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An Online Tempo Tracker for Automatic Accompaniment based on Audio-to-audio Alignment and Beat Tracking

) take over the tempo computation in segments when the alignment error is likely high. While other systems exist that handle structural deviations and mistakes in a performance, the portions of time where the aligner is attempting to find the correct hypothesis can produce erratic tempo values. Our proposed system, publicly available as a Max/MSP external object, addresses this problem.

INTRODUCTION

The task of online tempo tracking refers to the computation of a realistic tempo curve from an incoming audio stream in real time, relative to a reference. In this paper we focus on the application of tempo tracking in a musical context where a performer plays together with a responsive accompaniment track, with both the system reacting to live tempo fluctuations and acting as a steady backdrop for the musician to anchor herself to when needed. To this end, we examine two paradigms for tempo tracking-online audioto-audio alignment and beat tracking-and propose a system that uses both, harnessing their respective strengths.

In the literature, audio alignment is generally part of score following systems [START_REF] Dixon | Live tracking of musical performances using on-line time warping[END_REF][START_REF] Arzt | Simple tempo models for real-time music tracking[END_REF][START_REF] Burloiu | An online audio alignment tool for live musical performance[END_REF], which gradually build a best-fit path matching the incoming live audio to a reference. This path is likely to contain intermittently unnatural slopes, which is why tempo models are needed to translate the path slope into a realistic relative tempo value [START_REF] Arzt | Simple tempo models for real-time music tracking[END_REF]. A typical application for a score following task is a concerto simulation, where a solo performance and drives a machinegenerated accompaniment, which faithfully responds to the musician's tempo progression. In cases of performance errors or structural differences such as jumps or repeats, online alignment algorithms can temporarily produce erratic local outputs. Tempo models can alleviate the problem by smoothing over minor errors, but the larger issue of systematic error detection and correction remains.

Meanwhile, beat tracking systems compute tempo curves by detecting the dominant metrical pulse in the live input [START_REF] Robertson | B-keeper: A beattracker for live performance[END_REF][START_REF] Stark | Real-time beat-synchronous analysis of musical audio[END_REF]. As such, they are geared towards scenarios with prominent periodic beats, where the live musician might be locked in with a rhythmic backing track. Wrong notes do not affect the tempo tracking performance, and even when the musician deviates from the rhythmic pattern, beat trackers produce a reasonably consistent tempo line. However, even though they might be configured to drive an external sequencer [START_REF] Robertson | B-keeper: A beattracker for live performance[END_REF], beat tracking systems themselves do not have information about the material being played. Thus minor deviations can cause them to fall on an upbeat, and structural changes such as the omission of a bar of music are impossible to detect. We introduce a system that tackles the issue of errors and structural deviations in music with a strong rhythmic pulse, by tracking tempo in two ways: a model based on audioto-audio alignment by default, and a beat tracking-based model which takes over when the alignment path becomes erratic. The resulting machine can drive an accompaniment track based only on audio inputs, without the use of a score or any other symbolic ground truth information. The practical justification is that, for reasons of expediency, lack of access, or incompatibility with the material, a musician might rather record a reference performance of a part instead of plugging in a MIDI or MusicXML symbolic score. An early version of our proposed system was presented in [START_REF] Burloiu | An online audio alignment tool for live musical performance[END_REF]. The application and its source are available1 as a Max/MSP2 external object; to our knowledge, it is the only online audio-to-audio alignment tool for Max to date.

The rest of the paper is organised as follows: section 2 is a brief review of relevant work. In section 3 we describe our alignment framework and in section 4 we introduce the beat tracking component and describe its integration into the system. Section 5 is a case study of the switching mechanism. We conclude with a discussion of the proposed system and future research directions in section 6.

RELATED WORK

Several studies have addressed the problems of performance variation and error, and of structural differences in the context of music alignment. In the case of alignment to a symbolic score, the problem of jumps is relatively easily solved by marking points of possible divergence [START_REF] Fremerey | Handling repeats and jumps in score-performance synchronization[END_REF][START_REF] Arzt | Automatic page turning for musicians via real-time machine listening[END_REF][START_REF] Cont | On the creative use of score following and its impact on research[END_REF]. For the audio-to-audio alignment of one performance to another, which is the focus of our paper, methods based on dynamic time warping (DTW) [START_REF] Muller | Path-constrained partial music synchronization[END_REF] and variations thereof [START_REF] Grachten | Automatic alignment of music performances with structural differences[END_REF] have shown good results in the offline case. For real-time situations, audio-to-audio alignment has been implemented using strategies based on online DTW [START_REF] Dixon | Live tracking of musical performances using on-line time warping[END_REF][START_REF] Arzt | Simple tempo models for real-time music tracking[END_REF][START_REF] Macrae | Accurate real-time windowed time warping[END_REF] or particle filtering [START_REF] Montecchio | A unified approach to real time audio-to-score and audio-to-audio alignment using sequential montecarlo inference techniques[END_REF][START_REF] Xiong | Audio-to-audio alignment using particle filters to handle small and large scale performance discrepancies[END_REF].

