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Abstract

In the Minimum Installation Path problem, we are given a graph G with
edge weights w(·) and two vertices s, t of G. We want to assign a non-negative
power p : V → R≥0 to the vertices of G, so that the activated edges {uv ∈
E(G) | p(u) + p(v) ≥ w(uv)} contain some s-t-path, and minimize the sum of
assigned powers. In the Minimum Barrier Shrinkage problem, we are given,
in the plane, a family of disks and two points x and y. The task is to shrink
the disks, each one possibly by a different amount, so that we can draw an x-y
curve that is disjoint from the interior of the shrunken disks, and the sum of
the decreases in the radii is minimized.

We show that the Minimum Installation Path and the Minimum Bar-
rier Shrinkage problems (or, more precisely, the natural decision problems
associated with them) are weakly NP-hard.

Keywords: installation path, activation network, barrier problem, NP-hardness

1. Introduction

Let X be a subset of the plane, let x and y be points in X, and let SS be a
family of shapes in the plane. An x-y curve is a curve in R2 with endpoints x
and y. We say that SS separates x and y in X if each x-y curve contained in
X intersects some shape from SS. Let D(c, r) denote the open disk centered at
c with radius r.

In this work we show that the following two decision problems are weakly
NP-hard. This means that in our reduction we will use numbers that are expo-
nentially large, but have polynomial length when written in binary.

Minimum Barrier Shrinkage.
Input: a family {D(ci, ri) | i = 1, . . . , n} of n open disks; two points
x, y ∈ R2; a real number C.
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Output: Whether there exist shrinking values δ1, . . . , δn ≥ 0 such
that their cost

∑
i δi is at most C and the family of open disks

{D(ci, ri − δi) | i = 1, . . . n} does not separate x and y in R2.

Minimum Installation Path.
Input: a graph G = (V,E) with positive edge weights w : E → R>0;
two vertices s and t of G; a real number C.
Output: Whether there exists an assignment of powers p : V →
R≥0 to the vertices such that its cost

∑
v∈V p(v) is at most C and

the activated edges E(p) = {uv ∈ E | p(u)+p(v) ≥ w(uv)} contain
an s-t-path.

We next discuss the motivating and closest related work.

Minimum barrier shrinkage. Kumar, Lai and A. Arora [10] introduced the fol-
lowing barrier resilience problem in the plane. The input is specified by a
domain X ⊆ R2, a family D of disks in R2, and two points x and y in X. The
task is to find an x-y curve in X that intersects as few disks of D as possible,
without counting multiplicities. An alternative statement is that we want to
find a minimum cardinality subfamily D′ ⊆ D such that D \ D′ does not sepa-
rate x and y in X. The intuition is that we have sensors detecting movements
from x to y, and we want to know how many sensors can suffer a total failure
and still any agent moving from x to y within X is detected by some of the
remaining sensors.

Kumar, Lai and A. Arora [10] showed that the problem can be solved in
polynomial time when the domain X is a vertical strip bounded between two
vertical lines ` and `′, the point x lies above and the point y lies below all disks
of D. Let us call this scenario the rectangular scenario. The main insight
is to consider the intersection graph G defined by D ∪ {`, `′} and to note that
the solution is the maximum number of `-`′ internally vertex-disjoint paths in
G. Thus, the problem can be solved in polynomial time by solving maximum
flow problems. The same argument works for any family of shapes SS, not just
disks, as far as each shape of SS is connected.

Despite the claim in the preliminary version [9] of [10], we do not know
whether the barrier resilience problem can be solved exactly in polynomial time
when the domain X is all of R2. In fact, we know that when X = R2 and the
family D of disks is replaced by some other family SS of shapes, the problem is
NP-hard [2, 8, 14]. The difference between the strip and the whole plane is that
in the former case we can use Menger’s theorem to relate the number of `-`′

paths in the intersection graph of SS∪{`, `′} to the `-`′ vertex connectivity, but
no such statement applies to cycles that “separate” x and y. The computational
complexity of the barrier problem in the plane for (unit) disks and (unit) squares
is a challenging open problem, and several approximation algorithms have been
devised [4, 6, 8].

Modeling the fact that sensors are less reliable further away from their place-
ment, Cabello et al. [5] considered the problem of minimizing the total shrink-
age of the disks such that there is an x-y curve disjoint from the interior of the
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disks. This is precisely the problem Minimum Barrier Shrinkage. Cabello
et al. also provided an FPTAS for the rectangular scenario. The algorithm uses
the connection to vertex-disjoint paths.

We believe that showing NP-hardness for the problem Minimum Barrier
Shrinkage is interesting because of the computational complexity of two closely
related problems, the barrier resilience problem for X = R2 and the minimum
barrier shrinkage problem in the rectangular scenario, are unknown.

