an orthonormal set of vectors (written as

column vectors). W is a pure state when W =ψψT for some (unit) vector ψ

or alternately when W is a 1-dimensional projection.

If a system is in state W as above and A is an observable (i.e. a Hermitian

operator) then the expected (average) value of measuring A is

〈A〉 =
∑

j

p j 〈ψ j, Aψ j〉 = trace (W A). (7.3)

2At least for the finite dimensional case. The more general case is slightly more compli-

cated.
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7.1.3 An unconventional mathematical treatment

For our purposes we can identify C2 with Cl−(0,3) ≡ R4 via the following

map

C2 ↔ R4,

[
x+ i y

z+ it

]
↔ xe1 + ye2 + ze3 + te123. (7.4)

Consider now the state |Sz;+ > which is usually represented in C2 by the

vector

[
1

0

]
(here ‘usually’ means ‘as in Sakurai’s book’.) Since states are

unchanged when multiplied by a unit vector

[
1

0

]
≡

[
eiθ

0

]
(7.5)

↔ cosθe1 +sinθe2. (7.6)

So |Sz;+> can be represented by a unit circle in the e1, e2 plane or better, by

the projection P<e1,e2> operator onto the plane.

Similarly the state |Sz;−> can be represented by the projection P<e1,e123>
operator onto the e1, e123 plane.

What about states in other coordinate directions?

Consider as another example |Sx;+> usually represented as

[
1p
2

1p
2

]
. The

above ideas lead to the representation of this state as the projection onto the

2-dimensional subspace spanned by
e1+e3p

2
,

e2+e123p
2

. Similarly

|Sx;−>≡Proj onto {
e1 − e3p

2
,
e2 − e123p

2
} (7.7)

and finally

|Sy;±>=
[

1p
2

± ip
2

]
≡Proj onto {

e2 ∓ e3p
2

,
e1 ± e123p

2
}. (7.8)

In general if we have the state S =
[
a+ ib

c+ id

]
with a2+b2+ c2+d2 = 1, then S

167



corresponds to the projection onto the subspace spanned by f1, f2 where

f1 = ae1 +be2 + ce3 +de123, (7.9)

f2 =−be1 +ae2 −de3 + ce123. (7.10)

(Clearly f1, f2 form an orthonormal pair.)

The matrix form for this general projection is easily found to be

P =




a2 +b2 0 ac+bd ad−bc

0 a2 +b2 bc−ad ac+bd

ac+bd bc−ad c2 +d2 0

ad−bc ac+bd 0 c2 +d2


 . (7.11)

Note (as a check) that the trace of P is 2 which is to be expected as P

projects onto a 2-dimensional subspace.

As a special case, consider the state conventionally written as

[
cosα

sinα

]
= cosα|SZ;+>+sinα|SZ;−> (7.12)

which corresponds in the Stern-Gerlach experiment to a polarizer placed at

an angle α to the positive z direction. The corresponding subspace has a

basis

cosαe1 +sinαe3,cosαe2 +sinαe123. (7.13)

(We will use this result later).

So generally if the system is in a state such as |Sz;+> then this complex

vector (i.e. 1-dimensional subspace in C2) corresponds to a 2-dimensional

subspace in Cl−(0,3). Note that if P is the projection onto the subspace, the

associated state is W = P

2
.

The problem is now the following. Suppose that the system is in a certain

state W ( e.g. it might be in state |Sz;+ >). Perform the experiment again,

(e.g. change the field to the x direction). Let this new state correspond to a

projection Q on Cl−(0,3). We then have to calculate trace (WQ) and verify

that it gives the correct value for the transition probability.
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To keep the notation simple, so as to have the ideas more firmly in mind,

let us consider first how we would calculate the probability of the transition

|Sz;+> to |Sx;+>).

In this case, the system is originally in the state

W = 1

2
P{e1,e2} =

1

2




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




and the projection Q corresponding to the new state |Sx;+>) is the pro-

jection onto the subspace spanned by
e1+e3p

2
,

e2+e123p
2

. An easy exercise shows

that

Q = 1

2




1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


 .

As a check, note that trace (WQ)= 1

2
as expected.

The general case is not much harder though tedious to calculate. Start

with an initial state φ in C2 and a final state ψ. Write

φ=
[
a+ ib

c+ id

]
, ψ=

[
x+ i y

z+ it

]
(7.14)

and use equation (7.11) to define the two corresponding projections P and Q.

Again let the initial state be W = 1
2
P. We can calculate trace (WQ).

Exercise 7.1 Verify that this is the same as | <φ,ψ> |2.

So this ‘real space’ setting for the Stern-Gerlach experiment is obtained

by substituting R4 for C2 and then using Cl−(0,3) to represent R4. I.e. the

setting is obtained to some extent using the Clifford algebra Cl(0,3). But

actually, few of the algebra properties are used; in fact the only one is the

existence of the basis e1, e2, e3, e123 for Cl−(0,3).
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A better approach is the following. Again start with an initial state φ in

C2 which corresponds to a projection P on a two-dimensional subspace M of

Cl−(0,3). Define

R = 2P − I

so that R is the reflection corresponding to the subspace M. This means that

Rx =
{

x, x ∈ M,

−x, x ∈ M⊥.
(7.15)

Note that R2 = I.

We can also regard R as a rotation through an angle π in the plane M⊥.

We have seen3 that a rotation R can be written in terms of left and right

mulitplication by quaternions as

Rx = q1xq̃2

where x ∈ Cl−(0,3) and q1, q2 are unit quaternions. (q̃ is the conjugate of q).

What are q1 and q2?

Since R2 = I we have q2
i
=±1, i = 1,2. The cases q2

i
= 1 can be ruled out

since these cases do not give (non-trivial) rotations in a plane. So qi must be

pure and to emphasize that we write

Rx = p1xp̃2, (p1, p2 unit, pure quaternions) (7.16)

So now we have to find p1 and p2.

Choose an orthonormal basis u1,u2 for M. Here, because we are dealing

with rotations in R4, we use the Euclidean inner-product4

〈u,v〉 = u0v0 +u1v1 +u2v2 +u3v3 (7.17)

where u = u1e1 +u2e2 +u3e3 +u0e123 ∈ Cl−(0,3) and similarly for v. Alter-

nately we can write

〈u,v〉 =−Rl(ũv). (7.18)

3See chapter 2.5.3
4For simplicity we have chosen a positive-definite inner-product. This is just the negative

of the inner-product inherited on Cl(0,3).
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Consider first the action of R on M.

Since Ru1 = u1 and Ru2 = u2 we obtain

u1 = p1u1 p̃2 or p2 = u−1
1 p1u1. (7.19)

Similarly for u2,

u2 = p1u2 p̃2 or p2 = u−1
2 p1u2. (7.20)

Combining these equations gives

p2 = u−1
1 p1u1 = u−1

2 p1u2 (7.21)

i.e.

p1 =
(
u1u−1

2

)
p1

(
u1u−1

2

)−1
(7.22)

and so

p1

(
u1u−1

2

)
=

(
u1u−1

2

)
p1. (7.23)

Since u1u−1
2 = −u1ũ2 and has no real part (as u1, u2 are orthogonal), then

u1u−1
2 is pure and because u1 and u2 are orthonormal, then u1u−1

2 is a pure

unit quaternion. Since it commutes with p1 (itself a pure unit quaternion)

then we have

p1 =±u1ũ2 (7.24)

which gives p1 in terms of the basis vectors of M. The choice of sign is unim-

portant as it can be absorbed into the p2 term for R and so we can choose

p1 = u1ũ2.

We can now find p2. From (7.21),

p2 = u−1
1 p1u1 = u−1

1 (u1ũ2)u1 = ũ2u1. (7.25)

To summarize:

Let P be a two-dimensional projection onto M and let u1, u2 be an or-

thonormal basis for M. Put R = 2I − P, the associated reflection. Then

Rx = p1xp̃2 where p1 = u1ũ2 and p2 = u2ũ1.
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Exercise 7.2 Show that if u1, u2 are orthonormal then q = u1u2 is a unit

quaternion.

(Hint: Work with the quaternions qi = ui e123 and the fact that the norm

on the algebra of quaternions is multiplicative.)

Recall that a bivector in R3 of the form p = uv where u, v are vectors in R3,

has the geometric meaning of giving an orientation to the plane determined

by u and v. It is worth noting that this idea extends to planes in Cl−(0,3) in

the following sense.

If M is a plane in Cl−(0,3), there is a unit bivector p associated with M.

p is unique apart from sign which determines an orientation of M.

To find p, choose an orthonormal basis u1, u2 for M as above. Define

p = u1ũ2. Then as we have seen, p is a unit bivector. To show uniqueness

(apart from sign), let v1, v2 be another orthonormal basis for M. Then (in-

terchanging v1 and v2 if necessary) we can write

v1 = cosθu1+sinθu2

v2 =−sinθu1+cosθu2

and a simple calculation shows that v1ṽ2 = u1ũ2. The ambiguity in sign

stems from the fact that we might have to interchange basis elements, i.e.

change the orientation of M.

Note too that we have to be careful about the way we use the basis vec-

tors. Given a basis u, v, then p is the product of u and ṽ. The order of u and

v is not important (though it will change the sign on p as we would expect).

But we cannot take ũv. This would be the bivector associated with the plane

spanned by ũ, ṽ which might well be different from M.

Now we can return to the description of the geometry underlying the

Stern-Gerlach experiment. Start with a subspace M1 spanned by the or-

thonormal basis u1, v1 corresponding in the classical treatment to a vector

φ ∈ C2. Suppose too that we also have a final state which we take to be an-

other two-dimensional subspace M2 corresponding to the state vector ψ ∈ C2.
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Let u2, v2 be an orthonormal basis for M2. Let Pi be the projection onto Mi,

i = 1,2.

Put W = P1

2
for the initial state. The transition probability of ending in

the state corresponding to P2 is then trace (WP2).

Let R1, R2 be the reflections associated with M1 and M2 respectively. We

know that Pi =
I +Ri

2
so that

trace (WP2)= 1

2
Trace

(
I +R1

2

I +R2

2

)
(7.26)

= 1

8
Trace (I +R1 +R2+R1R2) (7.27)

Now Trace (I) = 4 and Trace (Ri) = 0 since Ri being a two-dimensional re-

flection has eigenvalues 1,1,−1,−1. So

trace (WP2)= 1

2
+ 1

8
Trace (R1R2) . (7.28)

Write as before

R1x = p1xp′
1, R2x = p2xp′

2

where

p1 = u1ṽ1, p′
1 = ṽ1u1, p2 = u2ṽ2, p′

2 = ṽ2u2.

Then

R1R2x = q1xq̃2

where

q1 = p1 p2, q2 = p′
1 p′

2

In other words, R1R2 = Lq1
Rq2

where Lq1
is left multiplication by q1 and

similarly Rq2
is right multiplication by q̃2. It is straightforward to show

that

Trace (R1R2)= 4Rl(q1)Rl(q2).

Furthermore if we write q1 = cosθ1+sinθ1 q̂1 for the decomposition of q1 into

its real and pure parts and similarly for q2, we have

Trace (R1R2)= 4Rl(q1)Rl(q2)= 4cosθ1 cosθ2.
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This gives the transition probability as

Trace (WP2)= 1

2
+ 1

8
Trace (R1R2) (7.29)

= 1+cosθ1 cosθ2

2
(7.30)

=
1+cosθM1M2

2
(7.31)

where cosθM1M2
= cosθ1 cosθ2 gives the so-called total angle between the

subspaces M1, M2.

So the transition probability can be neatly expressed as

Trace (WP2)= cos2

(
θM1M2

2

)
. (7.32)

(In general two r−dimensional subspaces in Rn have r principal angles de-

fined through pairs of singular vectors. The product of the cosines of these

angles gives the total angle between the subspaces. See, e.g. [3] for a geo-

metric description of these angles from a Clifford algebra perspective.)
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7.2 On the signature of metrics

7.2.1 Introduction

An interesting question - though realistically it may turn out to be unimpor-

tant - is whether the choice of signature in R3 or R1,3 has any consequences

in physics. This is a matter of some argument though the prevailing thought

(especially among physicists - mathematicians might well disagree) is that

it does not.

However even among physicists this view is not shared universally. The

question has been analysed in depth by Berg et al [4], who claim that in

a neutrinoless double beta decay, the neutrino emitted and reabsorbed in

the course of the interaction can only be described in terms of Pin(3,1) (see

Chapter 3 above for the definition of the Pin groups.)

On the other hand, the choice of signature will have an effect on geome-

try and therefore perhaps on physics. This is due to the connection between

signature and ’handedness’. This was dealt with by Butler and McAven ([5])

with the connection described as follows.

Consider R3 with a negative metric, i.e. consider the Clifford algebra

Cl(0,3). Choose a right-handed orthonormal basis e1 e2, e3. Righthand-

edness implies a certain orientation so that e.g. (e1, e2) → e3 etc. while

(e2, e1)→−e3. Now consider the (axial or bi-) vectors i = e23, j = e31, k = e12.

Note that the order 1 → 2 → 3 described for the e is carries over to i, j,k this

time expressed also by multiplication, e.g. e23e31 = e12. The fact that both

the vectors and bivectors have the same direction or orientation is a direct

consequence of the metric. If instead we choose the positive metric so that

e2
i
=+1 then the vectors and bivectors given above would now have different

orientations.

Exercise 7.3 Show this.

The most appropriate choice of signature in relativistic physics is still

a matter of some argument. The signature of a metric is derived from a

quadratic form on a real vector space and whether we choose the associated
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symmetric matrix to be Q or −Q is a choice which many physicists would re-

gard as unimportant and claim that either choice leads to the same physics,

in the sense that either choice leads to identical predictions.

On the other hand, mathematicians would argue that the Clifford alge-

bras defined by the metrics are non-isomorphic and that this might very well

have physical consequences (as suggested by Berg et al.) In particular, the

two Pin groups are different even if the two Spin groups are isomorphic. Is

it possible that these might lead to different results?

