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ABSTRACT

We approach a specific scenario in real-time performance
following for automatic accompaniment, where a relative
tempo value is derived from the deviation between a live
target performance and a stored reference, to drive the play-
back speed of an accompaniment track. We introduce a
system which combines an online alignment process with
a beat tracker. The former aligns the target performance
to the reference without resorting to any symbolic infor-
mation. The latter utilises the beat positions detected in
the accompaniment, reference and target tracks to (1) im-
prove the robustness of the alignment-based tempo model
and (2) take over the tempo computation in segments when
the alignment error is likely high. While other systems
exist that handle structural deviations and mistakes in a
performance, the portions of time where the aligner is at-
tempting to find the correct hypothesis can produce erratic
tempo values. Our proposed system, publicly available as
a Max/MSP external object, addresses this problem.

1. INTRODUCTION

The task of online tempo tracking refers to the computation
of a realistic tempo curve from an incoming audio stream
in real time, relative to a reference. In this paper we focus
on the application of tempo tracking in a musical context
where a performer plays together with a responsive accom-
paniment track, with both the system reacting to live tempo
fluctuations and acting as a steady backdrop for the mu-
sician to anchor herself to when needed. To this end, we
examine two paradigms for tempo tracking—online audio-
to-audio alignment and beat tracking—and propose a sys-
tem that uses both, harnessing their respective strengths.

In the literature, audio alignment is generally part of score
following systems [1–3], which gradually build a best-fit
path matching the incoming live audio to a reference. This
path is likely to contain intermittently unnatural slopes,
which is why tempo models are needed to translate the path
slope into a realistic relative tempo value [2]. A typical
application for a score following task is a concerto sim-
ulation, where a solo performance and drives a machine-
generated accompaniment, which faithfully responds to the
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musician’s tempo progression. In cases of performance er-
rors or structural differences such as jumps or repeats, on-
line alignment algorithms can temporarily produce erratic
local outputs. Tempo models can alleviate the problem by
smoothing over minor errors, but the larger issue of sys-
tematic error detection and correction remains.

Meanwhile, beat tracking systems compute tempo curves
by detecting the dominant metrical pulse in the live in-
put [4, 5]. As such, they are geared towards scenarios with
prominent periodic beats, where the live musician might
be locked in with a rhythmic backing track. Wrong notes
do not affect the tempo tracking performance, and even
when the musician deviates from the rhythmic pattern, beat
trackers produce a reasonably consistent tempo line. How-
ever, even though they might be configured to drive an
external sequencer [4], beat tracking systems themselves
do not have information about the material being played.
Thus minor deviations can cause them to fall on an up-
beat, and structural changes such as the omission of a bar
of music are impossible to detect.

We introduce a system that tackles the issue of errors and
structural deviations in music with a strong rhythmic pulse,
by tracking tempo in two ways: a model based on audio-
to-audio alignment by default, and a beat tracking-based
model which takes over when the alignment path becomes
erratic. The resulting machine can drive an accompani-
ment track based only on audio inputs, without the use of
a score or any other symbolic ground truth information.
The practical justification is that, for reasons of expedi-
ency, lack of access, or incompatibility with the material, a
musician might rather record a reference performance of a
part instead of plugging in a MIDI or MusicXML symbolic
score.

An early version of our proposed system was presented
in [3]. The application and its source are available 1 as
a Max/MSP 2 external object; to our knowledge, it is the
only online audio-to-audio alignment tool for Max to date.

The rest of the paper is organised as follows: section 2 is
a brief review of relevant work. In section 3 we describe
our alignment framework and in section 4 we introduce
the beat tracking component and describe its integration
into the system. Section 5 is a case study of the switching
mechanism. We conclude with a discussion of the pro-
posed system and future research directions in section 6.

1 See https://github.com/RVirmoors/RVdtw-.
2 Max is a state-of-the-art programming environment for realtime mul-

timedia performance; see http://cycling74.com/.
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2. RELATED WORK

Several studies have addressed the problems of
performance variation and error, and of structural differ-
ences in the context of music alignment. In the case of
alignment to a symbolic score, the problem of jumps is
relatively easily solved by marking points of possible di-
vergence [6–8]. For the audio-to-audio alignment of one
performance to another, which is the focus of our paper,
methods based on dynamic time warping (DTW) [9] and
variations thereof [10] have shown good results in the of-
fline case. For real-time situations, audio-to-audio align-
ment has been implemented using strategies based on on-
line DTW [1, 2, 11] or particle filtering [12, 13].