Minimum installation path. There is a rich literature on so-called Activation
Network problems. The task is to assign a power p(v) to each vertex v of an
edge-weighted graph G = (V,E) so that the activated edges satisfy a certain
connectivity property, such as for example spanning the whole graph. Whether
an edge uv is activated depends only on p(u) and p(v). In the most general
scenario, one only assumes an oracle telling, given p(u) and p(v), whether u
and v are activated, together with a natural monotonicity constraint: if some
choice of p(u) and p(v) activates uv, then increasing the powers at u and v
still leaves uv activated. In many cases, the following simplifying assumption is
made: the possible powers at the vertices are discretized as a finite set of values,
denoted by D (the domain). See the survey by Nutov [12] for an overview of
the area.

In this context, Panigrahi [13, Section 4.1] considered the Minimum Acti-
vation Path problem: the connectivity constraint is that the activated edges
must include a path between two fixed vertices s and t of G. He provided an
algorithm with running time O(poly(n, |D|)), where n is the number of vertices
of G and D is the finite domain of values for the power assignments.

Compared to the problem studied by Panigrahi, our Minimum Installa-
tion Path has two differences. First, power assignments are not discretized
and can be arbitrary nonnegative real numbers. Second, whether an edge uv is
activated is simply determined by whether p(u) + p(v) ≥ w(uv). In this article,
we show that the Minimum Installation Path is weakly NP-hard. We also
provide a simple fully polynomial time approximation scheme (FPTAS) relying
on the algorithm by Panigrahi [13].

Our weak NP-hardness result of the Minimum Installation Path problem
is consistent with the result of Panigrahi. In our reduction, we use large integer
weights: they have a polynomial bit length, but they are exponentially large.
Taking D = Z∩ [0,maxuv w(uv)] in the algorithm of Panigrahi, one only gets a
pseudopolynomial time algorithm for such instances. This is consistent with a
weakly NP-hardness proof.

In a similar vein, we remark that Alqahtani and Erlebach [1] presented algo-
rithms parameterized by the treewidth of the graph in the case where the goal
is to activate k node-disjoint st-paths, or node-disjoint paths between k pairs of
terminals. See also Lando and Nutov [11] and Althaus et al. [3].

Relation between the problems. We are not aware of any polynomial-time re-
duction from one problem to the other. Nevertheless, the NP-hardness proofs
for both problems are very similar. The underlying connection between both
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problems is the following classical property: in a planar graph G = (V,E), a set
of edges F ⊂ E is a minimum s-t cut if and only if, in the dual graph G∗, the
edges {e∗ | e ∈ F} form a shortest cycle separating the face s∗ from the face t∗.
This relation does not directly provide a reduction even in the case of planar
graphs, but does inspire the adaptation we make. Actually, our hardness proof
for Minimum Barrier Shrinkage reuses components of the hardness proof
for Minimum Installation Path; we reformulate some special instances of
Minimum Barrier Shrinkage in terms of graphs and then remark that each
reformulated instance is equivalent to an instance of Minimum Installation
Path.

Organization. It seems more convenient to present the NP-hardness of Min-
imum Installation Path first. We achieve this in Section 2, together with
an FPTAS for this problem. Then, in Section 3, we show that the Minimum
Barrier Shrinkage problem is NP-hard.

2. Minimum installation path

In this section we study the complexity of the Minimum Installation
Path problem is NP-hard. We first provide a simple FPTAS for this problem,
and then prove that it is weakly NP-hard.

2.1. A simple FPTAS

As a side note, we show that the main idea used by Cabello et al. [5] can be
adapted to lead to a simple FPTAS for Minimum Installation Path. Let us
consider an instance of that problem.

Lemma 1. In polynomial time, we can compute the smallest value λ such that
setting p(v) = λ for all vertices v of G activates at least one st-path.

Proof. Whether one st-path is activated by the power assignment p(v) = λ (for
each vertex v) depends only on the set of activated edges. So, for some edge uv,
the minimum value of λ activating at least one st-path is the minimum value
of λ activating edge uv. In other words, the minimum value of λ is necessarily
of the form w(uv)/2 for some edge uv. So, for each edge uv, we determine
whether putting power w(uv)/2 to all vertices activates an st-path, and return
the smallest value that does so.

Lemma 2. Let OPT be the optimum value of the Minimum Installation
Path instance. Then:

1. in an optimal solution, the power assigned to every vertex is at most nλ,
where n is the number of vertices of the input graph G;

2. λ ≤ OPT.

Proof. 1. OPT ≤ nλ because the definition of λ implies a feasible solution
of cost nλ. This implies (1);
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2. λ ≤ OPT because otherwise, some st-path would be activated by some
powers strictly smaller than λ at each vertex, contradicting the definition
of λ.

Proposition 3. Minimum Installation Path admits an FPTAS.

Proof. Let ε > 0 be given. We first compute λ using Lemma 1. Then we apply
the algorithm by Panigrahi [13, Section 4.1] to the instance, in which the domain
is defined by

D = {kελ/n | k = 0, . . . , n2/ε}.

