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In the Minimum Installation Path problem, we are given a graph G with edge weights w(•) and two vertices s, t of G. We want to assign a non-negative power p : V → R ≥0 to the vertices of G, so that the activated edges {uv ∈ E(G) | p(u) + p(v) ≥ w(uv)} contain some s-t-path, and minimize the sum of assigned powers. In the Minimum Barrier Shrinkage problem, we are given, in the plane, a family of disks and two points x and y. The task is to shrink the disks, each one possibly by a different amount, so that we can draw an x-y curve that is disjoint from the interior of the shrunken disks, and the sum of the decreases in the radii is minimized.

We show that the Minimum Installation Path and the Minimum Barrier Shrinkage problems (or, more precisely, the natural decision problems associated with them) are weakly NP-hard.

Introduction

Let X be a subset of the plane, let x and y be points in X, and let SS be a family of shapes in the plane. An x-y curve is a curve in R 2 with endpoints x and y. We say that SS separates x and y in X if each x-y curve contained in X intersects some shape from SS. Let D(c, r) denote the open disk centered at c with radius r.

In this work we show that the following two decision problems are weakly NP-hard. This means that in our reduction we will use numbers that are exponentially large, but have polynomial length when written in binary.

Minimum Barrier Shrinkage.

Input: a family {D(c i , r i ) | i = 1, . . . , n} of n open disks; two points x, y ∈ R 2 ; a real number C.

Output: Whether there exist shrinking values δ 1 , . . . , δ n ≥ 0 such that their cost i δ i is at most C and the family of open disks {D(c i , r i -δ i ) | i = 1, . . . n} does not separate x and y in R 2 .

Minimum Installation Path.

Input: a graph G = (V, E) with positive edge weights w : E → R >0 ; two vertices s and t of G; a real number C. Output: Whether there exists an assignment of powers p : V → R ≥0 to the vertices such that its cost v∈V p(v) is at most C and the activated edges E(p) = {uv ∈ E | p(u)+p(v) ≥ w(uv)} contain an s-t-path.

We next discuss the motivating and closest related work.

Minimum barrier shrinkage. Kumar, Lai and A. Arora [START_REF] Kumar | Barrier coverage with wireless sensors[END_REF] introduced the following barrier resilience problem in the plane. The input is specified by a domain X ⊆ R 2 , a family D of disks in R 2 , and two points x and y in X. The task is to find an x-y curve in X that intersects as few disks of D as possible, without counting multiplicities. An alternative statement is that we want to find a minimum cardinality subfamily D ⊆ D such that D \ D does not separate x and y in X. The intuition is that we have sensors detecting movements from x to y, and we want to know how many sensors can suffer a total failure and still any agent moving from x to y within X is detected by some of the remaining sensors.

Kumar, Lai and A. Arora [START_REF] Kumar | Barrier coverage with wireless sensors[END_REF] showed that the problem can be solved in polynomial time when the domain X is a vertical strip bounded between two vertical lines and , the point x lies above and the point y lies below all disks of D. Let us call this scenario the rectangular scenario. The main insight is to consider the intersection graph G defined by D ∪ { , } and to note that the solution is the maximum number of -internally vertex-disjoint paths in G. Thus, the problem can be solved in polynomial time by solving maximum flow problems. The same argument works for any family of shapes SS, not just disks, as far as each shape of SS is connected.

Despite the claim in the preliminary version [START_REF] Kumar | Barrier coverage with wireless sensors[END_REF] of [START_REF] Kumar | Barrier coverage with wireless sensors[END_REF], we do not know whether the barrier resilience problem can be solved exactly in polynomial time when the domain X is all of R 2 . In fact, we know that when X = R 2 and the family D of disks is replaced by some other family SS of shapes, the problem is NP-hard [START_REF] Alt | Minimum cell connection in line segment arrangements[END_REF][START_REF] Korman | On the complexity of barrier resilience for fat regions and bounded ply[END_REF][START_REF] Kuan-Chieh | On barrier resilience of sensor networks[END_REF]. The difference between the strip and the whole plane is that in the former case we can use Menger's theorem to relate the number ofpaths in the intersection graph of SS ∪ { , } to the -vertex connectivity, but no such statement applies to cycles that "separate" x and y. The computational complexity of the barrier problem in the plane for (unit) disks and (unit) squares is a challenging open problem, and several approximation algorithms have been devised [START_REF] Bereg | Approximating barrier resilience in wireless sensor networks[END_REF][START_REF] Yu | Approximating barrier resilience for arrangements of non-identical disk sensors[END_REF][START_REF] Korman | On the complexity of barrier resilience for fat regions and bounded ply[END_REF].