Notably, structural differences are specifically addressed in [START_REF] Arzt | Simple tempo models for real-time music tracking[END_REF][START_REF] Xiong | Audio-to-audio alignment using particle filters to handle small and large scale performance discrepancies[END_REF], which continuously monitor different positions in the score in parallel, to account for jumps. These methods, while performing well for tasks such as real-time page turning and annotation, are however not optimised for automatic accompaniment. There is no mechanism to ensure a musically useful tempo during time periods of incorrect alignment caused by mistakes, or improvisation.

Meanwhile, beat trackers have been at the core of "performance following" [START_REF] Stark | Performance following: Real-time prediction of musical sequences without a score[END_REF] tasks such as generative drum accompaniment [START_REF] Robertson | B-keeper: A beattracker for live performance[END_REF] or tonal performance tracking [START_REF] Stark | Performance following: Real-time prediction of musical sequences without a score[END_REF][START_REF] Toiviainen | Real-time recognition of improvisations with adaptive oscillators and a recursive bayesian classifier[END_REF]. Such applications indicate that beat trackers are able to drive a performance forward over periods where the live musician strays from the original reference, which is the main insight driving this paper.

PERFORMANCE AUDIO ALIGNMENT

In this section we describe our pre-existing accompaniment framework, as expanded from [START_REF] Burloiu | An online audio alignment tool for live musical performance[END_REF]. It consists of an online audio-to-audio aligner and a tempo model.

Online DTW-based Follower

Our system computes the alignment path based on a variant of online DTW [START_REF] Dixon | Live tracking of musical performances using on-line time warping[END_REF]. The basic algorithm aligns a target time series X = x 1 . . . x m to a reference Y = y 1 . . . y n , where X is partially unknown: only the first t values are known at a certain point. The goal is for each t = 1 . . . m to find the corresponding index h t , so that the subsequence y 1 . . . y ht is best aligned3 to x 1 . . . x t . The alignment path p is a sequence of (t, h t ) tuples connecting the origin with the current position for the lowest global match cost. For audio alignment tasks, all x i and y j are audio feature vectors; in this case we use chromagrams, as computed in [START_REF] Stark | Real-time chord recognition for live performance[END_REF].

The alignment path p is defined as being monotonous and continuous, with a local slope constraint that prevents the follower from getting stuck in a local minimum or making steep jumps. For each incoming frame x t , the local match cost matrix is computed for the past c × c frames and the path advances by computing a new row, a new column, or both, depending on where the current minimum match cost is found on the search window's frontier: a row, a column or the top-right corner, respectively. Since the alignment engine is not the main focus of this paper, we will just briefly describe our main modifications to the classic online DTW method. For implementation details we refer the reader to [START_REF] Dixon | Live tracking of musical performances using on-line time warping[END_REF][START_REF] Burloiu | An online audio alignment tool for live musical performance[END_REF].

Our first change is to remove the path slope constraint, allowing the alignment path to trace along the X or Y axes for as long as necessary. To maintain stability, we compensate by adjusting the local match weighting coefficients to favour diagonal movement, and by adding a constant α to the local cost, minimising the influence of minor differences between target and reference feature vectors, which could have unpredictably diverted the path:

d(i, j) = k (x i,k -y j,k ) 2 + α , (1) 
Secondly, as inspired by [START_REF] Arzt | Automatic page turning for musicians via real-time machine listening[END_REF], with each new input frame we compute a backwards, offline DTW path starting from the current (t, h t ) position, over a square-shaped match cost matrix covering around 5 seconds in the immediate past. Since both dimensions are now "known", the alignment is considered to be more accurate, and we are able to compute the distance δ BACK t between coordinates where the main alignment path and the backwards, corrective path reach the border of the window. Whenever this deviation δ BACK t exceeds a threshold = 50ms, we adjust the weighting coefficients to favour a path in the respective direction. Figure 1 illustrates this behaviour for two test sequences: one gradually slows down, then carries on at 80% tempo before abruptly reverting to the original speed, and the other takes the opposite direction. It becomes evident how the deviation between the main and the backwards path fosters the different tempo regimes. 