By Lemma 2(1), we obtain a feasible solution to the original problem, the
cost of which is within an additive error of at most ελ/n per vertex from OPT,
hence with an additive error of at most ελ overall. By Lemma 2(2), this is at
most εOPT. Clearly the running time is polynomial in n and 1/ε.

We can readily extend this argument to more general activation functions.
For example, assume that each edge uv is activated if and only if α(uv)p(u) +
β(uv)p(v) ≥ w(uv), for some positive constants α(uv), β(uv), and w(uv). (Our
setup corresponds to α(uv) = β(uv) = 1.) The same argument as above shows
that this extended version of Minimum Installation Path admits an FPTAS.

2.2. Greedy solution in a path

In the rest of Section 2, we focus on proving NP-hardness of Minimum
Installation Path. We first consider the particular case of a path.

Consider a graph G and a path π = v0, . . . , vn in G. We define greedily a
power assignment p∗π on the vertices of G to activate π, in a way that power
is pushed forward along π as much as possible. Formally, the greedy power
assignment along π is

p∗π(v) =


0 if v does not belong to π or v = v0,

0 if v = vi, i > 0 and p∗π(vi−1) ≥ w(vi−1vi),

w(vi−1vi)− p∗π(vi−1) if v = vi, i > 0 and p∗π(vi−1) < w(vi−1vi).

(1)
For a power assignment p, let cost(p) denote the total cost of p, namely, the

sum of the powers at the vertices. For path π, let opt(π) be the cost of the
minimum cost power assignment that activates π. The following lemma tells
that the greedy power assignment along π has minimum cost to activate π.

Lemma 4. For each path π, cost(p∗π) = opt(π).

Proof. It is clear that p∗π activates all the edges of π. Let p be another power
assignment activating all edges of π. We have to show that cost(p∗π) ≤ cost(p).

We can assume that p(v) = 0 at all vertices v outside π. Otherwise, we
change p to have this property. This reassignment of power would decrease the
cost and would keep activating the path π.

The strategy is to gradually transform p into p∗π while keeping all edges of π
activated and without increasing the value of cost(p). The property cost(p∗π) ≤
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cost(p) is trivially correct if p = p∗π. So assume p 6= p∗π and let i be the small-
est integer such that p(vi) 6= p∗π(vi). Because all edges are activated, and by
construction of p∗π, we must have p(vi) > p∗π(vi). Let ∆ = p(vi) − p∗π(vi) > 0.
There are two cases:

• Assume i ≤ n − 1. Update p by decreasing p(vi) by ∆ and increasing
p(vi+1) by ∆. Since each edge of π is activated by p∗π and by p before this
transformation, each edge of π is still activated by the new p. Moreover,
cost(p) is unchanged.

• Assume i = n. Update p by decreasing p(vn) by ∆. Again, each edge of π
is still activated. The cost has decreased by ∆.

This transformation does not increase the value of cost(p). Moreover, the new
power assignment coincides with p∗π on vertices v0, . . . , vi. Thus, after a finite
number of steps, p = p∗π. This proves the lemma.

For the path π = v0, . . . , vn, let ϕ(π) = p∗π(vn) ≥ 0. That is, ϕ(π) is the
power assignment given by the greedy power assignment along π to the final
vertex. Since p∗π(vn) depends on p∗π(vn−1), we have the following.

Lemma 5. Let π be the path v0, . . . , vn and let π′ be the path v0, . . . , vn, u.
(Thus, π′ extends π by an additional edge vnu.) Then ϕ(π′) = max{0, w(vnu)−
ϕ(π)} and opt(π′) = opt(π) + ϕ(π′).

Proof. From the definition of the greedy power assignment along π and π′, the
power assignments p∗π and p∗π′ differ only at vertex u. We have:

ϕ(π′) = p∗π′(u) = max{0, w(vnu)− p∗π′(vn)} = max{0, w(vnu)− p∗π(vn)}
= max{0, w(vnu)− ϕ(π))}.

This proves the claim for ϕ(π′). Because of Lemma 4 for π and π′ we also get

opt(π′) = cost(p∗π′) = cost(p∗π) + p∗π′(u)− p∗π(u)

= opt(π) + ϕ(π′)− 0.

A consequence of Lemma 4 is the following integrality property.

Lemma 6. Assume that the weight function w : E(G)→ R>0 takes only integer
values, and that C is also an integer. Then, for any α ∈ [0, 1), Minimum
Installation Path(G,w, s, t, C) has a positive answer if and only if Minimum
Installation Path(G,w, s, t, C + α) has a positive answer.