At this stage, it is fair to say that the point is unresolved. What evidence

there is, seems currently to give physicists the upper hand.

As we know, Clifford algebras split into a direct sum of two sub-spaces,

the even vectors Cl+ and the odd vectors Cl−. These spaces seem to play

fundamentally different roles in physics. The first contains operators such

as rotations, boosts, etc while the second contains vector and spinor type

quantities. This means that the elements of Cl+ act on the elements of

Cl− (in the sense e.g. that rotations act on vectors) but that addition of an

even and an odd vector may be physically meaningless. In other words, the

full algebraic operations, while permissible mathematically, may be mean-

ingless physically. If Clifford algebra is to be regarded as underpinning a

physical theory, then concepts which are important in mathematics, should

likewise be important in the physics it wishes to describe. By the same token

(and usually ignored), concepts which are meaningless in the physical the-

ory, should be expunged or at the very least, ignored, in the mathematical

description of the theory.

In particular, if the physical theory does not give a meaning to the sum

of an even vector with an odd vector, then mathematically we should refrain

from any such use. This means that we are not permitted to use the full

algebraic structure of the Clifford algebra.

It is this idea that we pursue here.
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7.2.2 A map between Cl+(p, q) and Cl+(q, p)

(While the only physically important metrics are those of space or space-

time, the general case is no more difficult and saves us the problem of de-

scribing one case or the other.)

As usual, denote by Cl(p, q) the Clifford algebra on Rp+q with an or-

thonormal basis e i satisfying

e2
i =

{
+1, i = 1 . . . p,

−1, i = p+1 . . . p+ q.
(7.33)

Similarly for Cl(q, p) we can choose a basis f i such that

f 2
i =

{
−1, i = 1 . . . p,

+1, i = p+1 . . . p+ q.
(7.34)

Note that with this choice e2
i
=− f 2

i
for all i = 1 . . .n = p+ q.

These choices of basis vectors will make it easier to describe the isomor-

phism between Cl+(p, q) and Cl+(q, p) given below.

Recall that the reversion operator on a Clifford algebra is an anti-automorphism

x → x̃ satisfying x̃ = x for any 1-vector x. It follows from these two properties

that

ẽ i j =−e i j (7.35)

and more generally5 we have for any set A of distinct indices

ẽA =σ(|A|)eA (7.36)

where |A| is the number of elements of A and

σ(n)= (−1)
n(n−1)

2 =
{
+1, n ≡ 0,1 mod 4,

−1, n ≡ 2,3 mod 4.
(7.37)

Using the anti-automorphism property of reversion, we have

eA ẽA =
∏

i∈A

e2
i (7.38)

5See chapter 1.3.1 where the reversion operation is dealt with in more detail.
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and it then follows from (7.36) that for any orthonormal basis e i,

(eA)2 =σ(|A|)
∏

i∈A

e2
i . (7.39)

Now suppose that (e i) and ( f i) are bases for Cl(p, q) and Cl(q, p) respec-

tively satisfying (7.33) and (7.34).

Define U : e i → f i and extend U in the obvious way to the map (still

denoted by U) from Cl(p, q)→ Cl(q, p), U : eA → fA.

Now define π : Cl(p, q)→ Cl(q, p) by

πx = �(Ux). (7.40)

Looking at the basis vectors in Cl(p, q) we see that for 1-vectors π e i = f i,

while for 2-vectors, π e i j = − f i j. More generally (by (7.36)), for any set A of

(distinct) indices

π eA =σ(|A|) fA. (7.41)

In particular if eA ∈ Cl+(p, q), i.e. A has an even number of indices,

π eA = (−1)
|A|
2 fA. (7.42)

We have the following result.

Lemma: If A is a set of distinct indices, then

( fA)2 = (−1)|A| (eA)2 . (7.43)

Proof: From (7.39)

(eA)2 =σ(|A|)
|A|∏

i=1

e2
i

and therefore for ( fA),

( fA)2 =σ(|A|)
|A|∏

i=1

f 2
i

=σ(|A|) (−1)|A|
|A|∏

i=1

e2
i (since f 2

i =−e2
i for each i)

= (−1)|A| (eA)2 .

Now we can derive the required isomorphism.

178



Theorem 7.1 π is an isomorphism between Cl+(p, q) and Cl+(q, p).

Proof: Clearly π is a bijection between Cl+(p, q) and Cl+(q, p). So it

suffices to show that

π eA π eB =π eAB for index sets A and B (necessarily even).

Letting H = A∩B, we can write without loss of generality, eA = eJ eH and

eB = eH eK for disjoint J and K . Then

eA eB = eJ eH eH eK

= (eH)2 eJ eK

so that by (7.42) and noting that |J| + |K | must be even (as |A| and |B| are

even),

π eA eB = (eH)2 (−1)
|J|+|K |

2 fJK . (7.44)

Also (again from (7.42))

π eA = (−1)
|J|+|H|

2 fJH , π eB = (−1)
|H|+|K |

2 fHK

and therefore

π eA π eB = (−1)|H| (−1)
|J|+|K |

2 fJH fHK

= (−1)|H| (−1)
|J|+|K |

2 ( fH)2 fJK

= (−1)|H| (−1)
|J|+|K |

2 (−1)|H| (eH)2 fJK by (7.43)

= (−1)
|J|+|K |

2 (eH)2 fJK =π eA eB.

So reversion has the remarkable property of switching signature. An-

other equally interesting property is given below.

7.2.3 The action of Cl+(p, q) on Cl−(p, q)

Elements of Cl+(p, q) act multiplicatively on Cl−(p, q) via either

ρl
u(x)= ux or ρr

u(x)= xũ (7.45)

where u ∈ Cl+(p, q) and x ∈ Cl−(p, q). The first result we want is that these

two actions are equivalent. What does this mean?
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Suppose in general, a group or algebra G acts on sets X and Y via

x → ρ1
g(x), y→ ρ2

g(y) with g ∈G

(We ignore the axioms required when we talk of an action on a set as these

hold in the cases we consider.) The two actions are called equivalent if there

exists a bijection f : X →Y such that

f
(
ρ1

g(x)
)
= ρ2

g ( f (x))

as in the following diagram

X
ρ1

g−−−−→ X

f

y
y f

Y
ρ2

g−−−−→ Y

More generally still, suppose G1 and G2 are isomorphic with isomor-

phism U : G1 →G2. Suppose that G1 acts on a set X and G2 acts on a set Y .

Then these actions are called equivalent if there exists a bijection f : X →Y

such that

f
(
ρ1

g(x)
)
= ρ2

U g ( f (x)) .

It is easy now to show that the actions of left and right multiplication of

Cl+(p, q) on Cl−(p, q) are equivalent.

For let f : Cl−(p, q) → Cl−(p, q) be the reversion operator, f : x → x̃. If

u ∈ Cl−(p, q), put ρl
u(x)= ux and ρr

u(x)= x ũ. Then

f
(
ρl

u(x)
)
= f (ux)= ũx = x̃ ũ = ρr

u(x̃)= ρr
u ( f (x))

so that the two actions are indeed equivalent.

Finally we can state our main result.

Theorem 7.2 The actions of Cl+(p, q) on Cl−(p, q) and Cl+(q, p) on Cl−(q, p)

are equivalent.
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Proof: (From the result above, it doesn’t matter whether we consider left

or right actions. We will choose left action.)

Let π : Cl+(p, q) → Cl+(q, p) be the map defined in the previous section.

By theorem 1, π is an isomorphism between Cl+(p, q) and Cl+(q, p).

We therefore need to show that for all u ∈Cl+(p, q) and x ∈ Cl−(p, q)

π(ux)= (π(u))(π(x)) (7.46)

or in terms of the left multiplication operator ρl we have to show that the

following diagramme is commutative.

Cl−(p, q)
ρl

u−−−−→ Cl−(p, q)

π

y
yπ

Cl−(q, p)
ρl
πu−−−−→ Cl−(q, p)

It suffices to consider the case u = eA where |A| is even and x = eB where

|B| is odd. Suppose also eA = eJ eH , eB = eH eK where H = A∩B. Then

π(ux)=π(eA eB)

= (eH)2π(eJ eK )

= (−1)|H| ( fH)2π(eJ eK ) (from the lemma above)

= (−1)|H| ( fH)2σ(|JK |) fH fK from (7.41).

Now consider (π(u))(π(x)). We have

π(x)=π(eB)=σ(|B|) fB, by (7.41)

and

π(u)=π(eA)= (−1)
|A|
2 fA by (7.42)

which gives

π(u)π(x)= (−1)
|A|
2 σ(|B|) fA fB (7.47)

= (−1)
|A|
2 fA σ(|B|) fB (7.48)

= (−1)
|A|
2 σ(|B|) ( fH)2 fJ fK . (7.49)
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Comparing these results for π(ux) and π(u)π(x), the proof reduces to showing

that

σ(|JK |)= (−1)
|A|
2 (−1)|H|σ(B). (7.50)

Put

|J
⋃

H| = 2r, since A is even and

|H
⋃

K | = 2s+1, since B is odd.

so that if |K | = t, then |H| = 2s− t+1 and |J| = 2r−2s+ t−1.

We deduce that firstly

σ(|JK |)=σ(2r−2s+2t−1)

= (−1)
(2r−2s+2t−1)(2r−2s+2t−2)

2 by (7.37)

= (−1)(r−s+t−1)

while

(−1)
|A|
2 (−1)|H|σ(B)= (−1)

|A|
2 (−1)|H|σ(B)

= (−1)r(−1)(2s−t+1)(−1)(2s+1)s, since |B| = 2s+1

= (−1)(r+2s−t+1+2s2+s)

= (−1)(r+s−t+1)

=σ(|JK |).

as required.

To summarise this section, if we restrict our view of Clifford algebras to

the actions of Cl+(p, q) on Cl−(p, q), then signature is not important.
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7.3 The geometry of SU(3) and SU(4)

7.3.1 Introduction

Lie groups come in different families and these are characterized by an inte-

ger, called the ‘dimension’ or ‘number of real parameters’. For example, the

family of special unitary groups, SU(n), n = 1,2, . . . is characterized by its

dimension n2 −1. Similarly, spin groups Spin(m), m = 2,3, . . . have dimen-

sion
m(m−1)

2
. It may happen that for two groups in different families, their

dimensions coincide, in which case the natural question arises: ‘are the two

groups isomorphic?’

In may cases the answer will be ‘no’, but sometimes it is ‘yes’ in which

case we often say that the isomorphism is ‘an accident of small dimension’.

When this happens, then since the underlying geometries of the two groups

are quite different, we should not expect that the isomorphism to be a ‘nat-

ural’ one.

The best known example is the case of Spin(3) and SU(2) where the

groups both have dimension 3. (These groups were discussed at length in

chapter 3.) Here the relationship between SU(2) and R3 (on which Spin(3)

operates) is not a natural one. Vectors in R3 have to be identified as 2×2

trace-free, Hermitian matrices (on which matrices in SU(2) can now act) via

(x, y, z) ↔
[

z x− i y

x+ i y −z

]
(7.51)

Although this is a very nice algebraic trick, it is still geometrically unnat-

ural because (for example), it singles out the z component for special favour.6

This lack of a geometrical basis for the isomorphism should act as a warn-

ing that the isomorphism is not a natural one and may be expected to cause

problems in interpretation later. One immediate problem which arises, is

the awkward way rotation (Euler) angles are represented in SU(2).

6Some authors argue that this is not an issue since any component could be chosen.

However it remains the case that one component has to be singled out.
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If instead of meekly submitting to this piece of algebraic trickery we de-

mand a geometrically natural isomorphism, we are irresistibly led to the

conclusion that H1, the group of unit quaternions, should be used instead of

SU(2). This is an excellent example of two groups being isomorphic (alge-

braically the same) but geometrically quite different.

The two groups SU(4) and Spin(6) (the two-fold covering group of SO(6)),

both have dimension 15, and also turn out to be isomorphic. But because

this is an ‘accidental isomorphism of small dimensions’, the connection is

not very obvious and constructions of this isomorphism are often quite tech-

nical and geometrically obscure. Since SU(4) occurs naturally in particle

physics while SO(6) appears when combining space and momentum vectors

(e.g. in describing symmetries in phase space), both areas where geometry

can play a large part, it might be hoped that a more geometric connection

(i.e. construction) might be found. This is the motivation behind this section.

Most authors who have considered ways to construct this isomorphism

begin with the action of SU(4) on C4 and extend it to the 6-dimensional

complex space Λ
2(C4) - the space of all anti-symmetric, bilinear functionals

on C4. This space contains a real 6-dimensional subspace of ‘self-dual’ el-

ements and the action of SU(4) on this subspace is easily shown to be the

same as the action of Spin(6) on R6. This leads to the required isomorphism

and it is the approach we take here.

7.3.2 The exterior algebra 7

Let V be a (complex) vector space (in our case V = C4). An antisymmetric

k-linear map (usually called a k−form) is a function ω : V×·· ·×V → C, which

is linear in each factor and such that

ω(v1, . . . ,vi,vi+1, . . . ,vk)=−ω(v1, . . . ,vi+1,vi, . . . ,vk)

for all vectors v1, . . . ,vk and all i. It follows that ω(v1, . . . ,v,v, . . . ,vk)= 0.

We denote the vector space of k-linear, antisymmetric maps by Λ
k(V ). If

k = 1 then Λ
1(V ) is just the dual space of linear functionals on V .

7We closely follow Göckeler and Schücker [6], where a fuller treatment of these ideas can

be found.
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Suppose that V = Cn and let e1, . . . , en be the standard basis for Cn. Let ω

be a 2−form. Then by linearity, ω is determined by its values on the vectors

(e i, e j) where i < j. It follows that Λ2(V ) has dimension

(
n

2

)
.

Exercise 7.4 Show that generally, Λk(V ) has dimension
(
n
k

)
when k ≤ n (and

0 when k > n).