Notably, structural differences are specifically addressed
in [2, 13], which continuously monitor different positions
in the score in parallel, to account for jumps. These meth-
ods, while performing well for tasks such as real-time page
turning and annotation, are however not optimised for au-
tomatic accompaniment. There is no mechanism to ensure
a musically useful tempo during time periods of incorrect
alignment caused by mistakes, jumps, or improvisation.

Meanwhile, beat trackers have been at the core of “per-
formance following” [14] tasks such as generative drum
accompaniment [4] or tonal performance tracking [14,15].
Such applications indicate that beat trackers are able to
drive a performance forward over periods where the live
musician strays from the original reference, which is the
main insight driving this paper.

3. PERFORMANCE AUDIO ALIGNMENT

In this section we describe our pre-existing accompani-
ment framework, as expanded from [3]. It consists of an
online audio-to-audio aligner and a tempo model.

3.1 Online DTW-based Follower

Our system computes the alignment path based on a vari-
ant of online DTW [1]. The basic algorithm aligns a target
time series X = x1 . . . xm to a reference Y = y1 . . . yn,
where X is partially unknown: only the first t values are
known at a certain point. The goal is for each t = 1 . . .m
to find the corresponding index ht, so that the subsequence
y1 . . . yht is best aligned 3 to x1 . . . xt. The alignment path
p is a sequence of (t, ht) tuples connecting the origin with
the current position for the lowest global match cost. For
audio alignment tasks, all xi and yj are audio feature
vectors; in this case we use chromagrams, as computed
in [16].

The alignment path p is defined as being monotonous and
continuous, with a local slope constraint that prevents the
follower from getting stuck in a local minimum or making
steep jumps. For each incoming frame xt, the local match
cost matrix is computed for the past c × c frames and the
path advances by computing a new row, a new column, or
both, depending on where the current minimum match cost
is found on the search window’s frontier: a row, a column
or the top-right corner, respectively.

3 In cases where a frame xt is assigned to several frames in Y , we set
ht to point to the last of these.
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Figure 1: The online DTW-based audio alignment. Target
time t progresses horizontally, reference time ht vertically.
Two test target alignment paths are shown in black. The
deviations δBACK

t from the backwards path are added to each
(t, ht) tuple, in blue for the accelerating target and in red
for the decelerating one.

Since the alignment engine is not the main focus of this
paper, we will just briefly describe our main modifications
to the classic online DTW method. For implementation
details we refer the reader to [1, 3].

Our first change is to remove the path slope constraint,
allowing the alignment path to trace along theX or Y axes
for as long as necessary. To maintain stability, we compen-
sate by adjusting the local match weighting coefficients to
favour diagonal movement, and by adding a constant α to
the local cost, minimising the influence of minor differ-
ences between target and reference feature vectors, which
could have unpredictably diverted the path:

d(i, j) =

√∑
k

(xi,k − yj,k)2 + α , (1)

Secondly, as inspired by [7], with each new input frame
we compute a backwards, offline DTW path starting from
the current (t, ht) position, over a square-shaped match
cost matrix covering around 5 seconds in the immediate
past. Since both dimensions are now “known”, the align-
ment is considered to be more accurate, and we are able to
compute the distance δBACK

t between coordinates where the
main alignment path and the backwards, corrective path
reach the border of the window. Whenever this devia-
tion δBACK

t exceeds a threshold ε = 50ms, we adjust the
weighting coefficients to favour a path in the respective
direction. Figure 1 illustrates this behaviour for two test
sequences: one gradually slows down, then carries on at
80% tempo before abruptly reverting to the original speed,
and the other takes the opposite direction. It becomes ev-
ident how the deviation between the main and the back-
wards path fosters the different tempo regimes.
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Figure 2: Framework architecture diagram. Dotted lines
signify offline data pre-loading, regular arrows show on-
line data flow. The beat tracker computes a tempo τBEAT

t

based on the xt input, and sends beat information to the
alignment-based tempo model. The choice between τBEAT

t

and τ PID
t for tempo output is based on the alignment path

pt and its backwards error measure δBACK
t .

3.2 Tempo Model

In our system, for each time frame t the tempo model de-
rives a relative tempo τt from the alignment path, so that:

h̃t = h̃t−1 + τt , (2)

where h̃t ∈ Q is the accompaniment coordinate in the
reference series corresponding to the target frame t, and
h̃0 = 0.