Proof. Assume that Minimum Installation Path(G,w, s, t, C + α) is has a
positive answer. Consider a power assignment p corresponding to a feasible
solution of minimum cost (at most C + α); let π be an s-t path activated by p.
Because of Lemma 4 we have cost(p) = opt(π) = cost(p∗π). From the inductive
definition (1) of p∗π, we see that p∗π assigns integral powers to all vertices, and
thus cost(p∗π) =

∑
v p
∗
π(v) is an integer, which is at most C. So Minimum

Installation Path(G,w, s, t, C) has a positive answer.
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u1s u2 u3
u4 t

L+ 2a1 L+ 2a1

L+ 3a1L+ a1

L+ 2a2 L+ 2a2

L+ 3a2L+ a2

L+ 2a3 L+ 2a3

L+ 3a3L+ a3

L+ 2a4 L+ 2a4

L+ 3a4L+ a4

2b

Figure 1: The graph G when n = 4.

2.3. The reduction

Now we provide the reduction. The reduction is inspired by the reduction
used to show that the restricted shortest path problem is NP-hard; this seems
to be folklore and attributed to Megiddo by Garey and Johnson [7, Problem
ND30]. We use the notation [n] = {1, . . . , n} and reduce from the following
problem.

Subset Sum
Input: a sequence a1, . . . , an of positive integers and a positive inte-
ger b.
Question: is there a set of indices I ⊆ [n] such that

∑
i∈I ai = b?

The problem Subset Sum is one of the standard weakly NP-hard problems
that can be solved in pseudopolynomial time via dynamic programming [7,
Section 4.2]. In particular, when the numbers ai are bounded by a polynomial
in n, the problem can be solved in polynomial time.

Set L to be an integer strictly larger than 2
∑
i∈[n] ai. Then, for each I ⊆ [n]

we have 2
∑
i∈I ai < L.

We construct a graph G = G(a1, . . . , an, b) as follows (see Figure 1). G will
include vertices s, t, u1, . . . , un. Let us use the notation u0 = s. For each
i ∈ [n], we put between ui−1 and ui two paths, each of length two, one path
with weights L+ 2ai and L+ 2ai, and the other path with weights L+ ai and
L+ 3ai, as we go from ui−1 to ui. Finally, we put the edge unt with weight 2b.
This finishes the construction of G.

Lemma 7. There exists a path π from s to un in G with opt(π) = c and
ϕ(π) = r if and only if there exists I ⊆ [n] such that

r = 2
∑
i∈I

ai and c = nL+ 2
∑
i∈[n]

ai +
∑
i∈I

ai.

Proof. Consider the two paths, each of length two, connecting ui−1 to ui. The
upper choice at i is the path with weights L+ 2ai; similarly, the lower choice at
i is the path with weights L+ ai and L+ 3ai. See Figure 2.

Assume that we have a path π′ that goes from s = u0 to ui−1 with ϕ(π′) ≤ L.
Let π′u be the concatenation of π′ with the upper choice, and let π′` be the
concatenation of π′ with the lower choice. Because of Lemma 5, we obtain that
opt(π′u) = opt(π′)+L+2ai and ϕ(π′u) = ϕ(π′), while opt(π′`) = opt(π′)+L+3ai
and ϕ(π`) = ϕ(π′) + 2ai. See Figure 2. Here, the assumption ϕ(π′) ≤ L has
been important to ensure that in using Lemma 5 the maximum defining ϕ(·) is

7



lower choice

upper choice

L+ 2ai L+ 2ai

L+ 3aiL+ ai

L+ 2ai L+ 2ai

c

r
L+ 3aiL+ ai

L+ ai − r

c+ L+ ai − r

c+ L+ 3ai
r + 2ai

ui−1 ui

opt(π′)

ϕ(π′) c+ L+ 2ai
r

L+ 2ai − r

c+ L+ 2ai − r

c

r

Figure 2: Left: Upper and lower choice at i. Right: the change in opt(π′) and ϕ(π′) depending
on whether the path is extended by the upper or the lower choice.

not at 0. It easily follows by induction on i that, for each path π′ from s = u0
to ui, we indeed have ϕ(π′) ≤

∑i
j=1 2ai, and thus the hypothesis is fulfilled for

each i ∈ [n].
The intuition here is that the lower choice has a larger cost, but keeps more

power at the extreme of the prefix path for later use. See Figure 3 for a concrete
example showing the values opt(π′) and ϕ(π′) for paths π′ from s = u0 to ui.
It also helps understanding the idea behind the reduction.

Consider now a path π from s = u0 to un. Let I be the set of indices i ∈ [n]
where the path takes the lower choice at i. From the previous discussion and a
simple induction we have

opt(π) =
∑

i∈[n]\I

(L+ 2ai) +
∑
i∈I

(L+ 3ai) = nL+
∑
i∈[n]

2ai +
∑
i∈I

ai

and
ϕ(π) = 2

∑
i∈I

ai ≤ L.

Since all the paths from s to un must follow the upper or lower choice at each
i ∈ [n], the result follows.

Lemma 8. For any real numbers A and B we have

A+ max{2B − 2A, 0} ≤ B =⇒ A = B.