Let α1 and α2 be linear maps. We define the 2−form α1 ∧α2, called the

wedge product of α1 and α2, by

α1∧α2(v1,v2)=α1(v1)α2(v2)−α1(v2)α2(v1). (7.52)

More generally if ω ∈Λ
p(V ) and ρ ∈Λ

q(V ) we define ω∧ρ ∈Λ
p+q(V ) by

(ω∧ρ)(v1, . . . ,vp+q)= 1

p!q!

∑

π∈Sp+q

sgn(π)ω(vπ(1), . . . ,vπ(p))ρ(vπ(p+1), . . . ,vπ(p+q))

(7.53)

(where Sn is the symmetric group and sgn(π) is the signature of π, i.e.

sgn(π)=±1 according as π is even or odd.)

Exercise 7.5 2−forms can be identified with n×n, anti-symmetric matrices

such that if ω↔ A then ω(x, y)= xT A y.

Show that if α1, α2 are linear maps defined through (column) vectors

a1, a2, then α1 ∧α2 ↔ A = a1T
a2 −a2T

a1.

Assume that dim(V )= n. The direct sum

Λ(V )=
n⊕

k=1

Λ
k(V ) (7.54)

together with the wedge product, is an associative algebra called the exte-

rior algebra of V . An element ω ∈Λ
k(V ) is also said to be of degree k.

We also call Λ(Cn), with multiplication defined by the wedge product, the

Grassmann algebra Gn. It has a basis (e i)
n
i=1

satisfying

e i ∧ e j =−e j ∧ e i for all i, j. (7.55)
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As noted above this implies that

e i ∧ e i = 0 for all i. (7.56)

(So there is no notion of signature in Grassmann algebras.)

As with Clifford algebras, the dimension of Gn is 2n with basis elements

again written e i, e i j, . . . and in general as eA. Gn also splits into a direct sum

of two subspaces G+
n and G−

n of even and odd forms.

We write e1∧ e2 · · ·∧ en = e and a basic result is that for any set (xk)n
k=1

of

1−vectors,

x1∧ x2 · · ·∧ xn = det(X )e (7.57)

where we have (as usual) written the xks as column vectors and

X = [x1 |x2 | · · · , |xn] . (7.58)

If A is an n×n matrix, then A lifts to an operator on Gn defined through

Ae i j = Ae i ∧ Ae j etc. (7.59)

(The use of the same symbol A should not be confusing. Otherwise we can

write it as Λ
k A when A acts on a product of k, 1−vectors.)

Exercise 7.6 Show that
(
Λ

2A
)(
Λ

2B
)
=Λ

2AB.

Derive the following result in linear algebra

det(Ax1 |Ax2 | · · · |Axn)= det(A)det(x1 |x2 | · · · |xn) . (7.60)
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7.3.3 Two important functionals on Λ
2(C4)

1. The (Hermitian) inner product 〈 , 〉 on C4 defines an inner product on

Λ
2(C4) given by

〈u1∧u2,v1 ∧v2〉 =
∣∣∣∣
[
〈u1,v1〉 〈u1,v2〉
〈u2,v1〉 〈u2,v2〉

]∣∣∣∣ . (7.61)

Note that this is not (complex) bilinear; it is conjugate linear because

〈ku1∧u2,v1 ∧v2〉 = k〈u1 ∧u2,v1 ∧v2〉. (7.62)

If U is unitary on Cn then U lifts to a unitary matrix in Λ
2 (Cn) (this is

simple to verify). In particular this means that the group SU(n) lifts to give

a representation on Λ
2 (Cn). In the case of SU(4) this gives a 6−dimensional

representation of SU(4) on the complex space Λ
2
(
C4

)
.

2. The second important functional defined on pairs of elements in Λ
2(C4)

is obtained via the determinant function and is given by

φ(u1 ∧u2,v1 ∧v2)= det(u1 |u2 |u3 |u4). (7.63)

By (7.57) we could write

u1∧u2∧u3∧u4 =φ(u1∧u2,v1 ∧v2)e. (7.64)

Unlike the inner product, φ is genuinely bilinear.

By (7.60)

φ(Aα, Aβ)= det(A)φ(α,β) (7.65)

so that the bilinear functional φ is invariant under the action of the special

linear group, SL(4) and therefore also invariant under SU(4).
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7.4 The real 6−dimensional representations of

SU(4)

Any bilinear, or conjugate linear, map on a space V gives a map between V

and its dual space V∗. It follows that we can use two maps to determine a

map V →V . If we combine a bilinear and a conjugate linear map, the result

is a conjugate linear map from V →V .

In the case V =Λ
2
(
C4

)
this defines the conjugate linear map J8 by

〈Jα,β〉 = det(α,β) (7.66)

A small change of notation. We will write e0, e1, e2, e3 for the standard basis

for C4. We choose to write the basis this way rather than e1, e2, e3, e4 since

we want to choose SU(3) to be the subgroup of SU(4) which fixes e0. Then

SU(3) will act on C3 which will have the basis e1, e2, e3.

7.4.1 Properties of J

1. Je01 = e23, Je23 = e01 and cyclically for the other basis forms in Λ
(
C4

)
.

This follows easily, e.g. from (7.63).

2. Since J is conjugate linear, we also have J (ie01) = −ie23, J (ie23) =
−ie01 and cyclically.

3. J2 = 1. (Follows from 1. and 2. above.)

4. J commutes with every unitary operator U acting on Λ
2
(
C4

)
.

Proof: for any 2−forms, α and β,

〈U Jα,β〉 = 〈Jα,U∗β〉 (7.67)

= det
(
α,U∗β

)
(7.68)

= det
(
Uα,β

)
(as U has determinant 1.) (7.69)

= 〈JUα,β〉 (7.70)

and the result follows.

8J is known as the Hodge operator; see, e.g. [6], chapter 3.3.
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5. J has eigenvalues ±1. From 1. and 2. above it follows that the

eigenspace M+ corresponding to the eigenvalue +1 is spanned by

e01+ e23, e02+ e31, e03+ e12, i(e01− e23), i(e02− e23), i(e03− e12). (7.71)

This is in fact an orthogonal basis for M+ but not orthonormal as every

vector has norm
p

2.

Similarly M−, the eigensubspace for −1, has a basis

e01− e23, e02− e31, e03− e12, i(e01+ e23), i(e02+ e23), i(e03+ e12). (7.72)

From this it is also clear that M+ ⊥ M−.

6. M+ and M− are both 6− dimensional real spaces and from 4. above,

for any unitary matrix U , U : M+ → M+ and U : M− → M−. So the

6−dimensional representation of SU(4) on Λ
2(C4) splits into a direct

sum of two 6− dimensional real representations on M±. This gives the

isomorphism between SU(4) and Spin(6). In fact there are two such

isomorphisms, one each for M+ and M−.

With little loss of generality, we can concentrate on the representation

of SU(4) on M+. We denote this map by πU so that for any U ∈ SU(4),

πU : M+ → M+. (7.73)

Note that π is 2 : 1 since πU =π−U .

7.4.2 An illustrative example

Every unitary U is expressible as a product of elementary SU(2) matrices

defined in one of the coordinate planes. Consider the general SU(2) matrix

acting in the e2 − e3 plane.

U =




1 0 0 0

0 1 0 0

0 0 a −b

0 0 b a
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with a, b complex and |a|2+|b|2 = 1, and let us find the representation πU on

M+.

Begin with the action of U on Λ
2(C4). It is easy to check that

Ue01 = e01, Ue02 = ae02 +be03, Ue03 =−be02 +ae03, (7.74)

Ue23 = e23, Ue31 = be12 +ae31, Ue12 = ae12 −be31. (7.75)

Now define the orthornormal basis {α1,α2,α3,β1,β2,β3} for M+ by

α1 =
e01 + e23p

2
and cyclically, (7.76)

β1 =
i(e01 − e23)

p
2

and cyclically. (7.77)

Exercise 7.7 It is sometimes useful to know the inverse of this basis change,

i.e.

e01 =
α1− iβ1p

2
and cyclically, (7.78)

e23 =
α1+ iβ1p

2
and cyclically. (7.79)

A little algebra gives

πU α1 =α1,

πU α2 = Rl(a)α2 +Rl(b)α3+ Im(a)β2 − Im(b)β3,

πuα3 =−Rl(b)α2+Rl(a)α3 − Im(b)β2 − Im(a)β3,

πU β1 =β1,

πU β2 =−Im(a)α2 + Im(b)α3 +Rl(a)β2 +Rl(b)β3,

πU β3 = Im(b)α2 + Im(a)α3 −Rl(b)β2 +Rl(a)β3.

This can be written in a more compact form. Choose the order of the basis

elements for M+ as α1, α2, α3, β1, β2, β3, . Then

πU =
[

A −B

B A

]
(7.80)

where

A =




1 0 0

0 Rl(a) −Rl(b)

0 Rl(b) Rl(a)


 , B =




0 0 0

0 Im(a) −Im(b)

0 −Im(b) −Im(a)


 . (7.81)
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The way πU breaks up naturally into this block form is a strong indication

that the underlying 6− dimensional real space, R6, should really be regarded

more like R3 ⊕
R3. Geometry is starting to tell us something (and as usual,

we should be listening).

Exercise 7.8 Consider the general SU(2) matrix acting in the e3− e1 plane.

U =




1 0 0 0

0 a 0 b

0 0 1 0

0 −b 0 a


 .

Show that this time the representation (called πU ) of U on M+ is also of the

form

πU =
[

A −B

B A

]
(7.82)

where now

A =




Rl(a) 0 Rl(b)

0 1 0

−Rl(b) 0 Rl(a)


 , B =



−Im(a) 0 −Im(b)

0 0 0

−Im(b) 0 Im(a)


 . (7.83)

Exercise 7.9 Finally for completeness, consider the general SU(2) matrix

acting in the e1 − e2 plane.

U =




1 0 0 0

0 a −b 0

0 b a 0

0 0 0 1


 .

Show that the corresponding matrix πU is

πU =
[

A −B

B A

]
(7.84)

where

A =




Rl(a) −Rl(b) 0

Rl(b) Rl(a) 0

0 0 1


 , B =




Im(a) −Im(b)0 0

−Im(b) −Im(a) 0

0 0 0


 . (7.85)
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7.4.3 A group G of block matrices in SO(6)

(For simplicity and with only a slight abuse of notation, let us write U for

πU .) The three examples above all arise from SU(4) matrices which fix e0

and are complex rotations in one of the three remaining coordinate planes.

As such they generate SU(3). They are all represented as SO(6) matrices of

the form

U =
[

A −B

B A

]
. (7.86)

Since U ∈ SO(6), it follows that

AT A+BTB = AAT +BBT = I, (7.87)

ATB and BAT are symmetric. (7.88)

Conversely this block description (7.86) - (7.88) can be used to describe SU(3)

inside SO(6) as follows.

Theorem 7.3 The set G of matrices satisfying (7.86) - (7.88) forms a sub-

group of SO(6) isomorphic to U(1)×SU(3).

Proof: 1. Firstly check the group properties.

For U ∈G, U−1 =UT =
[

AT BT

−BT AT

]
which is in G. Further the product of

two elements of G is

[
A1 −B1

B1 A1

][
A2 −B2

B2 A2

]
=

[
A1A2 −B1B2 −(B1A2 + A1B2)

B1A2 + A1B2 A1A2 −B1B2

]
(7.89)

which is again in G. So G is a group.

2. One way to identify G is to consider the number of degrees of freedom

(parameters) needed to describe elements of G. Since A and B are real 3×3

matrices, we start with a total of 18 degrees of freedom. Equation (7.87)

imposes 6 conditions and (7.88) imposes another 3. So we are left with 9

degrees of freedom.

Recall that SU(3) can be regarded as a subset of G (since the three ex-

amples above were all of matrices in e1, e2, e3 space and therefore generate
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SU(3)) and SU(3) is an 8-parameter group.

To identify the 9th parameter note that Z =
[
0 −I

I 0

]
is in G but Z does

not correspond to an SU(3) matrix because of the way SU(3) is chosen in

SU(4). In fact it is easy to show that the SU(4) matrix which defines Z is




ω 0 0 0

0 −ω 0 0

0 0 −ω 0

0 0 0 −ω




where ω= e−
π
4 (so that ω2 =−i) which is in SU(4) but not in SU(3).

The matrices

Z(θ)=
[
cosθI3 −sinθI3

sinθI3 cosθI3

]

which define U(1), form the centre of G and G is then isomorphic to U(1)×
SU(3).

Exercise 7.10 (An alternate definition for G). G is set of all matrices in

SO(6) which commute with Z.

Decomposition of G as U(1)×SU(3).

Let us consider more closely, the problem of finding the decomposition of an

element in G as a product of elements in Z(θ)×SU(3).

Let

U =
[

A −B

B A

]
∈ G. (7.90)

Clearly we can also regard U as a unitary matrix, i.e. as an element of

SU(6). Let

P = 1
p

2

[
I I

−iI iI

]
(I = I3). (7.91)

Then

Then U ′ = P−1UP = ·· · =
[

A+ iB 0

0 A− iB

]
. (7.92)

193



U ′ is in fact the matrix of the transformation U when written in terms of the

orthonormal basis {e01, e02, e03, e23, e31, e12} in C6.