Modeling the fact that sensors are less reliable further away from their placement, Cabello et al. [START_REF] Cabello | Minimum shared-power edge cut[END_REF] considered the problem of minimizing the total shrinkage of the disks such that there is an x-y curve disjoint from the interior of the disks. This is precisely the problem Minimum Barrier Shrinkage. Cabello et al. also provided an FPTAS for the rectangular scenario. The algorithm uses the connection to vertex-disjoint paths.

We believe that showing NP-hardness for the problem Minimum Barrier Shrinkage is interesting because of the computational complexity of two closely related problems, the barrier resilience problem for X = R 2 and the minimum barrier shrinkage problem in the rectangular scenario, are unknown.

Minimum installation path.

There is a rich literature on so-called Activation Network problems. The task is to assign a power p(v) to each vertex v of an edge-weighted graph G = (V, E) so that the activated edges satisfy a certain connectivity property, such as for example spanning the whole graph. Whether an edge uv is activated depends only on p(u) and p(v). In the most general scenario, one only assumes an oracle telling, given p(u) and p(v), whether u and v are activated, together with a natural monotonicity constraint: if some choice of p(u) and p(v) activates uv, then increasing the powers at u and v still leaves uv activated. In many cases, the following simplifying assumption is made: the possible powers at the vertices are discretized as a finite set of values, denoted by D (the domain). See the survey by Nutov [START_REF] Nutov | Activation network design problems[END_REF] for an overview of the area.

In this context, Panigrahi [13, Section 4.1] considered the Minimum Activation Path problem: the connectivity constraint is that the activated edges must include a path between two fixed vertices s and t of G. He provided an algorithm with running time O(poly(n, |D|)), where n is the number of vertices of G and D is the finite domain of values for the power assignments.

Compared to the problem studied by Panigrahi, our Minimum Installation Path has two differences. First, power assignments are not discretized and can be arbitrary nonnegative real numbers. Second, whether an edge uv is activated is simply determined by whether p(u) + p(v) ≥ w(uv). In this article, we show that the Minimum Installation Path is weakly NP-hard. We also provide a simple fully polynomial time approximation scheme (FPTAS) relying on the algorithm by Panigrahi [START_REF] Panigrahi | Survivable network design problems in wireless networks[END_REF].

Our weak NP-hardness result of the Minimum Installation Path problem is consistent with the result of Panigrahi. In our reduction, we use large integer weights: they have a polynomial bit length, but they are exponentially large. Taking D = Z ∩ [0, max uv w(uv)] in the algorithm of Panigrahi, one only gets a pseudopolynomial time algorithm for such instances. This is consistent with a weakly NP-hardness proof.

In a similar vein, we remark that Alqahtani and Erlebach [START_REF] Hasna | Minimum activation cost node-disjoint paths in graphs with bounded treewidth[END_REF] presented algorithms parameterized by the treewidth of the graph in the case where the goal is to activate k node-disjoint st-paths, or node-disjoint paths between k pairs of terminals. See also Lando and Nutov [START_REF] Lando | On minimum power connectivity problems[END_REF] and Althaus et al. [START_REF] Althaus | Power efficient range assignment for symmetric connectivity in static ad hoc wireless networks[END_REF].

Relation between the problems. We are not aware of any polynomial-time reduction from one problem to the other. Nevertheless, the NP-hardness proofs for both problems are very similar. The underlying connection between both problems is the following classical property: in a planar graph G = (V, E), a set of edges F ⊂ E is a minimum s-t cut if and only if, in the dual graph G * , the edges {e * | e ∈ F } form a shortest cycle separating the face s * from the face t * . This relation does not directly provide a reduction even in the case of planar graphs, but does inspire the adaptation we make. Actually, our hardness proof for Minimum Barrier Shrinkage reuses components of the hardness proof for Minimum Installation Path; we reformulate some special instances of Minimum Barrier Shrinkage in terms of graphs and then remark that each reformulated instance is equivalent to an instance of Minimum Installation Path.

Organization. It seems more convenient to present the NP-hardness of Minimum Installation Path first. We achieve this in Section 2, together with an FPTAS for this problem. Then, in Section 3, we show that the Minimum Barrier Shrinkage problem is NP-hard.

Minimum installation path

In this section we study the complexity of the Minimum Installation Path problem is NP-hard. We first provide a simple FPTAS for this problem, and then prove that it is weakly NP-hard.

A simple FPTAS

As a side note, we show that the main idea used by Cabello et al. [START_REF] Cabello | Minimum shared-power edge cut[END_REF] can be adapted to lead to a simple FPTAS for Minimum Installation Path. Let us consider an instance of that problem. Lemma 1. In polynomial time, we can compute the smallest value λ such that setting p(v) = λ for all vertices v of G activates at least one st-path.