Proof. If A ≤ B, then B−A ≥ 0 and the assumption implies A+(2B−2A) ≤ B,
which implies B ≤ A, and thus A = B. If A > B, then B − A < 0 and
the assumption implies A + 0 ≤ B, which implies A ≤ B. Thus this cannot
happen.

Theorem 9. The problem Minimum Installation Path is NP-hard.
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lower choice

upper choice

2824

26 26

lower choice

upper choice

3125

28 28

lower choice

upper choice

lower choice

upper choice

14

0

0

26

0

28

4

54

0

57

6

56

4

59

10

upper

lower

upper

lower

lower

upper

82

0

85

6

88

12

84

4

87

10

90

16

108

0

110

4

111

6

113

10

114

12

116

16

112

8

115

14

118

20

2824

26 26

3125

28 28

122

14

120

10

119

8

117

4

116

2

116

0

118

6

115

0

118

0

u1s u2 u3
u4 t

opt(π′)

ϕ(π′)

Figure 3: Top: The graph G for n = 4 with a1, . . . , a4 = 2, 3, 3, 2 and b = 7, when we take L =
22. We have to decide whether there is an assignment of power with cost nL+2

∑
i ai+b = 115

that activates some s-t path. Bottom: pairs (opt(π′), ϕ(π′)) for all the s-ui paths π′.

Proof. We show that the instance for Subset Sum has a positive answer if and
only if in the graph G = G(a1, . . . , an, b) there is a power assignment with cost
at most C := nL+ 2

∑
i∈[n] ai + b that activates some path from s to t.

Assume that the exists a solution for the instance to the Subset Sum prob-
lem. This means that we have some I ⊆ [n] such that

∑
i∈I ai = b. Because of

Lemma 7, there exists a path π from s = u0 to un with optimal installation cost
opt(π) = nL+ 2

∑
i∈[n] ai +

∑
i∈I ai = C and ϕ(π) = 2b. Because of Lemma 4,

this means that the power assignment p∗π has cost cost(p∗π) = C, activates all
edges of π, and assigns power p∗π(un) = ϕ(π) = 2b to vertex un. Such power
assignment p∗π also activates the edge unt because it has weight 2b = p∗π(un).
(In particular, the vertex t gets power 0.)

Assume now that there is a power assignment p′ ≥ 0 with cost at most C
that activates a path π′ from s to t. Let π be the restriction of π′ from s to un.
Because of Lemma 5 and using that the power assignment p′ activates π′, we
have

opt(π) + max{2b− ϕ(π), 0} = opt(π′) ≤ cost(p′) ≤ C. (2)
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Because of Lemma 7, there exists some I ⊆ [n] such that

opt(π) = nL+ 2
∑
i∈[n]

ai +
∑
i∈I

ai and ϕ(π) = 2
∑
i∈I

ai.

Substituting in (2), for such I ⊆ [n] we have

nL+ 2
∑
i∈[n]

ai +
∑
i∈I

ai + max

{
2b− 2

∑
i∈I

ai, 0

}
≤ C = nL+ 2

∑
i∈[n]

ai + b.

This means that ∑
i∈I

ai + max

{
2b− 2

∑
i∈I

ai, 0

}
≤ b.

Because of Lemma 8 we conclude that
∑
i∈I ai = b, and the given instance to

Subset Sum problem has a solution.

3. Minimum Barrier Shrinkage

In this section, we show that the Minimum Barrier Shrinkage problem
is NP-hard. The structure of the proof is very similar to the proof given in
Section 2.3 for the NP-hardness of the problem Minimum Installation Path.

We first give the construction assuming that we can compute algebraic num-
bers to infinite precision. Then we explain how an approximate construction
with enough precision suffices and can be computed in polynomial time.

The penetration depth of a pair (D(c, r), D(c′, r′)) of open disks D(c, r)
and D(c′, r′) is r+ r′−|c− c′|, where |c− c′| is the distance between the centers
c and c′. When no disk contains the center of the other disk, and they intersect,
then the intersection D(c, r)∩D(c′, r′) is a lens of width equal to the penetration
depth. See Figure 4. If we shrink the disks to D(c, r− δ) and D(c′, r′ − δ′), the
disks intersect if and only if δ+δ′ is strictly smaller than the penetration depth.
(Recall that disks are taken as open sets.) Thus, the penetration depth equals
the minimum total shrinking of the disks so that a curve can pass between the
two disks.

We reduce again from Subset Sum. Consider an instance I of Subset Sum
given by a sequence a1, . . . , an of positive integers and a positive integer b. Set L
to be an integer strictly larger than 2

∑
i∈[n] ai. Then, for each I ⊆ [n] we have

2
∑
i∈I ai < L. Set C = nL+ 2

∑
i∈[n] ai+ b and λ = 10C. We will construct an

instance to Minimum Barrier Shrinkage problem such that it has a solution
if and only if the instance I for Subset Sum has a solution.