Now A± iB ∈U(3). Let det(A+ iB) = eiθ so that (taking conjugates and

remembering that A and B are real matrices), det(A− iB)= e−iθ. Put

A+ iB = e
iθ
3 X and (7.93)

A− iB = e−
iθ
3 X (7.94)

with now X and its conjugate X in SU(3). So we have

U ′ =
[

e
iθ
3 X 0

0 e−
iθ
3 X

]
. (7.95)

Writing

X = e−i θ3 (A+ iB)= A′+ iB′ (A′, B′ real) (7.96)

it follows that

U = PU ′P−1 (7.97)

= 1

2

[
I I

−iI iI

][
e

iθ
3 X 0

0 e−i θ3 X

][
I iI

I −iI

]
(7.98)

= 1

2

[
e

iθ
3 X e−i θ3 X

−ie
iθ
3 X ie−i θ3 X

][
I iI

I −iI

]
(7.99)

= ·· · (7.100)

=
[
cos θ

3
A′−sin θ

3
B′ −(sin θ

3
A′+cos θ

3
B′

sin θ
3

A′+cos θ
3
B′ cos θ

3
A′−sin θ

3
B′

]
(7.101)

= Z

(
θ

3

)[
A′ −B′

B′ A′

]
. (7.102)

To summarize: Let U =
[

A −B

B A

]
∈G and let det(A+ iB)= eiθ. Then

U = Z

(
θ

3

)[
A′ −B′

B′ A′

]
(7.103)

where A′+ iB′ is the Cartesian decomposition of e−i θ3 (A+ iB).

This is the decomposition of G as G =U(1)×SU(3).
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7.4.4 Identification of G and SU(3) inside Spin(6)

Here we want to understand more precisely, how the matrices in G =U(1)×
SU(3) can be described inside Spin(6). To do this it is useful to remind our-

selves of an important result for orthogonal matrices, known as the ‘Cosine-

Sine’ or C-S decomposition (see e.g. [7], chapter 2).

The Cosine-Sine (C-S) decomposition of orthogonal matrices can be ex-

tremely useful. For our purposes this decomposition will make it easy to

pick out which matrices in SO(6) arise from unitary matrices in SU(3).

The C-S decomposition of a 2N ×2N orthogonal matrix U is as follows

U =
[
Ł0 0

0 L1

]
D

[
RT

0 0

0 RT
1

]
(7.104)

where the matrices L0,L1,R),R1 are N ×N orthogonal and

D =
[
C −S

S C

]
(7.105)

with C = diag(cosθ1,cosθ2, . . . ,cosθN) and C = diag(sinθ1,sinθ2, . . . ,sinθN)

for some angles θ1,θ2, . . . ,θN .

(In our case, N = 3 so that all the matrices appearing on the right inside

the block will be 3×3.)

Now suppose that

U =
[

A −B

B A

]
∈G.

Consider first, the sub-matrix A. Its singular-value decomposition (SVD)

means that we can write

A = LCRT (7.106)

where L, R are 3×3 orthogonal matrices and C is a diagonal matrix whose

elements lie in the interval [−1,1]. (This last follows from (7.87) since

0≤ AT A ≤ I.)

To find the SVD for B, start with (7.87) which gives

BBT = I − AAT = L(I −C2)LT = LS2LT
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for some diagonal matrix S whose values satisfy S2 = I −C2.

Using (7.88), it is straightforward to show (and left as an exercise), that

the SVD decomposition of B is

B = LSRT

and finally because C2+S2 = I, we can write

C =




cosθ1 0 0

0 cosθ2 0

0 0 cosθ3


 , S =




sinθ1 0 0

0 sinθ2 0

0 0 sinθ3


 (7.107)

for angles θ1,θ2,θ3.

Putting all these decompositions together means that we have

U =
[
LCRT −LSRT

LSRT LCRT

]
(7.108)

=
[
L 0

0 L

][
C −S

S C

][
RT 0

0 RT

]
(7.109)

and we have the C-S decomposition for U .

So matrices U ∈G are singled out as those matrices in SO(6) whose C-S

decomposition (7.104) has L0 = L1 and R0 = R1.

An example:

Consider the example given in section 7.4.2; the SU(3) matrix U which de-

fines a ‘rotation’ in the e2 − e3 plane.

U =




1 0 0

0 a −b

0 b a


 .

As we saw above U defines the matrix πU (or more simply, still written as

U) in SO(6)

U =
[

A −B

B A

]
(7.110)
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where

A =




1 0 0

0 Rl(a) −Rl(b)

0 Rl(b) Rl(a)


 , B =




0 0 0

0 Im(a) −Im(b)

0 −Im(b) −Im(a)


 . (7.111)

A straightforward calculation gives

U =
[
Ł 0

0 L

][
C −S

S C

][
RT 0

0 RT

]
(7.112)

where

L =




1 0 0

0 cosα −sinα

0 sinα cosα


 , R =




1 0 0

0 cosβ −sinβ

0 sinβ cosβ


 (7.113)

and

C =




1 0 0

0 cosθ 0

0 0 cosθ


 , S =




0 0 0

0 sinθ 0

0 0 −sinθ


 . (7.114)

(Note that the three angles in C and S are therefore 0,θ,−θ.)

The connection with these angles and the entries in U can be written as

Rl(a)= cosθ cos(α−β)

Im(a)= sinθ cos(α+β)

Rl(b)= cosθsin(α−β)

Im(b)=−sinθsin(α+β)

From these we can find the various rotation angles. To find the angles defin-

ing L and R we see that

tan(α−β)= Rl(b)

Rl(a)
, and tan(α+β)=− Im(b)

Im(a)
. (7.115)

which give α and β.

θ can be found from the equations

cosθ = Rl(a)cos(α−β)+Rl(b)sin(α−β)

sinθ = Im(a)cos(α+β)− Im(b)sin(α+β).
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To Summarize: Elements of SU(3) (more generally, elements of U(1)×
SU(3)) can be realised as orthogonal matrices acting on R3 ⊕

R3. If we take

bases α1,α2,α3 and β1,β2,β3 for each of the component spaces R3, then the

matrices are products of rotations of two types.

1. Rotations (denoted above by L or R) which act independently on either

of the two subspaces R3.

2. Rotations (written above as

[
C −S

S C

]
) in the three coordinate planes

spanned by {αi,βi}, i = 1,2,3.

7.4.5 Representations of the Gell-Mann matrices in SO(6)

In 1961, Gell-Mann and Nishijima independently proposed that SU(3) had a

central role to play in the classification of elementary particles; in particular

it gave rise to the suspicion of a substructure of these so-called fundamental

particles. (See e.g. [8], chapter 2.)

The lie algebra su(3) is an 8-dimensional real algebra and perhaps the

best known and most useful basis, consists of the Gell-Mann matrices λ1, . . . ,λ8,

defined as

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 , λ3 =




1 0 0

0 −1 0

0 0 0


 ,

λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i

0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0


 ,

λ7 =




0 0 0

0 0 −i

0 i 0


 , λ8 =

1
p

3




1 0 0

0 1 0

0 0 −2


 .

These matrices are Hermitian and generate eight, 1-parameter families of

groups in SU(3) according to the formula

Λ j(t)= exp itλ j, j = 1, . . . ,8. (7.116)
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In the following we will be interested in showing how the Λ js can be repre-

sented in SO(6), following on from the general representation of SU(3) as a

subgroup of SO(6).

We will look at the case of Λ1 in some detail; the other cases are reason-

ably similar and we will content ourselves with just stating the results.

So begin with

λ1 =




0 1 0

1 0 0

0 0 0




from which we obtain

Λ1(t)= eitλ1 =




cos t isin t 0

isin t cos t 0

0 0 1


 .

The next step is to describe the action of Λ1 in the way given in section 7.4.2.

Recall that this means firstly regarding Λ1 as acting on C4, fixing a basis

element e0 in the basis {e0, e1, e2, e3} and then finding the action of Λ1 on

Λ
2(C4). A straightforward calculation leads to

Λ1e01 = (Λ1e0)∧ (Λ1e1)= e0(cos t e1 + isin t e2)= cos t e01 + isin t e02

and similarly

Λ1e02 = isin t e01 +cos t e02

Λ1e03 = e03

Λ1e23 = cos t e23 − isin t e31

Λ1e31 =−isin t e23 +cos t e31

Λ1e12 = e12.

In terms of the basis {α1,α2,α2,β1,β2,β3} (see definitions (7.76), (7.77)), this
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can be written as

Λ1α1 = cos tα1+sin tβ2

Λ1α2 = cos tα2+sin tβ1

Λ1α3 =α3

Λ1β1 =−sin tα2+cos tβ1

Λ1β2 =−sin tα1+cos tβ2

Λ1β3 =β3.

So we have the representation of Λ1 as an SO(6) matrix

Λ1 =




cos t 0 0 0 −sin t 0

0 cos t 0 −sin t 0 0

0 0 1 0 0 0

0 sin t 0 cos t 0 0

sin t 0 0 0 cos t 0

0 0 0 0 0 1



=

[
A −B

B A

]
(7.117)

where

A =




cos t 0 0

0 cos t 0

0 0 1


 , B =




0 sin t 0

sin t 0 0

0 0 0


 .

Finally we find the C-S decomposition for Λ1 in the form given by (7.109).

That is, we look for 3×3 rotation matrices L and R, and diagonal matrices

C and S such that

Λ1 =
[
L 0

0 L

][
C −S

S C

][
RT 0

0 RT

]

or, more usefully, such that

A = LCRT , B = LSRT . (7.118)

These matrices are easy to find since they describe rotations in a plane in

R3.
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Exercise 7.11 Use (7.118) to show that

L = R =




1p
2

− 1p
2

0
1p
2

1p
2

0

0 0 1


 ,

C =




cos t 0 0

0 cos t 0

0 0 1


 , S =




sin t 0 0

0 −sin t 0

0 0 0


 .

So, regarded as a matrix in SO(6), Λ1 decomposes as a product of three

rotations. L and R are rotations in the {α1, α2} and {β1, β2} planes while

[
C −S

S C

]

describes rotations through an angle t in the {α1,β1} and {α2,β2} planes and

the null rotation in the {α3,β3} plane.

Exercise 7.12 Use symmetry to obtain a similar decomposition in the cases

of λ4 and λ6.

The case of λ2 is a little different. Using the same technique as with λ1,

we obtain, after a few calculations, the SO(6) representation

Λ2(t)= eitλ2 =




cos t sin t 0 0 0 0

−sin t cos t 0 0 0 0

0 0 1 0 0 0

0 0 0 cos t sin t 0

0 0 0 −sin t cos t 0

0 0 0 0 0 1




.

In this case, Λ2 is already in block diagonal form and we do not need to

find its C-S decomposition9 It is clear that Λ2 is a direct sum of two rota-

tions, through an angle t, in each of the component subspaces {α1,α2,α3}

and {β1,β2,β3}.

Exercise 7.13 As in the previous exercise, use symmetry arguments to find

the descriptions for Λ5 and Λ7.

9This is because the centre matrix

[
C −S

S C

]
is the identity.
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There now remain two cases λ3 and λ8. Since both are in diagonal form, the

analysis is a little easier.

In the first case we have

Λ3(t)= eitλ3 =




eit0 0

0 e−it 0

0 0 1




which leads to the SO(6) representation

Λ3(t)=




cos t 0 0 −sin t 0 0

0 cos t 0 0 sin t 0

0 0 1 0 0 0

sin t 0 0 cos t 0 0

0 −sin t 0 0 cos t 0

0 0 0 0 0 1




.

This is the direct sum of three rotations; the first through an angle t in the

{α1,β1} plane, the second through an angle −t in the {α2,β2} plane, and the

third is the null rotation in the {α3,β3} plane.

Finally, consider λ8, a little different to the others as may be expected.

Here we firstly have

Λ8(t)= e
itλ8p

3




e
itp
3 0 0

0 e
itp
3 0

0 0 e
− 2itp

3




which then gives for the SO(6) matrix

Λ8(t)=




cos tp
3

0 0 −sin tp
3

0 0

0 cos tp
3

0 0 −sin tp
3

0

0 0 cos 2tp
3

0 0 sin 2tp
3

sin tp
3

0 0 cos tp
3

0 0

0 sin tp
3

0 0 cos tp
3

0

0 0 −sin 2tp
3

0 0 cos 2tp
3




.
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This is a decomposition of Λ8 into a product of three rotations: one is in the

{α1,β1} plane, through an angle tp
3
, the second is similar but in the {α2,β2}

plane, while the third is through an angle − 2tp
3
, in the {α3,β3} plane.

Exercise 7.14 Find anyway, the C-S decompositions for Λ3 and λ8 and ver-

ify that they are in fact trivial.

The different descriptions of these Λi matrices is perhaps unfortunate but is

wholly due to the original asymmetric choice of the Gell-Mann matrices.

7.4.6 Conservation of commutation relations

As an illustrative example of the usefulness of this representation of SU(3)

(more generally of G) by matrices in SO(6), let us see how SU(3) ‘naturally’

preserves the Poisson product in 3-space.

If f and g are functions defined on n−dimensional phase space, i.e. are

functions of (xi, pi), the Poisson bracket is defined as

{ f , g}=
∑

i

(
∂ f

∂xi

∂g

∂pi

− ∂ f

∂pi

∂g

∂xi

)
. (7.119)

It follows that

{xi, x j}= {pi, p j}= 0 and (7.120)

{xi, p j}= δi j. (7.121)

The idea in this section is to show that these Poisson brackets on (xi, pi) are

preserved by G.

As above let U =
[

A −B

B A

]
and

[
x′

p′

]
=

[
A −B

B A

][
x

p

]
. (7.122)

Then

x′i = (Ax−Bp)i (7.123)

= ai1x1 +ai2x2+ai3x3− (bi1 p1 +bi2 p2 +bi3 p3) (7.124)
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and similarly

p′
j = (Bx+ Ap) j (7.125)

= b j1x1 +b j2x2 +b j3x3+a j1 p1 +a j2 p2 +a j3 p3) (7.126)

so that using (7.120) and (7.121)

{x′i, p′
j}= ai1a j1+ai2a j2+ai3a j3+bi1b j1+bi2b j2+bi3b j3 (7.127)

= (AAT +BBT)i j = δi j by (7.87). (7.128)

Likewise

{x′i, x′j}= (ABT)i j and (7.129)

{p′
i, x′j}= (BAT)i j (7.130)

and both expressions are 0 as the Poisson bracket is anti-symmetric while

ABT and BAT are symmetric after (7.88).

So G preserves the Poisson bracket.