Proof. Whether one st-path is activated by the power assignment p(v) = λ (for each vertex v) depends only on the set of activated edges. So, for some edge uv, the minimum value of λ activating at least one st-path is the minimum value of λ activating edge uv. In other words, the minimum value of λ is necessarily of the form w(uv)/2 for some edge uv. So, for each edge uv, we determine whether putting power w(uv)/2 to all vertices activates an st-path, and return the smallest value that does so. Lemma 2. Let OPT be the optimum value of the Minimum Installation Path instance. Then:

1. in an optimal solution, the power assigned to every vertex is at most nλ,

where n is the number of vertices of the input graph G; 2. λ ≤ OPT.

Proof.

1. OPT ≤ nλ because the definition of λ implies a feasible solution of cost nλ. This implies (1); 2. λ ≤ OPT because otherwise, some st-path would be activated by some powers strictly smaller than λ at each vertex, contradicting the definition of λ.

Proposition 3. Minimum Installation Path admits an FPTAS.

Proof. Let ε > 0 be given. We first compute λ using Lemma 1. Then we apply the algorithm by Panigrahi [13, Section 4.1] to the instance, in which the domain is defined by

D = {kελ/n | k = 0, . . . , n 2 /ε}.
By Lemma 2(1), we obtain a feasible solution to the original problem, the cost of which is within an additive error of at most ελ/n per vertex from OPT, hence with an additive error of at most ελ overall. By Lemma 2(2), this is at most εOPT. Clearly the running time is polynomial in n and 1/ε. We can readily extend this argument to more general activation functions. For example, assume that each edge uv is activated if and only if α(uv)p(u) + β(uv)p(v) ≥ w(uv), for some positive constants α(uv), β(uv), and w(uv). (Our setup corresponds to α(uv) = β(uv) = 1.) The same argument as above shows that this extended version of Minimum Installation Path admits an FPTAS.

Greedy solution in a path

In the rest of Section 2, we focus on proving NP-hardness of Minimum Installation Path. We first consider the particular case of a path.

Consider a graph G and a path π = v 0 , . . . , v n in G. We define greedily a power assignment p * π on the vertices of G to activate π, in a way that power is pushed forward along π as much as possible. Formally, the greedy power assignment along π is

p * π (v) =      0 if v does not belong to π or v = v 0 , 0 if v = v i , i > 0 and p * π (v i-1 ) ≥ w(v i-1 v i ), w(v i-1 v i ) -p * π (v i-1 ) if v = v i , i > 0 and p * π (v i-1 ) < w(v i-1 v i ).
(1) For a power assignment p, let cost(p) denote the total cost of p, namely, the sum of the powers at the vertices. For path π, let opt(π) be the cost of the minimum cost power assignment that activates π. The following lemma tells that the greedy power assignment along π has minimum cost to activate π.

Lemma 4. For each path π, cost(p * π ) = opt(π). Proof. It is clear that p *
π activates all the edges of π. Let p be another power assignment activating all edges of π. We have to show that cost(p * π ) ≤ cost(p). We can assume that p(v) = 0 at all vertices v outside π. Otherwise, we change p to have this property. This reassignment of power would decrease the cost and would keep activating the path π.

The strategy is to gradually transform p into p * π while keeping all edges of π activated and without increasing the value of cost(p). The property cost(p * π ) ≤ cost(p) is trivially correct if p = p * π . So assume p = p * π and let i be the smallest integer such that p(v i ) = p * π (v i ). Because all edges are activated, and by construction of p * π , we must have

p(v i ) > p * π (v i ). Let ∆ = p(v i ) -p * π (v i ) > 0.
There are two cases:

• Assume i ≤ n -1. Update p by decreasing p(v i ) by ∆ and increasing p(v i+1 ) by ∆. Since each edge of π is activated by p * π and by p before this transformation, each edge of π is still activated by the new p. Moreover, cost(p) is unchanged.

• Assume i = n. Update p by decreasing p(v n ) by ∆. Again, each edge of π is still activated. The cost has decreased by ∆.

This transformation does not increase the value of cost(p). Moreover, the new power assignment coincides with p * π on vertices v 0 , . . . , v i . Thus, after a finite number of steps, p = p * π . This proves the lemma.