Figure 5 shows the overall idea of the construction. Most of the action is
happening around the filled (blue and green) disks. The remaining white disks
create corridors to communicate from one side to the other of the filled disks.
To provide a feasible solution of cost at most C, we have to indicate how to
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c′ c

Figure 4: The penetration depth of the pair of drawn disks is the length of the arrow.

shrink the disks for a total radius of at most C and provide an x-y curve in the
plane that does not touch the (interior of the) shrunken disks.

In our construction, no point of the plane will be covered by more than
two disks. In such a case, the x-y curve can be described combinatorially by
a sequence of pairs of disks such that, for each pair (D,D′), the curve passes
between D and D′, after shrinking.

If the penetration depth of two disks is at least λ = 10C, then, in any shrink-
ing of the disks with total cost at most C, those two disks keep intersecting,
which means that we cannot route the x-y curve between those two disks. More
precisely, the segment connecting the centers of such disks cannot be crossed by
the x-y curve. In the drawings we indicate this with a thick segment connecting
the centers of the disks.

The main part to encode the instance, around the filled disks, consists of the
following disks. See Figures 6 and 7.

• For i = 0, . . . , n, a disk Di of radius 4λ centered at ((4λ) · 2i, 0);

• for each i ∈ [n], a disk D′i of radius λ centered at ((4λ) · (2i− 1), 0);

• for each i ∈ [n], a disk Ai (for above) of radius 3λ placed such that the
center is above the x-axis, and the penetration depth of (Ai, Di−1) and
(Ai, Di) is L + 2ai; this means that the distance between center(Ai) and
center(Di−1) is 7λ − (L + 2ai), and the distance between center(Ai) and
center(Di) is 7λ− (L+ 2ai);

• for each i ∈ [n], a disk Bi (for below) of radius 3λ placed such that the
center is below the x-axis, the penetration depth of (Bi, Di−1) is L+ai and
the penetration depth of (Bi, Di) is L+ 3ai; this means that the distance
between center(Bi) and center(Di−1) is 7λ − (L + ai) and the distance
between center(Bi) and center(Di) is 7λ− (L+ 3ai);

• a disk An+1 of radius 3λ placed such that the center is above the x-axis,
the x-coordinate of center(An+1) is (4λ) · (2n + 1), and the penetration
depth of (An+1, Dn) is 2b; An+1 is one of the green disks in the figures;
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• a disk Bn+1 of radius 3λ placed such that the center is below the x-axis,
the x-coordinate of center(Bn+1) is (4λ) · (2n + 1), and the penetration
depth of (Bn+1, Dn) is 2b; Bn+1 is another of the green disks in the figures;

• for each i ∈ [n+ 1], a disk A′i of radius 3λ centered at ((4λ) · (2i− 1), 8λ)
and a disk B′i of radius 3λ centered at ((4λ) · (2i− 1),−8λ).

For i ∈ [n], the block Bi consists of the disks Di−1, Di, D
′
i, Ai, A

′
i, Bi and

B′i. We also define the block Bn+1 as the group of disks Dn, An+1, A′n+1, Bn+1

and B′n+1. Note that the blocks Bi and Bi+1, for i ∈ [n], share the disk Di.
For each i ∈ [n+ 1], we make a path of disks of radius 3λ, starting from A′i

and finishing with B′i, where any two consecutive disks have penetration depth
at least 3λ. The disks in these paths are pairwise disjoint for different indices
i, and disjoint from the rest of the construction. The disks in each such path
can be centered along a 5-link axis-parallel path, and it uses O(i) disks. See
Figure 5. We denote the path of disks for the index i ∈ [n+ 1] by Πi. For later
use, we place a point yi in the “tunnel” between the paths Πi and Πi+1. See
Figure 5.

Lemma 10. For each i ∈ [n], the disks D′i, Ai and Bi are pairwise disjoint.
Moreover, the penetration depth of the pairs (Di−1, D

′
i), (Di, D

′
i), (Ai, A

′
i) and

(Bi, B
′
i) is at least λ. For Bn+1, the disks An+1 and Bn+1 are disjoint and the

penetration depth of the pairs (An+1, A
′
n+1) and (Bn+1, B

′
n+1) is at least λ.

Proof. We consider only the case i ∈ [n]. The arguments for Bn+1 are similar.
The penetration depth of the pairs (Di−1, D

′
i) and (Di, D

′
i) is λ by construction.

Consider the disk Ãi of radius 3λ centered at ((4λ) · (2i − 1), 5λ) and the
disk B̃i of radius 3λ centered at ((4λ) · (2i − 1),−5λ). See Figure 8. We will
compare Bi to B̃i; note that they have the same size, just a different placement.
The argument for Ai is the same.