An important, if simple, example of a transformation which keeps the

Poisson bracket invariant is

α1 →β1, β1 →−α1 (7.131)

and the remaining αi, βi unchanged. Its matrix representation shows that

this is an element of G. The matrix is

U =
[

A −B

B A

]

with

A =




0 0 0

0 1 0

0 0 1


 , B =




1 0 0

0 0 0

0 0 0




and it is easy to show that A and B satisfy conditions (7.87) and (7.88) so

that U ∈G.

Exercise 7.15 Show that the corresponding matrix in SU(4) is



ω 0 0 0

0 ω 0 0

0 0 −ω 0

0 0 0 −ω


 where ω= ei π4 . (7.132)
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Chapter 8

The hydrogen atom

8.1 Introduction

By now, we have developed enough of Clifford algebra theory to give a good

foundation for applications. The examples we have chosen have been se-

lected to give an idea of how Clifford algebras may be used to illustrate (es-

pecially) any underlying geometry. We have restricted ourselves to areas in

classical and quantum phyiscs but many more examples can be found. For

example, chapter 5 by J. M. Selig in [1] gives a number of examples in engi-

neering and computer science which are not only highly interesting in their

own right, but also indicative of the breadth of the whole subject area.

We have to be careful too (mathematicians especially), that we should not

be seen to be satisfied with talking to the converted. The author’s contention

is that Clifford algebras should play a major role in the description of many

results in physics. Against that, is the undeniable fact that a large majority

of physicists would claim that they can get along quite well without this ap-

proach. Their claim is based on the view that (e.g.) quantum mechanics can

be described perfectly well using the modern, and well understood, appara-

tus of complex Hilbert space and that the physical phenomena can all be

described quite adequately with this approach. So why should they bother

using a new and unfamiliar language when the old one serves perfectly well?
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The only viable answer to that, is that we enthusiasts of Clifford alge-

bra, must convince those recalcitrant souls that there is a real benefit in

using Clifford algebra, because it provides a deeper insight into their sub-

ject area. This deeper insight must not only shed more light but must also

hold the promise of a better way of obtaining results. It seems self-evident

that without this approach, the existing schism (real, geometric versus com-

plex) will remain.1

So in this chapter we consider the fundamental problem; that of solving

the Dirac equation for the hydrogen atom (to the extent of finding the values

of the hydrogen spectrum). These are of course well-known and we use this

example to illustrate the use of a Clifford algebra approach to an important

problem.

Because of the spherical symmetry in the geometry of the hydrogen atom,

it makes a great deal of sense to write the Dirac equation as well as a number

of operators associated with it, in spherical polar coordinate form. So we will

start by describing this coordinate system, as it may be expressed in Clifford

algebras.

8.2 Spherical polar coordinates

We begin by reviewing the basic definitions and ideas and write them in Clif-

ford algebra terms. Then we can consider the various angular momentum

and spin operators and see how they can be defined from this perspective.

As we are dealing with 3-space only, the appropriate algebra will be

taken to be Cl(0,3), though Cl(3,0) works identically. Start with the usual

definition

x1 = rsinθ cosφ, x2 = rsinθsinφ, x3 = r cosθ. (8.1)

1Mathematicians are sometimes put off by the apparently cavalier approach that they

see in physicists, because it smacks of a non-rigorous attitude. As an example, consider the

way tensors are introduced in physics. Typically you come across statements along the line

“ tensors are objects which transform in such-and-such a way..” This seems nonsense as a

definition but in fact physicists almost invariably prefer a description to a definition. As

Gian-Carlo Rota pointed out “descriptions are more fundamental than definitions, even if

they are less rigorous, because descriptions motivate and ultimately determine definitions,

not the other way around.”
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e2

e3

e1

r

φ

θ

er

eφ

eθ

Figure 8.1

The change of basis can be written as 2

er = sinθ cosφ e1 +sinθsinφ e2 +cosθ e3,

eθ = cosθ cosφ e1 +cosθsinφ e2 −sinθ e3,

eφ =−sinφ e1 +cosφ e2.

or 


er

eθ
eφ


= Rθφ




e1

e2

e3


 (8.2)

where

Rθφ =




sinθ cosφ sinθsinφ cosθ

cosθ cosφ cosθsinφ −sinθ

−sinφ cosφ 0


 . (8.3)

(Note that Rθφ is a rotation matrix. It could therefore be put in the form

Rθφ x = qxq̃

for some unit quaternion q. We will look at this shortly.)

2Beware that some authors interchange the roles of φ and θ.

208



Rθφ also provides the link between the components of a vector in the two

representations. If we write

x = x1e1 + x2e2 + x3e3 = xr er + xθeθ+ xφeφ

then a comparison of coefficients gives




xr

xθ

xφ


= Rθφ




x1

x2

x3


 . (8.4)

Note that

R−1
θφ = RT

θφ =




sinθ cosφ cosθ cosφ −sinφ

sinθsinφ cosθsinφ cosφ

cosθ −sinθ 0


 . (8.5)

Exercise 8.1 Show that

er eθeφ(= erθφ)= e123

(as expected!) Deduce that the space M of Pauli spinors, M = 〈e1, e2, e3, e123〉 =
〈er, eθ, eφ, erθφ〉 (also as expected.)

Exercise 8.2 (Writing Rθφ in quaternion form.)

Show that

Rθφ =




cosθ sinθ 0

−sinθ cosθ 0

0 0 1







1 0 0

0 cosφ sinφ

0 −sinφ cosφ







0 0 1

1 0 0

0 1 0




Deduce that Rθφ is a product of three rotations and each one can be written

in quaternion form x : qxq̃. So Rθφ is itself of this form with the quaternion

being

q =
(
cos

θ

2
−sin

θ

2
e12

) (
cos

φ

2
−sin

φ

2
e23

)(
1

4
(1+ e23 + e31 + e12)

)

= ·· ·

= 1

2

[(
cos

θ+φ

2
+sin

θ+φ

2

)
+

(
cos

θ−φ

2
+sin

θ−φ

2
e23

)

+
(
cos

θ−φ

2
−sin

θ−φ

2
e31

)
+

(
cos

θ+φ

2
−sin

θ+φ

2

)
e12

]
.
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8.2.1 Some differential formulae

The change to spherical polar coordinates leads to the differential formula




∂
∂r
∂
∂θ
∂
∂φ


=




sinθ cosφ sinθsinφ cosθ

r cosθ cosφ r cosθsinφ −rsinθ

−rsinθsinφ rsinθ cosφ 0







∂
∂x1

∂
∂x2

∂
∂x3


 (8.6)

=




1 0 0

0 r 0

0 0 rsinθ


 Rθφ




∂
∂x1

∂
∂x2

∂
∂x3


 (8.7)

so that,




∂
∂x1

∂
∂x2

∂
∂x3


= R−1

θφ




1 0 0

0 r 0

0 0 rsinθ



−1




∂
∂r
∂
∂θ
∂
∂φ




= ·· ·

=




sinθ cosφ
cosθ cosφ

r
− sinφ

rsinθ

sinθsinφ
cosθsinφ

r

cosφ

rsinθ

cosθ − sinθ
r

0







∂
∂r
∂
∂θ
∂
∂φ


 .

Exercise 8.3 Deduce the polar form of the gradient operator

∇= e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
= er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

rsinθ

∂

∂φ
. (8.8)

Another useful result comes from writing 3

x1∂1 + x2∂2 + x3∂3

3We often use the abbreviations ∂i for ∂
∂xi and similarly ∂r for ∂

∂r
etc.
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in spherical polar terms.

x1∂1+ x2∂2+ x3∂3 =
[
x1 x2 x3

]


∂1

∂2

∂3


 (8.9)

=
[
rsinθ cosφ rsinθsinφ r cosθ

]
(8.10)

×




sinθ cosφ∂r + cosθ cosφ

r
∂θ− sinφ

rsinθ
∂φ

sinθsinφ∂r + cosθsinφ

r
∂θ+ cosφ

rsinθ
∂φ

cosθ∂r − sinθ
r

∂θ


 (8.11)

= ·· · (8.12)

= r∂r. (8.13)

Exercise 8.4 Show that

∇2 = 1

r2

(
∂

∂r
(r2 ∂

∂r
)+ 1

sinθ

∂

∂θ
(sinθ

∂

∂θ
)+ 1

sin2θ

∂2

∂φ2

)
. (8.14)

8.3 The angular momentum operators

Let us begin with a brief summary of the way angular momentum opera-

tors are usually introduced. With a small abuse of convention we define the

operators L i by 4

L1 =−ħ(x2∂3− x3∂2); L2 =−ħ(x3∂1− x1∂3); L3 =−ħ(x1∂2− x2∂1).

4The more standard notation is to define

L1 =−iħ(x2∂3 − x3∂2) etc.

but we want to avoid using complex numbers as much as possible. In any case, it is not

always clear what i would correspond to in a Clifford algebra setting.
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Writing these in polar coordinates gives for L1

L1 =−ħ(x2∂3− x3∂2)

=−ħ(rsinθsinφ) (cosθ∂r −
sinθ

r
∂θ)

+ħr cosθ

(
sinθsinφ∂r +

cosθsinφ

r
∂θ+

cosφ

rsinθ
∂φ

)

= ·· ·

= ħ
(
sinφ∂θ+

cosθ cosφ

sinθ
∂φ

)
.

Similarly for L2 and L3. In summary,

L1 =ħ
(
sinφ∂θ+

cosθ cosφ

sinθ
∂φ

)
, (8.15)

L2 =ħ
(
−cosφ∂θ+

cosθ sinφ

sinθ
∂φ

)
, (8.16)

L3 =−ħ∂φ. (8.17)

Note that the L is do not involve ∂
∂r

, a useful property as we will see.

It follows also that5

L2
1 +L2

2+L2
3 =

ħ2

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+ ħ2

sin2θ

∂2

∂φ2
. (8.18)

The operators L i can be written in more physical terms if we replace the

partial derivatives ∂i by momentum operators pi. In the conventional treat-

ment we would define

pi =−iħ∂i

which leads to the momentum (row) vector

p =−iħ∇.

5We don’t write L2
1 +L2

2 +L2
3 as L2 - which is the traditional notation - since in Clifford

algebra notation, this is ambiguous (see the discussion below). Note too that traditionally,

a minus sign occurs on the right hand side, due to the extra factor of i in the definitions of

the L is.
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The situation is a little more delicate in the Clifford algebra setting. The

obvious step is to define something like

pi =−uħ∂i, (u2 =−1)

but the problem with that definition is that pi is a bivector (since u is) and

it is not at all clear how we could obtain a 1-vector p from this definition.

Nor is it clear why we should choose any particular u since this contains a

preferred “rotation axis”.

As the imaginary i is only introduced into the definition of pi to obtain a

Hermitian operator (from a skew-Hermitian one), the easiest solution is not

to demand this and to simply define

pi =−ħ∂i.

Then we define the momentum vector (operator) to be

p = e1 p1 + e2 p2 + e3 p3 (8.19)

and the angular momentum operators become

L1 = x2 p3 − x3 p2, L2 = x3 p1 − x1 p3, L3 = x1 p2 − x2 p1.

Exercise 8.5 Verify that

[L1,L2]=ħL3, and cyclically. (8.20)

(Note that conventionally the right hand side would have an extra i term

which is missing here because of our definition of L i.)

In Cl(0,3), the orbital angular momentum operators L i can be defined as

the bivector part of xp, i.e.

xp = (x1e1 + x2e2 + x3e3) (e1 p1 + e2 p2 + e3 p3)

=−(x1 p1 + x2 p2 + x3 p3)+ (L1e23 +L2e31 +L3e12)

= L0 +L1e23 +L2e31 +L3e12

= L0 +L as a scalar plus bivector.

So L = L1e23+L2e31+L3e12 is a bivector (operator) which is the analogue

of the (axial) vector x×p which gives the usual definition of (orbital) angular

momentum.
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Exercise 8.6 Show that in polar form,

xp =−ħr er

(
er∂r +

1

r
eθ ∂θ+

1

rsinθ
eφ∂φ

)
. (8.21)

Deduce that L0 =ħr∂r and that L =−ħ
(
erθ ∂θ+

1

sinθ
erφ∂φ

)
.

Notice (yet again) how much simpler, angular momentum is described,

when using spherical polar coordinates.

An interesting property of L0 is that it commutes with all the other L is.

This is easy to verify using the cartesian expressions. 6

Exercise 8.7 Show, for example, that

[L0,L1]ψ=−ħ2
(
x1∂1+ x2∂2 + x3∂3

) (
x2∂3ψ− x3∂2ψ

)

+
(
x2∂3 − x3∂2

) (
x1∂1ψ+ x2∂2ψ+ x3∂3ψ

)

= ·· ·
= 0.

In the usual treatment, we would define L2 = L2
1 +L2

2 +L2
3. But here, L is a

bivector whose terms do not commute. So we have to be a little careful. In

fact we have

L2 = (L1e23 +L2e31 +L3e12)2 (8.22)

= ·· · (8.23)

=−
(
L2

1+L2
2+L3

3

)
+ (L1L2e12 +L2L1e21 · · · ) (8.24)

=−
(
L2

1+L2
2+L3

3

)
+ħL using Exercise 5. (8.25)

6It is even easier in polar coordinates as L0 is expressed solely in terms of r, while the

L i ’s are expressed in terms of θ and φ only.
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8.4 Commutators of the position, momentum

and spin operators

The Dirac Hamiltonian which we will look at later in this chapter, contains

a gradient type term

e01∂1 + e02∂2 + e03∂3.

In order to find the energy eigenvectors of the Hamiltonian, it is important

to know the commutators of the Hamiltonian with various spin operators.

In particular, when looking at either orbital or intrinsic spin, we observe

that since each L i commutes with e0, the problem usually simplifies to

finding the commutators of the spin operators and the momentum opera-

tor p = e1 p1 + e2 p2 + e3 p3.

Begin with a technical result. which we leave as an exercise to verify.