Tempo Model

In our system, for each time frame t the tempo model derives a relative tempo τ t from the alignment path, so that:

ht = ht-1 + τ t , (2) 
where ht ∈ Q is the accompaniment coordinate in the reference series corresponding to the target frame t, and h0 = 0.

Effectively, τ t acts as a tempo multiplier in that it modulates the accompaniment playback speed. For each t, we define the accompaniment error ε t as the difference between the alignment index and the accompaniment coordinate:

ε t = h t -ht . (3) 
Our system contains four different tempo models, which the user can choose between. Hereon we describe and employ the PID model, inspired by the proportional-integralderivative controller [START_REF] Franklin | Digital control of dynamic systems[END_REF], which is a simple way to efficiently model adaptation and anticipation relative to trends in the alignment path. The model has the following output:

u d (t) = K P ε t + K I t i=0 ε i + K D ε t -ε t-∆t ∆t , (4) 
which produces the tempo multiplier:

τ PID t = h t -h t-∆t + u d (t) ∆t . (5) 
For the user-adjustable parameters, the ∆t step has a default value of 500ms, and we found a good compromise between stability, response time and anticipation by setting:

K P = 17 × 10 -3 , K I = 3 × 10 -4 , K D = 0.4.
Finally, a sensitivity parameter S produces the threshold value S which the accompaniment error ε t needs to reach in order to activate the tempo model. For an appropriate sensitivity value, the system ignores minor fluctuations in the alignment path slope and holds the tempo steady at the last computed value. The threshold falls quadratically from one second to zero with the rise of sensitivity from 0 to 1:

Y A δ i BEAT b i Y b i-1 Y b j A
S = (1 -S) 2 × 100 . ( 6 
)
The impact of the S setting is seen in Figures 4 and6, where the time segments with a constant relative tempo have no background shading.

BEAT TRACKING COMPONENT

We integrated the beat tracker in [START_REF] Stark | Real-time beat-synchronous analysis of musical audio[END_REF], which is publicly available 4 as a C++ class. The diagram in Figure 2 shows how the beat tracking module fits into the larger system framework. We distinguish between the offline phase, where the reference audio to be matched and the accompaniment track are pre-loaded into the beat tracker and their beat positions marked as b Y i and, respectively, b A i , and the online phase, where the target audio beats b X i are detected in real time. Beat durations are measured as:

∆t [X,Y,A] i = b [X,Y,A] i -b [X,Y,A] i-1 . (7) 
The ∆t X i values replace the tempo update interval ∆t from Equation (5) in real time, ensuring that new tempo values are computed by the PID tempo model with each new detected live beat.

Furthermore in the offline phase, for every reference beat b Y i , we compute the distance δ BEAT i to its corresponding accompaniment beat b A j . We take into consideration the possibility of the beats being in reverse phase, so if the distance is larger than a quarter of the current reference beat duration ∆t Y i , then we translate b Y i by half of ∆t Y i before again computing the distance:

δ BEAT i = min(|b Y i -b A j |, |b Y i ± ∆t Y i 2 -b A j |) . ( 8 
)
The actuation of the ± operation depends on whether b Y i , being the closest reference beat to b A j , comes before or after b A j . This process is depicted in Figure 3, where b Y i is translated backwards. We use this reference-accompaniment beat distance δ BEAT i as a measure of how rhythmically "locked in" the reference part is to the backing track. This provides an indication of how closely we expect the live target to match the accompaniment beats, which makes it a modulation factor for the tempo model's S sensitivity parameter. We rewrite Equation ( 6) as follows:

S i = (1 -S) 2 × 100 + δ BEAT i . ( 9 
)
Now for each new b Y i beat reached, the tempo model's activation threshold moves depending on how tightly we expect the target to match the reference. Thus, for "loose" beats we raise the threshold, meaning that small deviations are ignored by the accompaniment and the tempo is kept constant. All the examples in this paper were realised using S = 1, which would have produced a global zero threshold under Equation [START_REF] Fremerey | Handling repeats and jumps in score-performance synchronization[END_REF].