For the path

π = v 0 , . . . , v n , let ϕ(π) = p * π (v n ) ≥ 0. That is, ϕ(π)
is the power assignment given by the greedy power assignment along π to the final vertex. Since p * π (v n ) depends on p * π (v n-1 ), we have the following. Lemma 5. Let π be the path v 0 , . . . , v n and let π be the path v 0 , . . . , v n , u. (Thus, π extends π by an additional edge

v n u.) Then ϕ(π ) = max{0, w(v n u) - ϕ(π)} and opt(π ) = opt(π) + ϕ(π ).
Proof. From the definition of the greedy power assignment along π and π , the power assignments p * π and p * π differ only at vertex u. We have:

ϕ(π ) = p * π (u) = max{0, w(v n u) -p * π (v n )} = max{0, w(v n u) -p * π (v n )} = max{0, w(v n u) -ϕ(π))}.
This proves the claim for ϕ(π ). Because of Lemma 4 for π and π we also get

opt(π ) = cost(p * π ) = cost(p * π ) + p * π (u) -p * π (u) = opt(π) + ϕ(π ) -0.
A consequence of Lemma 4 is the following integrality property. 

L + 3a1 L + a1 L + 2a2 L + 2a2 L + 3a2 L + a2 L + 2a3 L + 2a3 L + 3a3 L + a3 L + 2a4 L + 2a4 L + 3a4 L + a4 2b

The reduction

Now we provide the reduction. The reduction is inspired by the reduction used to show that the restricted shortest path problem is NP-hard; this seems to be folklore and attributed to Megiddo by Garey and Johnson [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]Problem ND30]. We use the notation [n] = {1, . . . , n} and reduce from the following problem.

Subset Sum

Input: a sequence a 1 , . . . , a n of positive integers and a positive integer b. Question: is there a set of indices

I ⊆ [n] such that i∈I a i = b?
The problem Subset Sum is one of the standard weakly NP-hard problems that can be solved in pseudopolynomial time via dynamic programming [7, Section 4.2]. In particular, when the numbers a i are bounded by a polynomial in n, the problem can be solved in polynomial time.

Set L to be an integer strictly larger than 2 i∈[n] a i . Then, for each I ⊆ [n] we have 2 i∈I a i < L.

We construct a graph G = G(a 1 , . . . , a n , b) as follows (see Figure 1). G will include vertices s, t, u 1 , . . . , u n . Let us use the notation u 0 = s. For each i ∈ [n], we put between u i-1 and u i two paths, each of length two, one path with weights L + 2a i and L + 2a i , and the other path with weights L + a i and L + 3a i , as we go from u i-1 to u i . Finally, we put the edge u n t with weight 2b. This finishes the construction of G. 

a i + i∈I a i .
Proof. Consider the two paths, each of length two, connecting u i-1 to u i . The upper choice at i is the path with weights L + 2a i ; similarly, the lower choice at i is the path with weights L + a i and L + 3a i . See Figure 2.

Assume that we have a path π that goes from s = u 0 to u i-1 with ϕ(π ) ≤ L. Let π u be the concatenation of π with the upper choice, and let π be the concatenation of π with the lower choice. Because of Lemma 5, we obtain that opt(π u ) = opt(π )+L+2a i and ϕ(π u ) = ϕ(π ), while opt(π ) = opt(π )+L+3a i and ϕ(π ) = ϕ(π ) + 2a i . See Figure 2. Here, the assumption ϕ(π ) ≤ L has been important to ensure that in using Lemma 5 the maximum defining ϕ(•) is not at 0. It easily follows by induction on i that, for each path π from s = u 0 to u i , we indeed have ϕ(π ) ≤ i j=1 2a i , and thus the hypothesis is fulfilled for each

lower choice upper choice L + 2a i L + 2a i L + 3a i L + a i L + 2a i L + 2a i c r L + 3a i L + a i L + a i -r c + L + a i -r c + L + 3a i r + 2a i u i-1 u i opt(π ) ϕ(π ) c + L + 2a i r L + 2a i -r c + L + 2a i -r c r
i ∈ [n].
The intuition here is that the lower choice has a larger cost, but keeps more power at the extreme of the prefix path for later use. See Figure 3 for a concrete example showing the values opt(π ) and ϕ(π ) for paths π from s = u 0 to u i . It also helps understanding the idea behind the reduction.

Consider now a path π from s = u 0 to u n . Let I be the set of indices i ∈ [n] where the path takes the lower choice at i. From the previous discussion and a simple induction we have

opt(π) = i∈[n]\I (L + 2a i ) + i∈I (L + 3a i ) = nL + i∈[n] 2a i + i∈I a i and ϕ(π) = 2 i∈I a i ≤ L.
Since all the paths from s to u n must follow the upper or lower choice at each i ∈ [n], the result follows.

Lemma 8. For any real numbers A and B we have We have to decide whether there is an assignment of power with cost nL+2 i a i +b = 115 that activates some s-t path. Bottom: pairs (opt(π ), ϕ(π )) for all the s-u i paths π .