Exercise 8.8 (The following commutator products are useful when looking

at operators which commute with the Dirac Hamiltonian.) Show that

1.
[
xi, p j

]
=

{
ħ if i = j,

0 if i 6= j.

2. [
x2 p3 − x3 p2, e1 p1

]
= 0 and cyclically,

3. [
x2 p3 − x3 p2, e2 p2

]
=ħe2 p3 and cyclically,

4. [
x2 p3 − x3 p2, e3 p3

]
=−ħe3 p2 and cyclically,

5. [
e23,

∑

i

e i pi

]
= 2(e3 p2 − e2 p3), and cyclically.
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It follows that,

[L1, p]=
[

x2 p3 − x3 p2,
∑

i

e i pi

]

=
∑

i

[
x2 p3 − x3 p2, e i pi

]

=ħ (e2 p3 − e3 p2) by cases 2 and 3. (8.26)

Similar results hold for L2 and L3.

So the components of angular momentum do not commute with p (and

therefore do not commute with the Dirac Hamiltonian) which means that

we cannot hope to obtain common eigenvectors. But if we look at total an-

gular momentum, the picture is much better,. This is because (8.26) can be

combined with Exercise 8.8 to give
[
L1+

ħ
2

e23, p

]
= 0 (8.27)

again with similar results for L2 and L3.

Results like (8.27) have an immediate physical interpretation. In quan-

tum mechanics, the total angular momentum of a particle is the sum of its

orbital angular momentum and its intrinsic angular momentum (its spin).

We have seen that the orbital angular momentum operators are the compo-

nents of the bivector operator L. Traditionally, the spin vector denoted by S

is given as

S = ħ
2

(Sx,Sy,Sz)

with Sx,Sy,Sz, the Pauli spin matrices. In the Clifford algebra context,

(8.27) tells us that the spin vector should be taken to be

S = ħ
2

(e23, e31, e12)

and the total angular momentum operator is then defined as

J = L+S (8.28)

=
(
L1 +

ħ
2

e23,L2 +
ħ
2

e31,L3 +
ħ
2

e12

)
. (8.29)

We then have

[Ji, p]= 0, i = 1,2,3. (8.30)
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Exercise 8.9 Show that J and L satisfy the same commutator relations, i.e.

show that

[J1, J2]=ħJ3 and cyclically.

8.4.1 The spin-orbit operator K

The two angular momentum operators discussed above (L and S, act on

Pauli spinors and so also on Dirac spinors when they are regarded as pairs

of Pauli spinors. The spin-orbit operator K on the other hand, is defined di-

rectly on Dirac spinors with no Pauli counterpart. It is particularly useful

when discussing the hydrogen atom because when looking at common eigen-

vectors of the Dirac Hamiltonian and K , it turns out that the angular part

of the Hamiltonian factors out and we are left with the radial part only. This

simplifies the problem of finding the energy values considerably as we will

see.

In the Cliffford algebra setting, we define the spin-orbit operator K by

K = e0(L−ħ) (8.31)

where as above, L = L1e23 +L2e31 +L3e12.

We want to show that K commutes with e0 p and with each Ji.

Firstly consider the case e0 p. To this end we first note that

∑

i

L i pi = (x2 p3 − x3 p2)p1 + (x3 p1 − x1 p3)p2 + (x1 p2 − x2 p1)p3 = ·· · = 0.

Similarly
∑

i piL i = 0.

Then

Lp = (L1e23 +L2e31 +L3e12) (e1 p1 + e2 p2 + e3 p3)

= e1 (L2 p3 −L3 p2)+·· ·
= e1

(
(x3 p1 − x1 p3)p3 − (x1 p2 − x2 p1)p2

)
+·· ·
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while (using the result [xi, p j]=ħδi
j
),

pL = (e1 p1 + e2 p2 + e3 p3) (L1e23 +L2e31 +L3e12)

= e1 (p2L3− p3L2)+·· ·
= e1

(
p2(x1 p2 − x2 p1)− p3(x3 p1 − x1 p3)

)
+·· ·

= e1

(
x1 p2 p2 − (x2 p2 −ħ)p1 − (x3 p3 −ħ)p1 + x1 p3 p3

)
+·· ·

=−e1

(
(x3 p1 − x1 p3)p3 − (x1 p2 − x2 p1)p2 −2ħp1

)
+·· · .

So we have the result

pL =−Lp+2ħp. (8.32)

We can now calculate the commutator [K , e0 p].

[K , e0 p]= K e0 p− e0 pK = e0(L−ħ)e0 p− e0 pe0(L−ħ)

= Lp−ħp+ pL−ħp = 0 by (8.32)

(where here we used the results e0 p =−pe0 and e0L = Le0.)

So K commutes with e0 p.

Next consider the commutator of K with (for example) J3.

[K , J3]= e0 (L1e23 +L2e31 +L3e12 −ħ)

(
L3+

ħ
2

e12

)

−
(
L3 +

ħ
2

e12

)
e0 (L1e23 +L2e31 +L3e12 −ħ)

= e0

(
L1L3e23 +L2L3e31 +L2

3e12 −ħL3

)

+ ħ
2

e0 (−L1e31 +L2e23 −L3−ħe12)

− e0

(
L3L1e23 +L3L2e31 +L2

3e12 −ħL3

)

− ħ
2

e0 (L1e31 −L2e23 −L3−ħe12)

= e0 ([L1,L3]e23 + [L2,L3]e31)+ħe0 (−L1e31 +L2e23)

= e0 (−ħL2e23 +ħL1e31 −ħL1e31 +ħL2e23)

= 0

and K commutes with J3. Similarly with J1 and J2.
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Exercise 8.10 Show that

∑

i

L ix
i =

∑

i

xiL i = 0.

8.4.2 Remarks on some raising and lowering operators

Traditionally, solving the Dirac equation for the hydrogen atom involves

finding common eigenvectors for Lz and L2. This is possible as the oper-

ators commute.

We have seen (above) that L0 commutes with each L i, i = 1,2,3 and so

will also commute with
∑

i L2
i
. A plausible alternative procedure would be to

find common eigenvalues with Lz replaced by L0. This has the advantage of

not requiring a fixed choice of direction for the angular momentum operator.

Following this idea, the problem then becomes one of finding the eigen-

values of these two operators. In the L2 and Lz case, this is achieved through

the use of raising and lowering operators for Lz. So the question arises “are

there corresponding operators for L0?” Whether or not these ideas bear fruit,

it is instructive to look at this problem in its Clifford algebra setting where

we can essentially replace L0 by the scalar part of xp. The following exercise

illustrates the idea.

Exercise 8.11 Show that

1.

[
L0,

∑

i

xi e i

]
=ħ

∑

i

xi e i, (8.33)

2.

[
L0,

∑

i

e i pi

]
=−ħ

∑

i

e i pi. (8.34)

So we have raising and lowering operators for L0 which traditionally

would allow us to move up and down the range of eigenvalues adding or

subtracting ħ at each step. However we must proceed with a certain degree of

caution since in the Clifford algebra setting, the operators are not Hermitian.
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8.5 Eigenvalues of the angular momentum op-

erators

We will restrict ourselves to looking at the eigenvalues of the operators L

and K . Eigenvalues for other operators which arise, such as J2 may be de-

rived from these.

In the conventional treatment, these operators are defined in such a way

as to be Hermitian. This involves the occasional judicial introduction of an i

factor, whose role is basically to change a skew-Hermitian operator to a Her-

mitian one. This approach is usually not available in the Clifford algebra

setting; an example being the momentum operator p, used to define L (see

the discussion above).

We are particularly interested in the operator K whose eigenvectors can

be used to find solutions of the radial equation for the hydrogen atom.

The action of K on a Dirac spinor Ψ=
[
ξ

η

]
is (see (8.31)),

Kψ== K

[
ξ

η

]
=

[
(L−ħ)ξ

−(L−ħ)η

]
(8.35)

i.e. the action decomposes into the action of L on the components of Ψ.

(Actually it pays to verify first that L is indeed a Hermitian operator

and therefore will have real eigenvalues. To do this, note that the operator

L1 = x2∂3 − x3∂2 is skew-Hermitian and therefore L1e23 = (x2∂3 − x3∂2)e23 is

Hermitian - as e23 plays the role of the imaginary i. Similarly for L2e31 and

L3e12. So their sum L is Hermitian.)

8.5.1 Eigenvalues and eigenvectors of L

The study of the eigenvalues and eigenvectors of thevarious angular mo-

mentum operators is usually restricted to finding the common eigenvectors

of the operators L3 and L2 = L2
1+L2

2+L2
3. These operators are scalar-valued

(meaning that they are maps on spaces of scalar-valued functions) and this
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approach is often sufficient to solve problems such as classifying the sta-

tionary states of the hydrogen atom in the non-relativistic form given by

Schrodinger’s equation.

However in the relativistic case where the hydrogen atom is described

by the Dirac equation, it becomes important to look at this problem more

deeply and in particular to find an eigenvalue decomposition of L itself.

In the conventional treatment, L is described by a vector L and this

means solving a problem of the form

σ ·L =
[

L3 L1+ iL2

L1− iL2 −L3

]
ψ=λħψ (8.36)

where ψ is some suitable vector. We will start by looking at how this equa-

tion is normally solved, as it introduces new ideas which carry over very

naturally to the Clifford algebra setting.

The eigenvector ψ=
[
ψ1

ψ2

]
of (8.36), is a Pauli spinor and has components

which are functions of the angular variables θ and φ. In the usual treatment

they are of the form

ψi = Pm
l (cosθ) eimφ

where Pm
l

(x) is an associated Legendre polynomial and l,m are integers such

that m is in the range −l, . . . , l. ψi may also include a constant dependent on

the normalisation of Pm
l

.

Turn now to the Clifford algebra setting. The first point to note is that

the operator

L = L1e23 +L2e31 +L3e12

should also act on a Pauli spinor which we recall is an element of the space

M = Cl−(0,3) spanned by the elements e1, e2, e3, e123. We also need an ele-

ment which corresponds to the complex i.

This last point is easily resolved. The Dirac equation includes a pure,

unit quaternion u whose choice forces a particular direction (or rather, since

u is a bivector, a particular axis). Since we are choosing to work in spherical

polar coordinates, where the z axis is singled out, this implies that we should
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choose not just u = e12 but also use u instead of the conventional imaginary i.

We will make this assumption for the rest of this chapter.

The eigenvalue problem for L now becomes one of solving the equation

Lψ=λħψ (8.37)

where the eigenvector7 ψ is of the form

ψ= eA Pm
l (cosθ) eumφ (8.38)

with eA an odd vector and Pm
l

(x) is the associated Legendre Polynomial.

Since there is some variation in the way these polynomials are defined (de-

pending on the choice of any normalizing factor), we choose the following

for l = 0,1, . . . and m =−l, . . . , l, define

Pm
l (x)= (−1)m

2l l!
(1− x2)

m
2

dl+m

dxl+m

(
x2 −1

)l
.

In the case m = 0 we recover the ordinary Legendre polynomials

Pl(x)= P0
l (x)

which may also be defined in terms of a generating function,

1
p

1−2xt+ t2
=

∞∑

l=0

Pl(x)tl .

Because L is a differential operator, we will need two recurrence rela-

tions among the various Pm
l

(θ) polynomials 8, one for raising m and one for

lowering. The results we need are these

d

dθ
Pm

l = Pm+1
l +mcotθPm

l , (8.39)

d

dθ
Pm

l =−(l+m)(l−m+1)Pm−1
l −mcotθPm

l . (8.40)

7Such eigenvectors ψ are called spinor spherical harmonics.
8For simplicity we write Pm

l
(θ) as shorthand for Pm

l
(cosθ).
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Proof: These are standard results. A proof may be found, e.g. in Belousov [1].

Pm
l

can be defined for negative l by

Pm
−l = Pm

l−1.

It follows that for l ≤−1, Pm
l

is only defined for |m| ≤ −(l+1).

In the extreme case of l = 1, Pm
−1

= Pm
0

which requires too that m = 0, i.e.

P0
−1

= P0
0

(= 1). We’ll come back to this point later.

Using this definition, the recurrence relations (8.39) and (8.40) are also

valid for negative l.

Exercise 8.12 Show this!

Exercise 8.13 (A parity property)

Pm
l (−x)= (−1)l+m Pm

l (x)

so that each Pm
l

is either even or odd.

To clarify the action of L on spinor spherical harmonics, it is useful to

break L into two parts, one comprised of L3e12 and the other L1e23 +L2e31.

The later can then be written in exponential form.

Dividing by ħ for convenience, and recalling the polar coordinate results

for L i, (see (8.15) - (8.17))

1

ħ (L1e23 +L2e31)= e23

(
sinφ∂θ+cotθ cosφ∂φ

)
+ e31

(
−cosφ∂θ+cotθsinφ∂φ

)

=−e31

(
cosφ− e12 sinφ

)
∂θ + e23 cotθ

(
cosφ− e12 sinφ

)
∂φ

=−e31 e−uφ∂θ+ e23 cotθ e−uφ∂φ (8.41)

(recalling that we write u for e12).

(So L1e23+L2e31 behaves much like the operators L+ or L−, for example

as in Sakurai [2], chapter 3.6.)

223



Now fix l and m. Write

Y m
l (θ,φ)= Pm

l (θ) eumφ

We then have the following result which we leave as an exercise,

Exercise 8.14

(L1e23 +L2e31)(e3 Y m
l )=ħ e1(l+m)l−m+1)Y m−1

l (8.42)

(L1e23 +L2e31)(e123 Y m
l )=−ħ e2(l+m)l−m+1)Y m−1

l (8.43)

(L1e23 +L2e31)(e1 Y m−1
l )=ħ e3Y m

l (8.44)

(L1e23 +L2e31)(e2 Y m−1
l )=−ħ e123Y m

l (8.45)

(L3e12)(e3Y m
l )=ħme3Y m

l (8.46)

(L3e12)(e123Y m
l )=ħme123Y m

l (8.47)

(L3e12)(e1Y m−1
l )=−ħ (m−1)e1Y m−1

l (8.48)

(L3e12)(e2Y m−1
l )=−ħ (m−1)e2Y m−1

l (8.49)

These results are not independent (for example, 8.45 can be derived from 8.44

by multiplying on the left by e12 and rearranging terms.) They are listed here

because they are all necessary for a complete description of L. Also because

L3 is a simple differential operator, the last four equations are trivial.