The beat tracking module derives a local tempo BPM estimate from the observed beat durations [START_REF] Stark | Real-time beat-synchronous analysis of musical audio[END_REF]. To produce the relative tempo τ BEAT t that can drive the accompaniment, we divide the live tempo estimate by the tempo detected at the same beat in the accompaniment track. We define two situations where the system's relative tempo output switches from the alignment-based value τ PID t to the beatbased one τ BEAT t :

1. if the tempo produced is more than 3 times slower or faster than the reference, or 2. if the backwards DTW deviation δ BACK t exceeds a threshold B = 174ms, and the difference between the alignment slope 5 dh dt and τ BEAT t is greater than T = 0.15. 

τ 0 ← 1 for all frames x t in X do if ε t > S i then if (δ BACK t > B and | dh dt -τ BEAT t | > T ) or (τ t-1 / ∈ ( 1 3 , 3)) then waiting ← ∆t A i end if if waiting > 0 then τ t ← τ BEAT t {computed by the beat tracker.} calc ← BEAT else if calc = BEAT then ht ← h t {jump back to alignment path pos.} end if τ t ← τ PID t {computed in Equation (5).} calc ← PID end if else if ε t ≤ 1 and calc = NONE then τ t ← dh dt {use current path slope.} calc ← NONE {disable tempo model.} end if if waiting > 0 then waiting ← waiting -1 end if ht ← ht-1 + τ t end for
When one of the two conditions is hit, the beat tracker drives the tempo for at least one ∆t A i beat. Afterwards, if the conditions are inactive, the alignment-based tempo model regains control, and the accompaniment cursor ht jumps to the respective path position h t . This entire switching algorithm is laid out in Listing 1. We can follow the algorithm's execution through the example shown in Figure 4. For the first third of the runthrough, the live target closely matches the reference. In the next third, the musician starts improvising, keeping the same tempo but diverging from the original pitches significantly. The (δ BACK t > B and | dh dt -τ BEAT t | > T ) condition is activated and the tempo is now controlled by the beat tracker, τ t ← τ BEAT t . The condition remains active until a few seconds after the musician has resumed playing the scored pitches. By that time, the online DTW path has rejoined the accompaniment path, so the transition back to the original tempo model is seamless.

In the next section we study a more challenging case and test the limits of our proposed accompaniment system.

CASE STUDY

The alignment performance of our online DTW engine has been evaluated in [START_REF] Burloiu | An online audio alignment tool for live musical performance[END_REF], with results on par with equivalent implementations. The beat tracker is evaluated in [START_REF] Stark | Real-time beat-synchronous analysis of musical audio[END_REF]. In order to thoroughly assess the performance of models presented in this paper, we would require experimental pro- cedures and reference benchmarks that exceed the current standard methods for score following or beat tracking tasks, which mostly measure keyframe-matching ability without specifically studying the musical quality of the resulting accompaniment.

The case for a wider test bench that includes not just several performances of a piece, but also the corresponding accompaniment tracks, is further strengthened by the beat-based tempo model we introduced in section 4, which strongly relies on backing track information. In the absence of such an evaluation database, a preliminary case study will demonstrate the qualitative improvements over our previous system and equivalent followers.

The materials we produced for this example scenario are presented in Figure 5. A backing track (drums) plays by itself for one measure to cue in the lead instrument (guitar). The two play together for one measure (section A), followed by an improvisation (section B) where the backing track keeps a steady beat. The lead instrument decides when to conclude the improvisation by entering the final two measures (section C).

There are two major questions that our system must answer, without referring to any symbolic information or programmed instructions: what to do when the musician starts improvising, and how to latch back on at the conclusion.

Figure 6 shows one realisation of the scenario, where the musician first misses the cue to start playing, which causes the alignment to remain stuck at the start of section A. Other online aligners might produce the same result, but our machine does not stop here: the beat tracker takes control, setting the tempo to 1, which allows the waiting vari- able to elapse during one beat. At the end of this beat, the accompaniment cursor goes back to the baseline, and the process is repeated. Thus, our musician (and the audience) is given a steady beat; once they start playing over it, the alignment-based tempo model regains control.

To model the space for improvisation, we found that filling the space in the reference audio with musical silence (actually the natural background noise of the instrument) gives the desired result. This way, the contrast between (target) activity and (reference) silence makes it instantly obvious when the improvisation begins: the online DTW starts evolving unpredictably, δ BACK t explodes and the beat tracker takes control.