A + max{2B -2A, 0} ≤ B =⇒ A = B.
Proof. We show that the instance for Subset Sum has a positive answer if and only if in the graph G = G(a 1 , . . . , a n , b) there is a power assignment with cost at most C := nL + 2 i∈[n] a i + b that activates some path from s to t.

Assume that the exists a solution for the instance to the Subset Sum problem. This means that we have some I ⊆ [n] such that i∈I a i = b. Because of Lemma 7, there exists a path π from s = u 0 to u n with optimal installation cost opt(π) = nL + 2 i∈[n] a i + i∈I a i = C and ϕ(π) = 2b. Because of Lemma 4, this means that the power assignment p * π has cost cost(p * π ) = C, activates all edges of π, and assigns power p * π (u n ) = ϕ(π) = 2b to vertex u n . Such power assignment p * π also activates the edge u n t because it has weight 2b = p * π (u n ). (In particular, the vertex t gets power 0.) Assume now that there is a power assignment p ≥ 0 with cost at most C that activates a path π from s to t. Let π be the restriction of π from s to u n . Because of Lemma 5 and using that the power assignment p activates π , we have opt(π

) + max{2b -ϕ(π), 0} = opt(π ) ≤ cost(p ) ≤ C. (2) 
Because of Lemma 7, there exists some

I ⊆ [n] such that opt(π) = nL + 2 i∈[n] a i + i∈I a i and ϕ(π) = 2 i∈I a i .
Substituting in (2), for such I ⊆ [n] we have

nL + 2 i∈[n] a i + i∈I a i + max 2b -2 i∈I a i , 0 ≤ C = nL + 2 i∈[n] a i + b.
This means that

i∈I a i + max 2b -2 i∈I a i , 0 ≤ b.
Because of Lemma 8 we conclude that i∈I a i = b, and the given instance to Subset Sum problem has a solution.

Minimum Barrier Shrinkage

In this section, we show that the Minimum Barrier Shrinkage problem is NP-hard. The structure of the proof is very similar to the proof given in Section 2.3 for the NP-hardness of the problem Minimum Installation Path.

We first give the construction assuming that we can compute algebraic numbers to infinite precision. Then we explain how an approximate construction with enough precision suffices and can be computed in polynomial time. (Recall that disks are taken as open sets.) Thus, the penetration depth equals the minimum total shrinking of the disks so that a curve can pass between the two disks.

We reduce again from Subset Sum. Consider an instance I of Subset Sum given by a sequence a 1 , . . . , a n of positive integers and a positive integer b. Set L to be an integer strictly larger than 2 i∈[n] a i . Then, for each I ⊆ [n] we have 2 i∈I a i < L. Set C = nL + 2 i∈[n] a i + b and λ = 10C. We will construct an instance to Minimum Barrier Shrinkage problem such that it has a solution if and only if the instance I for Subset Sum has a solution.

Figure 5 shows the overall idea of the construction. Most of the action is happening around the filled (blue and green) disks. The remaining white disks create corridors to communicate from one side to the other of the filled disks. To provide a feasible solution of cost at most C, we have to indicate how to shrink the disks for a total radius of at most C and provide an x-y curve in the plane that does not touch the (interior of the) shrunken disks.

In our construction, no point of the plane will be covered by more than two disks. In such a case, the x-y curve can be described combinatorially by a sequence of pairs of disks such that, for each pair (D, D ), the curve passes between D and D , after shrinking.

If the penetration depth of two disks is at least λ = 10C, then, in any shrinking of the disks with total cost at most C, those two disks keep intersecting, which means that we cannot route the x-y curve between those two disks. More precisely, the segment connecting the centers of such disks cannot be crossed by the x-y curve. In the drawings we indicate this with a thick segment connecting the centers of the disks.

The main part to encode the instance, around the filled disks, consists of the following disks. See Figures 6 and7.

• For i = 0, . . . , n, a disk D i of radius 4λ centered at ((4λ) • 2i, 0);

• for each i ∈ [n], a disk D i of radius λ centered at ((4λ) • (2i -1), 0);
• for each i ∈ [n], a disk A i (for above) of radius 3λ placed such that the center is above the x-axis, and the penetration depth of (A i , D i-1 ) and (A i , D i ) is L + 2a i ; this means that the distance between center(A i ) and center(D i-1 ) is 7λ -(L + 2a i ), and the distance between center(A i ) and center(D i ) is 7λ -(L + 2a i );

• for each i ∈ [n], a disk B i (for below ) of radius 3λ placed such that the center is below the x-axis, the penetration depth of (B i , D i-1 ) is L+a i and the penetration depth of (B i , D i ) is L + 3a i ; this means that the distance between center(B i ) and center(D i-1 ) is 7λ -(L + a i ) and the distance between center(B i ) and center(D i ) is 7λ -(L + 3a i );