The penetration depth of the pairs (B̃i, Di−1) and (B̃i, Di) is

3λ+ 4λ−
√

(5λ)2 + (4λ)2 = (7−
√

41)λ ≈ 0.59687λ,

while the penetration depth of (B̃i, B
′
i) is exactly 3λ. The disk D′i is at distance

λ from B̃i.
Since the penetration depth of (Bi, Di−1) and (Bi, Di) is at most L+ 3ai ≤

C = λ/10, these penetration depths are smaller than the penetration depths
of (B̃i, Di−1) and (B̃i, Di), namely, between 0 and 0.59687λ. See Figure 9. As
can be seen on the figure (and proved by a slightly involved computation), this
implies that Bi and D′i are disjoint, and that the disk B′i contains the center of
Bi. The latter fact implies that the penetration depth of (Bi, B

′
i) is at least 3λ.

From Lemma 10 we conclude that, in any solution with cost under λ =
10C, the x-y curve cannot cross the segments connecting center(Di−1) and
center(Di), the segments connecting center(Ai) and center(A′i), nor the seg-
ments connecting center(Bi) and center(B′i), for each i ∈ [n+ 1]. Furthermore,
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it cannot cross the path Πi connecting A′i to B′i, for each i ∈ [n + 1]. This
implies that, at each block Bi, we have to decide whether the x-y curve goes
above (crossing Ai before shrinking) or below (crossing Bi before shrinking).
See Figure 10 for one such choice.

So, in a nutshell, the strategy is to reformulate the problem in terms of
graphs, and to note that the instance is equivalent to the Minimum Installa-
tion Path in that graph. Let Xi = Ai or Xi = Bi, depending on the choice of
how to route the x-y curve. If Xi = Ai, then the x-y curve, after shrinking the
disks, passes between Di−1 and Ai, and also between Di and Ai. If Xi = Bi,
then the x-y curve, after shrinking the disks, passes between Di−1 and Bi, and
also between Di and Bi. Note that we can assume that the x-y curve passes
between two disks at most once. Moreover, for each disk D, the x-y curve passes
between D and another disk at most twice. Once we decide the combinatorial
routing of the x-y curve, that is, once we select X1, . . . , Xn, Xn+1, then greedily
shrinking the disks gives an optimal solution, similarly to Lemma 4: it pays
off to push the shrinking towards disks that are crossed later by the x-y curve.
That is, to pass between D1 and X1, it pays off to do not shrink D1, as it is
never crossed again, and shrink X1 just enough to pass in between. Similarly, it
pays off to shrink D2 to pass between D2 and X1, because X1 will not be crossed
again later on. In general, to pass between Di−1 and Xi it pays off to reduce
Xi just enough to pass between them, taking into account how much Di−1 was
already shrunken, and to pass between Xi and Di it pays off to reduce Di just
enough to pass between them, taking into account how much Xi was already
reduced.

Let D = D(I) be the set of all disks in the constructed instance.

Lemma 11. The instance I = (a1, . . . , an, b) to Subset Sum has a solution if
and only if the instance (D, x, y, C) to Minimum Barrier Shrinkage has a
positive answer, where C = nL+2

∑
i∈[n] ai+b. Furthermore, for any α ∈ [0, 1),

Minimum Barrier Shrinkage(D, x, y, C) has a positive answer if and only if
Minimum Barrier Shrinkage(D, x, y, C + α) has a positive answer.

Proof. We construct a graph G′ as follows. We make a node for each connected
component of R2 \

⋃
D that may be crossed by the x-y curve after shrinking

disks for a cost strictly smaller than λ = 10C. This means that we have the
following nodes in the graph:

• a node for the cell containing x, which we call x also;

• a node for the cell containing y, which we call y also;

• a node called αi for the region bounded between the disks Di−1, Di, Ai
(i ∈ [n]);

• a node called βi for the region bounded between the disks Di−1, Di, Bi
(i ∈ [n]);

• a node for the cell that contains yi (i ∈ [n]), that is, the tunnel bounded
by Πi and Πi+1; we call the node yi also.
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We put an edge between two nodes whenever we can pass from one region to
the other passing between two disks with penetration strictly below λ = 10C.
See Figure 11 for the resulting graph, G′. This graph G′ is essentially the graph
G(a1, . . . , an, b) used in Section 2.3. (The only difference is that, in G′, we have
two parallel edges from yn to y, instead of a single edge.)

We assign a weight to each edge of G′ equal to the penetration depth of the
pair of disks that separate the cell. For example, the edges yi−1αi and αiyi have
weight L+ 2ai (i ∈ [n]), the edge βiyi has weight L+ 3ai (i ∈ [n]), and the two
parallel edges yny have weight 2b.

There is a simple correspondence between power assignments p(·) that give
a feasible solution for Minimum Installation Path(G′, x, y, C) and the reduc-
tion in radii for feasible solutions for Minimum Barrier Shrinkage(D, x, y, C),
as follows:

• the decrease in radius of Di corresponds to the power p(yi) (i ∈ [n]);

• the decrease in radius of Ai corresponds to the power p(αi) (i ∈ [n]);

• the decrease in radius of Bi corresponds to the power p(βi) (i ∈ [n]);

• the decrease in radius of D0 corresponds to the power p(x);

• we may assume that at most one of the disks An+1 and Bn+1 is shrunken;
the decrease in radius of An+1 or Bn+1, whichever is larger, corresponds
to the power p(y);

• we may assume that all other disks are not shrunken.