Note that we have to bear in mind, commutation properties such as e3

commutes with u = e12 and e1u =−ue1.

The results of exercise 8.14 can be expressed more concisely and usefully.

Recalling that M is the space of Pauli spinors, we can extend the definition of

this space by defining (for fixed l, m), Mm
l

as the space of spherical harmonic

spinors spanned by the basis {e123Y m
l

, e3Y m
l

, e1Y m−1
l

, e2Y m−1
l

}. Then

L : Mm
l → Mm

l

and (relative to this basis) can be written as the matrix

L =ħ




m 0 0 −1

0 m 1 0

0 (l+m)(l−m+1) −(m−1) 0

−(l+m)(l−m+1) 0 0 −(m−1)


 . (8.50)
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This gives a decomposition of the angular momentum operator L into 4×4

matrices each acting on a space Mm
l

.

Exercise 8.15 Show that if l 6= 0,

1. the eigenvalues λ of L are −ħ l and ħ(l+1) each with multiplicity 2, and

that

2. a basis for the respective eigenvectors can be taken as

(case λ=−ħ l)




1

0

0

l+m


 ,




0

1

−(l+m)

0


 , (8.51)

(case λ=ħ(l+1))




1

0

0

−(l−m+1)


 ,




0

1

l−m+1

0


 . (8.52)

(The case l = 0 requires some careful handling because now Y m
0

only exists

when m = 0. So the space V m
l

is now only the two-dimensional, spanned by

{e123, e3} and consequently L = 0.)

The (basis) eigenvectors of L can be expressed in terms of the spinor

spherical harmonic functions by

(λ=−ħ l) e123Y m
l + (l+m)e2Y m−1

l , e3Y m
l − (l+m)e1Y m−1

l , (8.53)

(λ=ħ(l+1)) e123Y m
l − (l−m+1)e2Y m−1

l , e3Y m
l + (l−m+1)e1Y m−1

l .

(8.54)

This can be simplified. First note that

e123Y m
l + (l+m)e2Y m−1

l =
(
e3Y m

l − (l+m)e1Y m−1
l

)
e12 and (8.55)

e123Y m
l − (l−m+1)e2Y m−1

l =
(
e3Y m

l + (l−m+1)e1Y m−1
l

)
e12. (8.56)

Next suppose that in general we write

λ=ħl (l = 0,±1,±2, . . .)
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then in the case where λ> 0 (i.e. l > 0), we have from (8.56) the basis eigen-

vector

e3Y m
l−1+ (l−m)e1Y m−1

l−1 .

(We call this the basis eigenvector as the other one can be obtained by right

multiplication by e12 as we have just seen.)

On the other hand, if λ< 0 (i.e. l < 0), we have (replacing l by −l in (8.54)

the basis eigenvector

e3Y m
−l + (l−m)e1Y m−1

−l .

Using the result Pm
−l

= Pm
l−1

, we again have e3Y m
l−1+ (l−m)e1Y m−1

l−1 .

We can then summarise the following result for the eigenvalues and

eigenvectors of L.

Theorem 8.1 1. The eigenvalues λ of L are of the form λ=ħl (l = 0,±1,±2, . . .)

2. The eigenspace for λ=ħl is spanned by

{e3Y m
l−1

+ (l − m)e1Y m−1
l−1

, (e3Y m
l−1

(l − m)e1Y m−1
l−1

)e12} with m ranging be-

tween the allowed limits.

Exercise 8.16 Recall the definition

L
2 =−

(
L2

1+L2
2+L2

3

)

(so that L
2 = L2 with the conventional definition of L2).

Use the result (8.27) that

L2 =L
2+ħL

to derive the well-known result that the eigenvalues of L
2 are of the form

ħ2l(l+1) for l = 0,1,2, . . . .

What happens with the negative eigenvalues of L?
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8.5.2 Eigenvalues and eigenvectors of K

It is now easy to find the eigenvalues and eigenvectors of the spin orbital

operator K . Knowing these greatly simplifies the calculation of the energy

spectrum of the hydrogen atom as we will see.

Recall that K = e0L so that in matrix form

K =
[

L−ħ
−(L−ħ)

]
.

Consider the eigenvalue equation KΨ=ħkΨ, i.e.

[
L−ħ

−(L−ħ)

] [
ξ

η

]
=ħk

[
ξ

η

]
. (8.57)

Then

Lξ=ħ(1+k)ξ,

Lη=ħ(1−k)η

where k is an integer.

Define now

ξm
k = e3 Y m

k + (k+1−m)e1 Y m−1
k . (8.58)

Then from theorem 38.1,

1. ξ is in the subspace spanned by {ξm
k

,ξm
k

e12} while,

2. η is in the subspace spanned by {ξm
−k

,ξm
−k

e12}.

In other words, the eigenvectors Ψ corresponding to the eigenvalue k are

of the form

Ψ=Ψ
m
k =

[
ξm

k
(a+be12)

ξm
−k

(c+de12)

]
(8.59)

where a,b, c,d are real and independent of θ and φ. (They may depend on r

though, an important point which we will use in the next theorem.)
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We will need the following result which enables us to interchange the two

components of a Dirac spinor. The result in turn depends on the following

two recurrence identities for associated Legendre polynomials (for details,

see e.g. [1]).

Pm
k−1 = cosθPm

k + (k+1−m)sinθPm−1
k , (8.60)

sinθPm
k = (k+1−m)cosθPm−1

k − (k+m−1)Pm−1
k−1 . (8.61)

Theorem 8.2 If er is expressed in 2×2 matrix form and

Ψ
m
k =

[
ξm

k
f (r)

ξm
−k

g(r)

]

as above, with f and g taking values in R
⊕

Re12 then

erΨ
m
k =

[
ξm

k
g(r)

ξm
−k

f (r)

]
e12. (8.62)

Proof: Since

er =
x

r
= sinθ cosφ e1 +sinθsinφ e2 +cosθ e3, (see section 8.2)

then in matrix form

er =
[

0 p

p 0

]
(8.63)

where p is the pure quaternion

p = sinθ cosφ e23 +sinθsinφ e31 +cosθ e12

and so

erΨ
m
k =

[
0 p

p 0

][
ξm

k
f (r)

ξm
−k

g(r)

]
=

[
pξm

−k
g(r)

pξm
k

f (r)

]
. (8.64)

So it suffices to show that pξm
k
= ξm

−k
e12. We can write

p = cosθ e12 +sinθ
(
cosφ+ e12 sinφ

)
e23 = cosθ e12 +sinθ

(
ee12φ

)
e23.
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Then

pξm
k =

(
cosθ e12 +sinθ

(
ee12φ

)
e23

) (
e3 Y m

k + (k+1−m)e1 Y m−1
k

)

= e123

(
cosθY m

k + (k+1−m)sinθ ee12φY m−1
k

)

+
(
(k+1−m)cosθ e2 Y m−1

k −sinθ ee12φ e2 Y m
k

)

= e123 Y m
k−1 + e2

(
(k+1−m)cosθY m−1

k −sinθ e−e12φY m
k

)
(
using (8.61) and ee12φ e2 = e2 e−e12φ

)

= e123 Y m
k−1 + e2 (k+m−1)Y m−1

k−1 by (8.62)

=
(
e3Y m

k−1 − (k+m−1)e1 Y m−1
k−1

)
e12

=
(
e3Y m

−k − (k+m−1)e1 Y m−1
−k

)
e12 from (8.???)

= ξm
−ke12 as required.

8.6 The Dirac equation for the hydrogen atom

8.6.1 Note on central potentials

A useful result about the L is (i = 1,2,3) is that they commute with all central

potentials. To see this, if V =V (r), then

∂iV = ∂V

∂xi
=V ′(r)

xi

r

so that for all i, j and functions ψ (which could be the component of a Dirac

spinor)
[
xi∂ j,V

]
ψ= xi∂ j(Vψ)−V xi∂ jψ

= xi(∂ jV )ψ+ xiV∂ jψ−V xi∂ jψ

= xi(∂ jV )ψ

= xix j

r
V ′(r)ψ.

It follows that for all i,

[L i,V ]ψ=−ħ
[
x j∂k − xk∂ j,V

]
ψ (for suitable j, k)

=−ħ
(

x jxk

r
V ′(r)− xkx j

r
V ′(r)

)
ψ= 0
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so that L i commutes with V .

Corollary: It is an easy exercise to show that

[K ,V ]Ψ= 0 (8.65)

for any Dirac spinor Ψ, i.e. K commutes with V .

Exercise 8.17 Derive these results again, this time using the polar coordi-

nate expression for L i. See how easier the problem becomes!

In the case of L0 however, this is not the case.

Exercise 8.18 Show that

[L0,V ]=ħrV ′(r)

and in the case of the Coulomb potential,

[L0,V ]=−ħV . (8.66)

(So we could say that the Coulomb potential V acts as a lowering operator

for L0.)

8.6.2 The conventional treatment

The usual way to treat this case is to start with the (free) Dirac equation in

the form

iħγµ∂µψ−mcψ= 0. (8.67)

For a particle of charge q in an electromagnetic field A = (A), A), we replace

the partial derivatives by the covariant derivatives, i.e. make the transfor-

mation 9

∂µ → Dµ = ∂µ+ i
q

ħc
Aµ

and the Dirac equation then becomes 10

iħγµ
(
∂µ+ i

q

ħc
Aµ

)
ψ−mcψ= 0. (8.68)

9Griffiths 10.38 (p 360)
10See e.g. Cottingham and Greenwood Chapter 7.2
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In the case of the hydrogen atom, we choose (i.e. with the appropriate choice

of units), A0 =
−Zq

r
with Z a constant and A = 0. We then have

iħγ0

(
1

c

∂

∂t
− i

Zq2

ħcr

)
ψ+ iħγi∂iψ−mcψ= 0. (8.69)

so that we have (multiplying by γ0)

iħ
(
1

c

∂

∂t
− i

Zq2

ħcr

)
ψ+ iħγ0γi∂iψ−mcγ0ψ= 0 (8.70)

or (
iħ ∂

∂t
+ Zq2

r

)
ψ+ iħcγ0γi∂iψ−mc2γ0ψ= 0. (8.71)

We want stationary states, i.e. states ψ such that ψ(t, x)=φ(t)Ψ(x). (Here φ

is a complex-valued function of t only and Ψ is a Dirac spinor which depends

only on x.) Then from (8.70),

iħdφ

dt
Ψ+ Zq2

r
φΨ+ iħcφγ0γi∂iΨ−mc2φγ0

Ψ= 0 (8.72)

i.e.11

iħ1

φ

dφ

dt
+ Zq2

r
+ iħcγ0γi(∂iΨ)Ψ−1−mc2(γ0

Ψ)Ψ−1 = 0. (8.73)

From this we find that

iħdφ

dt
= Eφ (8.74)

where E is a constant, i.e.

φ(t)= e−i Et
ħ (8.75)

and Ψ satisfies the equation

E+ Zq2

r
+ iħcγ0γi(∂iΨ)Ψ−1−mc2(γ0

Ψ)Ψ−1 = 0 (8.76)

or

EΨ= mc2γ0
Ψ− iħcγ0γi∂iΨ− Zq2

r
Ψ. (8.77)

11We won’t worry too much here just what Ψ−1 means when Ψ is a Dirac spinor.
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In the spherically symmetric case, we would then write (8.76) in spheri-

cal coordinates, i.e. write γi∂iΨ in spherical coordinate form. Then separa-

tion of variables again, leads to (8.76) splitting into a radial and an angular

part, each of which is then solved. We omit the details since they occur again

in the Clifford algebra setting which we now consider.

8.7 Clifford algebra version

We begin with the Dirac equation in the form

dψ+ mc

ħ
ψu = 0 (8.78)

where again we take u = e12 and we write the Dirac spinor ψ in the usual

form

ψ=
[
ξ

η

]

with ξ, η Pauli spinors, i.e. elements of Cl−(0,3).

Consider the coupling of a Dirac particle with an electromagnetic field

given by A = A0e0 + A, which is a 1-vector in Cl(1,3) (written, like d as a

2×2 matrix.)

The coupling means that we should make the transformation (see chap-

ter 6)

dψ→ dψ+ qAψu.

In the case of the hydrogen atom, we are interested in the case where A0 =
V (r) and A = 0. Then with this transformation, the Dirac equation becomes

e0∂0ψ+ qV e0ψu−
(
e1∂1ψ+·· ·

)
+ mc

ħ
ψu = 0. (8.79)

To bring this into a more usual form, write ∂0 =
1

c
∂t so that

e0
∂ψ

∂t
u = c

(
e1∂1ψ+·· ·

)
u+ mc2

ħ
ψ+ q cV e0ψ. (8.80)

To find the energy levels, (which means separating out the time component),

we firstly write this as

ħ∂ψ
∂t

u =ħc
(
e01∂1ψ+·· ·

)
u+mc2e0ψ+ qħcVψ (8.81)
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and now separate out the time variable, i.e. put

ψ(t)=Ψ(x)φ(t)

with φ taking values in the 2-space defined by 1, u and Ψ a Dirac spinor.

Then we have from (8.80) 12

ħΨ∂φ

∂t
u =ħc (e01∂1Ψ+·· · )φu+mc2 e0Ψφ+ qħcVΨφ (8.82)

i.e.

ħΨ1

φ

∂φ

∂t
u =ħc (e01∂1Ψ+·· · )u+mc2 e0Ψ+ qħcVΨ. (8.83)

This gives the pair of equations

ħ1

φ

∂φ

∂t
u = E (8.84)

ħc (e01∂1Ψ+·· · )u+mc2 e0Ψ+ qħcVΨ= EΨ (8.85)

for some real constant E.