• a disk A n+1 of radius 3λ placed such that the center is above the x-axis, the x-coordinate of center(A n+1 ) is (4λ) • (2n + 1), and the penetration depth of (A n+1 , D n ) is 2b; A n+1 is one of the green disks in the figures;

• a disk B n+1 of radius 3λ placed such that the center is below the x-axis, the x-coordinate of center(B n+1 ) is (4λ) • (2n + 1), and the penetration depth of (B n+1 , D n ) is 2b; B n+1 is another of the green disks in the figures;

• for each i ∈ [n + 1], a disk A i of radius 3λ centered at ((4λ) • (2i -1), 8λ) and a disk B i of radius 3λ centered at ((4λ) • (2i -1), -8λ).

For i ∈ [n], the block B i consists of the disks D i-1 , D i , D i , A i , A i , B i and B i .
We also define the block B n+1 as the group of disks D n , A n+1 , A n+1 , B n+1 and B n+1 . Note that the blocks B i and B i+1 , for i ∈ [n], share the disk D i .

For each i ∈ [n + 1], we make a path of disks of radius 3λ, starting from A i and finishing with B i , where any two consecutive disks have penetration depth at least 3λ. The disks in these paths are pairwise disjoint for different indices i, and disjoint from the rest of the construction. The disks in each such path can be centered along a 5-link axis-parallel path, and it uses O(i) disks. See Figure 5. We denote the path of disks for the index i ∈ [n + 1] by Π i . For later use, we place a point y i in the "tunnel" between the paths Π i and Π i+1 . See Figure 5. Lemma 10. For each i ∈ [n], the disks D i , A i and B i are pairwise disjoint. Moreover, the penetration depth of the pairs

(D i-1 , D i ), (D i , D i ), (A i , A i ) and (B i , B i ) is at least λ.
For B n+1 , the disks A n+1 and B n+1 are disjoint and the penetration depth of the pairs (A n+1 , A n+1 ) and (B n+1 , B n+1 ) is at least λ.

Proof. We consider only the case i ∈ [n]. The arguments for B n+1 are similar. The penetration depth of the pairs (D i-1 , D i ) and (D i , D i ) is λ by construction.

Consider the disk Ãi of radius 3λ centered at ((4λ) • (2i -1), 5λ) and the disk Bi of radius 3λ centered at ((4λ) • (2i -1), -5λ). See Figure 8. We will compare B i to Bi ; note that they have the same size, just a different placement. The argument for A i is the same.

The penetration depth of the pairs ( Bi , D i-1 ) and ( Bi ,

D i ) is 3λ + 4λ -(5λ) 2 + (4λ) 2 = (7 - √ 41)λ ≈ 0.59687λ,
while the penetration depth of ( Bi , B i ) is exactly 3λ. The disk D i is at distance λ from Bi . Since the penetration depth of (B i , D i-1 ) and (B i , D i ) is at most L + 3a i ≤ C = λ/10, these penetration depths are smaller than the penetration depths of ( Bi , D i-1 ) and ( Bi , D i ), namely, between 0 and 0.59687λ. See Figure 9. As can be seen on the figure (and proved by a slightly involved computation), this implies that B i and D i are disjoint, and that the disk B i contains the center of B i . The latter fact implies that the penetration depth of (B i , B i ) is at least 3λ.

From Lemma 10 we conclude that, in any solution with cost under λ = 10C, the x-y curve cannot cross the segments connecting center(D i-1 ) and center(D i ), the segments connecting center(A i ) and center(A i ), nor the segments connecting center(B i ) and center(B i ), for each i ∈ [n + 1]. Furthermore, it cannot cross the path Π i connecting A i to B i , for each i ∈ [n + 1]. This implies that, at each block B i , we have to decide whether the x-y curve goes above (crossing A i before shrinking) or below (crossing B i before shrinking). See Figure 10 for one such choice.

So, in a nutshell, the strategy is to reformulate the problem in terms of graphs, and to note that the instance is equivalent to the Minimum Installation Path in that graph. Let X i = A i or X i = B i , depending on the choice of how to route the x-y curve. If X i = A i , then the x-y curve, after shrinking the disks, passes between D i-1 and A i , and also between D i and A i . If X i = B i , then the x-y curve, after shrinking the disks, passes between D i-1 and B i , and also between D i and B i . Note that we can assume that the x-y curve passes between two disks at most once. Moreover, for each disk D, the x-y curve passes between D and another disk at most twice. Once we decide the combinatorial routing of the x-y curve, that is, once we select X 1 , . . . , X n , X n+1 , then greedily shrinking the disks gives an optimal solution, similarly to Lemma 4: it pays off to push the shrinking towards disks that are crossed later by the x-y curve. That is, to pass between D 1 and X 1 , it pays off to do not shrink D 1 , as it is never crossed again, and shrink X 1 just enough to pass in between. Similarly, it pays off to shrink D 2 to pass between D 2 and X 1 , because X 1 will not be crossed again later on. In general, to pass between D i-1 and X i it pays off to reduce X i just enough to pass between them, taking into account how much D i-1 was already shrunken, and to pass between X i and D i it pays off to reduce D i just enough to pass between them, taking into account how much X i was already reduced.