The realignment in the final measures (as seen in the vertical jump in Figure 6) depends on one important condition: that the musician pause between the end of the improvisation and the start of the scored coda. This allows the DTW process to match one transition to the other. We found for our particular example6 a pause of 1.1s to be sufficient, for an online DTW window of 1.49s7 .

CONCLUSIONS

We have presented an online audio-to-audio following and accompaniment system that combines a tempo model based on the alignment path produced by an online DTW process with a tempo model tied to beat tracking, without reference to any symbolic score data. The two models constantly inform each other, producing a synergistic relationship.

This framework is geared to a specific scenario, where a musician creates a reference audio track by playing along to a fixed backing track. This accompaniment track is then warped in real time to match a live target. Such a scenario applies more to popular beat-based music genres than the classical concerto or solo performances that followers such as [START_REF] Arzt | Simple tempo models for real-time music tracking[END_REF][START_REF] Raphael | Music plus one and machine learning[END_REF] are designed around. Thus, while the added rigid-ity serves beat-centred material well, it is less appropriate for strong rubato, where pure alignment-based models perform better. The user can address this by raising the B and T thresholds, causing the beat tracker to engage less easily. We anticipate several avenues for future work. Firstly, an evaluation framework based on a cross-genre database of backing tracks and isolated performances is needed in order to ensure measurable progress. Our proposed embedding of beat tracking into the alignment process is certainly not the only possible method, and so far we have relied on piecewise experimentation to move forward.

Secondly, we are looking to develop new tempo models that make integral use of both performance alignment and beat tracking. The adaptation of the PID model introduced in section 4 is a start, but we might conceive models from the ground up with this configuration in mind.

Thirdly, we intend to further increase system robustness through parallel observations. Among the research directions worth considering are multi-agent following [START_REF] Arzt | Real-time music tracking using multiple performances as a reference[END_REF], asynchrony compensation [START_REF] Wang | Compensating for asynchronies between musical voices in scoreperformance alignment[END_REF] to capture the timing nuances of several musical facets, and parallel trackers for two or more musicians jointly driving the accompaniment.

Finally, we plan to move beyond warped backing tracks, to produce more dynamic accompaniments where the timing information extracted from live target performance(s) informs temporal deviations within the accompaniment's individual components.
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 1 Figure 1: The online DTW-based audio alignment. Target time t progresses horizontally, reference time h t vertically. Two test target alignment paths are shown in The deviations δ BACK t from the backwards path are added to each (t, h t ) tuple, in blue for the accelerating target and in red for the decelerating one.

Figure 2 :

 2 Figure 2: Framework architecture diagram. Dotted lines signify offline data pre-loading, regular arrows show online data flow. The beat tracker computes a tempo τ BEAT t based on the x t input, and sends beat information to alignment-based tempo model. The choice between τ BEAT t

Figure 3 :

 3 Figure 3: Computing the distance δ BEAT i between beats in the reference audio Y and their closest correspondents in the accompaniment track A. In this example, b Y i falls closer to an up-beat, so we translate it by ∆t Y i 2 towards the closest upbeat b A j before measuring the distance.

Figure 4 :

 4 Figure 4: Online tempo tracking. The black line is the audio-to-audio alignment path; the green line traces the accompaniment coordinates produced by the system. Blue background shading marks time where τ PID t is in effect; purple marks τ BEAT t tempo; no background shading marks constant accompaniment tempo.
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  smoothed over the last 40 frames, or 464ms.

Algorithm 1

 1 Switching between the alignment-based tempo model τ PID t and the beat-based one τ BEAT t . calc ← NONE waiting ← 0

Figure 5 :

 5 Figure 5: Example scenario. (a) lead instrument score, unknown by the system; (b) reference track; (c) accompaniment track. (b) and (c) are pre-loaded into the system.

Figure 6 :

 6 Figure 6: Example execution of the scenario in Figure 5. Notations in Figure 4 apply. See text for interpretation.

See https://github.com/RVirmoors/RVdtw-.

Max is a state-of-the-art programming environment for realtime multimedia performance; see http://cycling74.com/.

In cases where a frame xt is assigned to several frames in Y , we set ht to point to the last of these.

See https://github.com/adamstark/BTrack.

All test and demo files for this paper are available at https:// github.com/RVirmoors/RVdtw-/tree/master/_smc

c = 128 frames with a hop of 512 samples, at 44.1kHz sample rate.