This correspondence transforms feasible solutions for Minimum Installation
Path(G′, x, y, C) into feasible solutions for Minimum Barrier Shrinkage(D, x, y, C),
and conversely. So the instances Minimum Installation Path(G′, x, y, C) and
Minimum Barrier Shrinkage(D, x, y, C) are equivalent.

The second part of the lemma follows from the above correspondence and
from Lemma 6.

The disks D, as described, cannot be constructed in polynomial time in a
Turing machine because the centers of the disks do not have integer (or rational)
coordinates. More precisely, the centers of Ai and Bi (i ∈ [n+ 1]) are solutions
to a system of equations with degree-two polynomials. However, we can scale
up the numbers involved in the construction, and then round the non-integer
numbers, to obtain a polynomial-time construction, doable in a Turing machine:

Theorem 12. The Minimum Barrier Shrinkage problem is NP-hard.

Proof. Consider an instance (a1, . . . , an, b) for Subset Sum and the associated
instance (D, x, y, C) for Minimum Barrier Shrinkage constructed above,
with C = nL+ 2

∑
i∈[n] ai + b.

The centers of the disks in D \ {A1, . . . , An+1, B1, . . . , Bn+1} are integers
bounded by O(λ) = O(nL). For each i ∈ [n+ 1], we compute the centers of the

14



disks Ai and Bi up to a precision of at least ε = 1
6(n+1) . Thus, the coordinates

of the centers are multiples of ε. Let Âi and B̂i be the resulting disks; they have
the same radius, 3λ, but have been displaced by at most ε with respect to the
original position in the construction. Let D̂ be the set of disks obtained from
D, where each Ai, Bi are replaced with Âi, B̂i (i ∈ [n+ 1]).

We consider instances of Minimum Barrier Shrinkage. If the instance
(D, x, y, C) is positive, then the instance (D̂, x, y, C + 1/3) is also positive (be-
cause each of the 2(n+1) disks are moved by at most ε, so the total displacement
is at most 1/3), which implies that the instance (D, x, y, C+2/3) is also positive
(by the same argument), which in turn also implies that the instance (D, x, y, C)

is positive (by Lemma 11). So, the instances (D, x, y, C) and (D̂, x, y, C + 1/3)
are equivalent.

Scaling all values in the construction of D̂ (coordinates and radii) by 1/ε,
we get a construction where the disks have centers with integer coordinates, the
radii are integers, and the whole construction can be constructed in polynomial
time.

Note that it is not clear whether the Minimum Barrier Shrinkage prob-
lem belongs to NP. Indeed, if some triples of disks intersect, a priori it seems
that a solution may have to reduce the radius of some disks by non-rational
numbers, and decisions at different parts depend on each other, which could
increase the algebraic degree of the numbers telling how much to decrease the
radii.

Remark. A similar statement can be done for axis-parallel squares. For this we
have to place the overlapping squares in such a way that the overlap region, an
axis-parallel rectangle, has width equal to the value we want to encode (L+ ai,
L+ 2ai, L+ 3ai or 2b). In such a case we do not run into the numerical issues
with the centers because all the coordinates can be taken directly to be integers.
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Figure 5: Basic idea of the construction for n = 4. All the shrinking of disks and the decisions
on how to route the x-y curve are happening around the (blue and green) filled disks. The
thick lines will not be crossed by any x-y curve that is disjoint from the shrunken disks in a
solution with the desired cost.
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Figure 6: Block Bi for 1 < i < n; the penetration depths are not to scale. Note that Ai has
the same overlap with Di−1 and Di, while Bi is moved closer to Di. The center of Bi is to
the right of the (vertical) line through the centers of A′i, Ai, D

′
i and B′i.
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Figure 7: The blocks Bn and Bn+1; the penetration depths are not to scale.
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Figure 8: Disks Ãi and B̃i considered in the proof of Lemma 10.
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Figure 9: The gray region shows the position of the centers where the disk Bi may be placed,
more precisely, the positions for center(Bi) where the penetration depth of (Bi, Di−1) and
(Bi, Di) lies in the interval [0, 0.59687λ]. The blue mark denotes the center of B̃i.
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x y

Figure 10: The red x-y curve shows the type of decisions that have to be made to make a
feasible solution. In this example, we have to decide 5 times independently whether the x-y
curve is routed above or below. Note that the curve can be routed to pass through each yi, if
desired.
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Figure 11: The combinatorially different x-y curves can be encoded in a graph, denoted G′.
This is essentially the same graph G(a1, . . . , an, b) used in Section 2.3, but with a different
drawing; see Figure 1.
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