The first equation gives as expected

φ(t)= exp
−uEt

ħ
(8.86)

while the second equation (8.84) is the time-independent Dirac equation and

defines the Dirac Hamiltonian HD by

HDΨ=ħc (e01∂1Ψ+·· · )u+mc2 e0Ψ+ qħcVΨ, (8.87)

or in terms of the momentum vector p,

HDΨ=−ce0 pΨu+mc2 e0Ψ+ qħcVΨ. (8.88)

So the problem is now an eigenvalue problem, i.e.to find the eigenvalues E

of HD . This problem is considerably simplified if we know of a suitable op-

erator which commute with HD , for then we can use the eigenvectors of this

operator.

12We must be careful in the order of terms since φ and Ψ need not commute.
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8.7.1 Calculating the energy levels

There is a number of operators which commute with HD and with each

other. Their eigenvalues and eigenvectors are relatively easy to find and

this means that solving the time-dependent Dirac equation becomes easier

too as we need only look for solutions Ψ corresponding to those eigenvectors.

Among these operators the ones usually considered, are the angular mo-

mentum operator L together with the spin-orbit operator K . Other operators

such as the total angular momentum operator J can be derived in terms of

these. We will see that in fact, only the operator K need be involved.

Firstly let us note that K commutes with HD and therefore will have

common eigenvectors. To see this, recall from section 8.4.1 that K commutes

with e0 p, while from the corollary in section 8.6.1, K commutes with V .

Putting these two together gives the required result.

To see the importance of this result, note that the (stationary) Dirac

equation

HDΨ= EΨ

can be written as a system of three equations, one for each of the polar coor-

dinates. So far as the energy spectrum is concerned, the most important is

the radial equation in r. The three equations are naturally intertwined and

to separate out the radial equation, we will rewrite the momentum operator

p in HD in terms of K . Then (since K commutes with HD) we can choose Ψ

to be an eigenvector of K . The result is that the angular partial derivatives

( ∂
∂θ

, ∂
∂φ

) disappear and we obtain the radial equation. Let us look at this in

more detail.

Firstly recall that

xp = L0 +L = L0+L1e23 +L2e31 +L3e12

so that (see exercise 8.6)

−r2 p = x2 p = x(xp)

= x(L0 +L)

= x(ħr
∂

∂r
+L)
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or

p =− x

r2

(
ħr

∂

∂r
+L

)
. (8.89)

Since r
∂Ψ

∂r
= ∂(rΨ)

∂r
−Ψ and because L−ħ= e0K we have

pΨ=− x

r2

(
ħ∂(rΨ)

∂r
+ (L−ħ)Ψ

)
(8.90)

=−1

r
er

(
ħ∂(rΨ)

∂r
+ e0KΨ

)
(since x = rer). (8.91)

The Dirac Hamiltonian is then (see (8.87))

HDΨ=−c e0 pΨu+mc2 e0Ψ+ qħcVΨ (8.92)

= c

r
e0 er

(
ħ∂(rΨ)

∂r
+ e0KΨ

)
u++mc2 e0Ψ+ qħcVΨ. (8.93)

We see that in this last equation, the angular partial derivatives are both

contained in the operator K term. It follows that if we take Ψ to be an eigen-

vector of K (as we may since K commutes with HD) we are left with precisely

the radial equation.

Suppose that Ψ(=Ψ
m
k

) is an eigenvector of K , i.e.

KΨ=ħkΨ (8.94)

so that the stationary Dirac equation becomes

EΨ= HDΨ= c

r
e0 er

(
ħ∂(rΨ)

∂r
+ħk e0Ψ

)
u+mc2 e0Ψ+ qħcVΨ. (8.95)

Let us put this in vector form to make it clearer just how the two components

of Ψ behave. (If you prefer, you can always leave it in the usual Clifford al-

gebra notation, noting that the vector notation Ψ=
[
ξ

η

]
is only another way

of writing Ψ= ξ+η e0123.)

Since Ψ is an eigenvector of K corresponding to the eigenvalue ħk and

by (8.58) we can write

Ψ=
[
ξm

k
F(r)

r

ξm
−k

G(r)
r

]
(8.96)
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where F and G take values in the subspace spanned by {1,u = e12}. (The

factor 1
r

is included to simplify later calculations.)

Then (by theorem 8.2 and recalling that e0er =−er e0) (8.95) becomes

E

[
ξm

k
F(r)

r

ξm
−k

G(r)
r

]
= ħc

r
e0 er

[
ξm

k
∂F
∂r

ξm
−k

∂G
∂r

]
e12 −

ħkc

r
er

[
ξm

k
F
r

ξm
−k

G
r

]
e12 (8.97)

+mc2 e0

[
ξm

k
F
r

ξm
−k

G
r

]
+ qħcV

[
ξm

k
F
r

ξm
−k

G
r

]
(8.98)

=−ħc

r
e0

[
ξm

k
∂G
∂r

ξm
−k

∂F
∂r

]
+ ħck

r

[
ξm

k
G
r

ξm
−k

F
r

]
(8.99)

+mc2 e0

[
ξm

k
F
r

ξm
−k

G
r

]
+ qħcV

[
ξm

k
F
r

ξm
−k

G
r

]
(8.100)

=−ħc

r

[
ξm

k
∂G
∂r

−ξm
−k

∂F
∂r

]
+ ħck

r

[
ξm

k
G
r

ξm
−k

F
r

]
(8.101)

+mc2

[
ξm

k
F
r

−ξm
−k

G
r

]
+ qħcV

[
ξm

k
F
r

ξm
−k

G
r

]
. (8.102)

From this we have the system of equations

E F =−ħc
∂G

∂r
+ ħkc

r
G+mc2 F + qħcV F

EG =ħc
∂F

∂r
+ ħkc

r
F −mc2 G+ qħcV G

or in more recognisable form

(
E−mc2 − qħcV

)
F =−ħc

(
∂G

∂r
− kG

r

)
(8.103)

(
E+mc2 − qħcV

)
G =ħc

(
∂F

∂r
+ kF

r

)
. (8.104)

To simplify these equations somewhat, put

k1 =

√
mc2 +E

ħc
, k2 =

√
mc2 −E

ħc

and write the Coulomb potential V in the form

qV =−α

r
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to obtain (inverting the order of the equations)

∂F

∂r
+ kF

r
=

(
k2

1+
α

r

)
G (8.105)

∂G

∂r
− kG

r
=

(
k2

2−
α

r

)
F. (8.106)

In the limiting case where r →∞, these equations simplify to

∂F

∂r
= k2

1 G (8.107)

∂G

∂r
= k2

2 F (8.108)

so that
d2 F

dr2
= k2

1k2
2F.

So bearing in mind that F should be normalisable, F behaves like e−λr where

λ= k1k2. The same result holds for G.

Next define U1, U2 by

F = k1 e−λr (U1 +U2) (8.109)

G = k2 e−λr (U1 −U2) . (8.110)

Then

U1 =
eλr

2

(
F

k1

+ G

k2

)

U2 =
eλr

2

(
F

k1

− G

k2

)
.
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Using (8.106) and (8.107) and recalling the definitions of k1, k2,

dU1

dr
= λeλr

2

(
F

k1

+ G

k2

)
+ eλr

2

(
1

k1

dF

dr
+ 1

k2

dG

dr

)

=λU1 +
eλr

2k1

((
k2

1+
α

r

)
G− kF

r

)
+ eλr

2k2

((
k2

2−
α

r

)
F + kG

r

)

=λU1 +
eλr

2
(k1G+k2F)+

αeλr

2r

(
G

k1

− F

k2

)
− keλr

2r

(
F

k1

− G

k2

)

=λU1 +k1k2U1 +
α

2r

((
k2

k1

− k1

k2

)
U1 −

(
k2

k1

+ k1

k2

)
U2

)
− kU2

r

=
(
2λ+ α

2r

(
k2

k1

− k1

k2

))
U1 −

(
α

2r

(
k2

k1

+ k1

k2

)
+ k

r

)
U2

=
(
2λ− αE

ħcλr

)
U1 −

(
mc2α

ħcλr
+ k

r

)
U2.

Similarly

dU2

dr
= λeλr

2

(
F

k1

− G

k2

)
+ eλr

2

(
1

k1

dF

dr
− 1

k2

dG

dr

)

=λU2 +
eλr

2k1

((
k2

1+
α

r

)
G− kF

r

)
− eλr

2k2

((
k2

2−
α

r

)
F + kG

r

)

=λU2 +
eλr

2
(k1G−k2F)+

αeλr

2r

(
G

k1

+ F

k2

)
− keλr

2r

(
F

k1

+ G

k2

)

=λU2 −k1k2U2 +
α

2r

((
k2

k1

+ k1

k2

)
U1 −

(
k2

k1

− k1

k2

)
U2

)
− kU1

r

=
(
α

2r

(
k2

k1

+ k1

k2

)
− k

r

)
U1 −

α

2r

(
k2

k1

− k1

k2

)
U2

=
(

mc2α

ħcλr
− k

r

)
U1+

αE

ħcλr
U2.

Simplifying further, let ρ = 2λr and obtain the system

dU1

dρ
=

(
1− αE

ħcλρ

)
U1 −

(
mc2α

ħcλρ
+ k

ρ

)
U2 (8.111)

dU2

dρ
=

(
mc2α

ħcλρ
− k

ρ

)
U1 +

αE

ħcλρ
U2 (8.112)
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We can now use the first order system (8.111), (8.112) to obtain a second

order equation for U2. From (8.112),

U1 =
ħcλ

mc2α−ħcλk

(
ρ

dU2

dρ
− αE

ħcλ
U2

)

and substituting this for U in (8.111),

ħcλ

mc2α−ħcλk

(
ρ

d2U2

dρ2
+ dU2

dρ
− αE

ħcλ

dU2

dρ

)

=
(
1− αE

ħcλρ

)( ħcλ

mc2α−ħcλk

)(
ρ

dU2

dρ
− αE

ħcλ
U2

)
−

(
mc2α

ħcλρ
+ k

ρ

)
U2.

A little algebra now gives this in a more digestible form as

ρ
d2U2

dρ2
+ (1−ρ)

dU2

dρ
+

(
αE

ħcλ
+ (k1k2α)2 − (kλ)2

λ2ρ

)
U2 = 0. (8.113)

Consider finally the asymptotic case when ρ is small. Returning for the

moment to the equations for F and G, (8.105) and (8.106) become

dF

dρ
+ kF

ρ
= αG

ρ
(8.114)

dG

dρ
− kG

ρ
=−αF

ρ
. (8.115)

These equations can be separated as two second order equations. To find the

equation for F, start with (8.114)

ρ
dF

dρ
=αG−kF so that

ρ
d2F

dρ2
+ dF

dρ
=α

dG

dρ
−k

dF

dρ

=α

(
kG

ρ
− αF

ρ

)
−k

dF

dρ
by (8.115)

i.e. ρ2 d2F

dρ2
+ρ

dF

dρ
=αkG−α2 F −kρ

dF

dρ

= k

(
ρ

dF

dρ
+kF

)
−α2 F −kρ

dF

dρ
by (8.114)
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which simplifies to

ρ2 d2F

dρ2
+ρ

dF

dρ
+

(
α2−k2

)
F = 0. (8.116)

This is a homogeneous Euler-Cauchy differential equation which has the

two basic solutions ργ1 , ργ2 where γ,γ2 are the roots of the characteristic

equation

γ(γ−1)+γ+ (α2−k2)= 0

i.e. γi =±
p

k2−α2. Since normalisability implies that F is finite at ρ = 0, we

choose the basic (asymptotic) solution to be F = ργ where γ=
p

k2−α2.

Exercise 8.19 Show that G also satisfies the differential equation (8.116).

Deduce that U and V are also asymptotically of this form.

So now write

U2(ρ)= ργW(ρ). (8.117)

Equation (8.113) becomes

0= ργ+1 d2W

dρ2
+2γργ dW

dρ
+γ(γ−1)ργ−1

+ (1−ρ)

(
γργ−1W +ργ dW

dρ

)

+
(
αE

ħcλ
+ (k1k2α)2 − (kλ)2

λ2ρ

)
ργW .

Dividing by ργ and reorganising terms gives

ργ d2W

dρ2
+

(
2γ+1−ρ

)
W +

(
αE

ħcλ
−γ+ (γλ)2 + (k1k2α)2 − (kλ)2

λ2ρ

)
W = 0

which simplifies to

ρ
d2W

dρ2

x

1!
+

(
2γ+1−ρ

)
W +

(
αE

ħcλ
−γ

)
W = 0. (8.118)

This equation will give us the allowed values of E. (8.118) is Kummer’s (or

Laguerre’s associated) differential equation (see e.g. [3]) usually written in

the form

x
d2 y

dx2
+ (ν+1− x)

d y

dx
+λy= 0
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which has a basic solution (a confluent hypergeometric function)

y= 1− λ

ν+1

x

1!
− λ(λ−1)

(ν+1)(ν+2)

x2

2!
− λ(λ−1)(λ−2)

(ν+1)(ν+2)(ν+3)

x3

3!
−·· · .

The solution grows exponentially unless λ is a non-negative integer, in which

case the solution is a finite series which can be written in the form

y=
λ!Lν

λ
(x)

(ν+1)λ

whee we have used Pochhammer’s symbol (a)n = a(a+1) · · · (a+n−1).

By (8.118), all this implies that if E is an allowable energy level, then

αE

ħcλ
−γ= n = 0,1,2,3, . . . (8.119)

Since γ=
√

k2−α2 and λ= k1k2 =
p

m2c4 −E2

ħc
,

αE
p

m2c4 −E2
−

√
k2−α2 = n

and rearranging terms gives

E = Enk =
mc2

√
n+

p
k2−α2

√
α2+n+

p
k2−α2

, n,k = 0,1,2,3, . . . (8.120)

for the allowed energy levels. This is the result we were after.
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