Let D = D(I) be the set of all disks in the constructed instance. Proof. We construct a graph G as follows. We make a node for each connected component of R 2 \ D that may be crossed by the x-y curve after shrinking disks for a cost strictly smaller than λ = 10C. This means that we have the following nodes in the graph:

• a node for the cell containing x, which we call x also;

• a node for the cell containing y, which we call y also;

• a node called α i for the region bounded between the disks

D i-1 , D i , A i (i ∈ [n]);
• a node called β i for the region bounded between the disks

D i-1 , D i , B i (i ∈ [n]);
• a node for the cell that contains y i (i ∈ [n]), that is, the tunnel bounded by Π i and Π i+1 ; we call the node y i also.

We put an edge between two nodes whenever we can pass from one region to the other passing between two disks with penetration strictly below λ = 10C. See Figure 11 for the resulting graph, G . This graph G is essentially the graph G(a 1 , . . . , a n , b) used in Section 2.3. (The only difference is that, in G , we have two parallel edges from y n to y, instead of a single edge.)

We assign a weight to each edge of G equal to the penetration depth of the pair of disks that separate the cell. For example, the edges y i-1 α i and α i y i have weight L + 2a i (i ∈ [n]), the edge β i y i has weight L + 3a i (i ∈ [n]), and the two parallel edges y n y have weight 2b.

There is a simple correspondence between power assignments p(•) that give a feasible solution for Minimum Installation Path(G , x, y, C) and the reduction in radii for feasible solutions for Minimum Barrier Shrinkage(D, x, y, C), as follows:

• the decrease in radius of D i corresponds to the power p(y i ) (i ∈ [n]);

• the decrease in radius of A i corresponds to the power p(α i ) (i ∈ [n]);

• the decrease in radius of B i corresponds to the power p(β i ) (i ∈ [n]);

• the decrease in radius of D 0 corresponds to the power p(x);

• we may assume that at most one of the disks A n+1 and B n+1 is shrunken; the decrease in radius of A n+1 or B n+1 , whichever is larger, corresponds to the power p(y);

• we may assume that all other disks are not shrunken. The second part of the lemma follows from the above correspondence and from Lemma 6.

The disks D, as described, cannot be constructed in polynomial time in a Turing machine because the centers of the disks do not have integer (or rational) coordinates. More precisely, the centers of A i and B i (i ∈ [n + 1]) are solutions to a system of equations with degree-two polynomials. However, we can scale up the numbers involved in the construction, and then round the non-integer numbers, to obtain a polynomial-time construction, doable in a Turing machine: The centers of the disks in D \ {A 1 , . . . , A n+1 , B 1 , . . . , B n+1 } are integers bounded by O(λ) = O(nL). For each i ∈ [n + 1], we compute the centers of the disks A i and B i up to a precision of at least ε = 1 6(n+1) . Thus, the coordinates of the centers are multiples of ε. Let Âi and Bi be the resulting disks; they have the same radius, 3λ, but have been displaced by at most ε with respect to the original position in the construction. Let D be the set of disks obtained from D, where each A i , B i are replaced with Âi , Bi (i ∈ [n + 1]).

We consider instances of Minimum Barrier Shrinkage. If the instance (D, x, y, C) is positive, then the instance ( D, x, y, C + 1/3) is also positive (because each of the 2(n+1) disks are moved by at most ε, so the total displacement is at most 1/3), which implies that the instance (D, x, y, C + 2/3) is also positive (by the same argument), which in turn also implies that the instance (D, x, y, C) is positive (by Lemma 11). So, the instances (D, x, y, C) and ( D, x, y, C + 1/3) are equivalent.

Scaling all values in the construction of D (coordinates and radii) by 1/ε, we get a construction where the disks have centers with integer coordinates, the radii are integers, and the whole construction can be constructed in polynomial time.

Note that it is not clear whether the Minimum Barrier Shrinkage problem belongs to NP. Indeed, if some triples of disks intersect, a priori it seems that a solution may have to reduce the radius of some disks by non-rational numbers, and decisions at different parts depend on each other, which could increase the algebraic degree of the numbers telling how much to decrease the radii.

Remark. A similar statement can be done for axis-parallel squares. For this we have to place the overlapping squares in such a way that the overlap region, an axis-parallel rectangle, has width equal to the value we want to encode (L + a i , L + 2a i , L + 3a i or 2b). In such a case we do not run into the numerical issues with the centers because all the coordinates can be taken directly to be integers. 

Lemma 6 .

 6 Assume that the weight function w : E(G) → R >0 takes only integer values, and that C is also an integer. Then, for any α ∈ [0, 1), Minimum Installation Path(G, w, s, t, C) has a positive answer if and only if Minimum Installation Path(G, w, s, t, C + α) has a positive answer. Proof. Assume that Minimum Installation Path(G, w, s, t, C + α) is has a positive answer. Consider a power assignment p corresponding to a feasible solution of minimum cost (at most C + α); let π be an s-t path activated by p. Because of Lemma 4 we have cost(p) = opt(π) = cost(p * π ). From the inductive definition (1) of p * π , we see that p * π assigns integral powers to all vertices, and thus cost(p * π ) = v p * π (v) is an integer, which is at most C. So Minimum Installation Path(G, w, s, t, C) has a positive answer.
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 1 Figure 1: The graph G when n = 4.

Lemma 7 . 2 i∈I a i and c = nL + 2 i∈

 722 There exists a path π from s to u n in G with opt(π) = c and ϕ(π) = r if and only if there exists I ⊆ [n] such that r =

Figure 2 :

 2 Figure 2: Left: Upper and lower choice at i. Right: the change in opt(π ) and ϕ(π ) depending on whether the path is extended by the upper or the lower choice.

Proof.Theorem 9 .

 9 If A ≤ B, then B -A ≥ 0 and the assumption implies A+(2B -2A) ≤ B, which implies B ≤ A, and thus A = B. If A > B, then B -A < 0 and the assumption implies A + 0 ≤ B, which implies A ≤ B. Thus this cannot happen. The problem Minimum Installation Path is NP-hard.

Figure 3 :

 3 Figure3: Top: The graph G for n = 4 with a 1 , . . . , a 4 = 2, 3, 3, 2 and b = 7, when we take L = 22. We have to decide whether there is an assignment of power with cost nL+2 i a i +b = 115 that activates some s-t path. Bottom: pairs (opt(π ), ϕ(π )) for all the s-u i paths π .

The

  penetration depth of a pair (D(c, r), D(c , r )) of open disks D(c, r) and D(c , r ) is r + r -|c -c |, where |c -c | is the distance between the centers c and c . When no disk contains the center of the other disk, and they intersect, then the intersection D(c, r)∩D(c , r ) is a lens of width equal to the penetration depth. See Figure 4. If we shrink the disks to D(c, r -δ) and D(c , r -δ ), the disks intersect if and only if δ + δ is strictly smaller than the penetration depth.
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 4 Figure 4: The penetration depth of the pair of drawn disks is the length of the arrow.

Lemma 11 .

 11 The instance I = (a 1 , . . . , a n , b) to Subset Sum has a solution if and only if the instance (D, x, y, C) to Minimum Barrier Shrinkage has a positive answer, where C = nL+2 i∈[n] a i +b. Furthermore, for any α ∈ [0, 1), Minimum Barrier Shrinkage(D, x, y, C) has a positive answer if and only if Minimum Barrier Shrinkage(D, x, y, C + α) has a positive answer.

  This correspondence transforms feasible solutions for Minimum Installation Path(G , x, y, C) into feasible solutions for Minimum Barrier Shrinkage(D, x, y, C), and conversely. So the instances Minimum Installation Path(G , x, y, C) and Minimum Barrier Shrinkage(D, x, y, C) are equivalent.

Theorem 12 .

 12 The Minimum Barrier Shrinkage problem is NP-hard. Proof. Consider an instance (a 1 , . . . , a n , b) for Subset Sum and the associated instance (D, x, y, C) for Minimum Barrier Shrinkage constructed above, with C = nL + 2 i∈[n] a i + b.

Figure 6 :Figure 8 :

 68 Figure 6: Block B i for 1 < i < n; the penetration depths are not to scale. Note that A i has the same overlap with D i-1 and D i , while B i is moved closer to D i . The center of B i is to the right of the (vertical) line through the centers of A i , A i , D i and B i .
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 910211 Figure9: The gray region shows the position of the centers where the disk B i may be placed, more precisely, the positions for center(B i ) where the penetration depth of (B i , D i-1 ) and (B i , D i ) lies in the interval [0, 0.59687λ]. The blue mark denotes the center of Bi .
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