Effectively, τt acts as a tempo multiplier in that it mod-
ulates the accompaniment playback speed. For each t, we
define the accompaniment error εt as the difference be-
tween the alignment index and the accompaniment
coordinate:

εt = ht − h̃t . (3)

Our system contains four different tempo models, which
the user can choose between. Hereon we describe and em-
ploy the PID model, inspired by the proportional-integral-
derivative controller [17], which is a simple way to effi-
ciently model adaptation and anticipation relative to trends
in the alignment path. The model has the following output:

ud(t) = KP εt +KI

t∑
i=0

εi +KD
εt − εt−∆t

∆t
, (4)

which produces the tempo multiplier:

τ PID
t =

ht − ht−∆t + ud(t)

∆t
. (5)

For the user-adjustable parameters, the ∆t step has a de-
fault value of 500ms, and we found a good compromise
between stability, response time and anticipation by set-
ting: KP = 17× 10−3, KI = 3× 10−4, KD = 0.4.

Finally, a sensitivity parameter S produces the threshold
value εS which the accompaniment error εt needs to reach
in order to activate the tempo model. For an appropriate
sensitivity value, the system ignores minor fluctuations in
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Figure 3: Computing the distance δBEAT
i between beats

in the reference audio Y and their closest correspondents
in the accompaniment track A. In this example, bYi falls

closer to an up-beat, so we translate it by ∆tYi
2 towards the

closest upbeat bAj before measuring the distance.

the alignment path slope and holds the tempo steady at the
last computed value. The threshold falls quadratically from
one second to zero with the rise of sensitivity from 0 to 1:

εS = (1− S)2 × 100 . (6)

The impact of the S setting is seen in Figures 4 and 6,
where the time segments with a constant relative tempo
have no background shading.

4. BEAT TRACKING COMPONENT

We integrated the beat tracker in [5], which is publicly
available 4 as a C++ class. The diagram in Figure 2 shows
how the beat tracking module fits into the larger system
framework.

We distinguish between the offline phase, where the ref-
erence audio to be matched and the accompaniment track
are pre-loaded into the beat tracker and their beat positions
marked as bYi and, respectively, bAi , and the online phase,
where the target audio beats bXi are detected in real time.
Beat durations are measured as:

∆t
[X,Y,A]
i = b

[X,Y,A]
i − b[X,Y,A]

i−1 . (7)

The ∆tXi values replace the tempo update interval ∆t
from Equation (5) in real time, ensuring that new tempo
values are computed by the PID tempo model with each
new detected live beat.

Furthermore in the offline phase, for every reference beat
bYi , we compute the distance δBEAT

i to its corresponding ac-
companiment beat bAj . We take into consideration the pos-
sibility of the beats being in reverse phase, so if the dis-
tance is larger than a quarter of the current reference beat
duration ∆tYi , then we translate bYi by half of ∆tYi before
again computing the distance:

δBEAT
i = min(|bYi − bAj |, |bYi ±

∆tYi
2
− bAj |) . (8)

The actuation of the± operation depends on whether bYi ,
being the closest reference beat to bAj , comes before or af-
ter bAj . This process is depicted in Figure 3, where bYi is
translated backwards.

4 See https://github.com/adamstark/BTrack.
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Figure 4: Online tempo tracking. The black line is the
audio-to-audio alignment path; the green line traces the ac-
companiment coordinates produced by the system. Blue
background shading marks time where τ PID

t is in effect;
purple marks τBEAT

t tempo; no background shading marks
constant accompaniment tempo.

We use this reference-accompaniment beat distance δBEAT
i

as a measure of how rhythmically “locked in” the reference
part is to the backing track. This provides an indication of
how closely we expect the live target to match the accom-
paniment beats, which makes it a good modulation factor
for the tempo model’s S sensitivity parameter. We rewrite
Equation (6) as follows:

εS
i = (1− S)2 × 100 + δBEAT

i . (9)

Now for each new bYi beat reached, the tempo model’s
activation threshold moves depending on how tightly we
expect the target to match the reference. Thus, for “loose”
beats we raise the threshold, meaning that small deviations
are ignored by the accompaniment and the tempo is kept
constant. All the examples in this paper were realised using
S = 1, which would have produced a global zero threshold
under Equation (6).

The beat tracking module derives a local tempo BPM
estimate from the observed beat durations [5]. To produce
the relative tempo τBEAT

t that can drive the accompaniment,
we divide the live tempo estimate by the tempo detected
at the same beat in the accompaniment track. We define
two situations where the system’s relative tempo output
switches from the alignment-based value τ PID

t to the beat-
based one τBEAT

t :

1. if the tempo produced is more than 3 times slower or
faster than the reference, or

2. if the backwards DTW deviation δBACK
t exceeds a

threshold εB = 174ms, and the difference between
the alignment slope 5 dh

dt and τBEAT
t is greater than

εT = 0.15.

5 smoothed over the last 40 frames, or 464ms.

Algorithm 1 Switching between the alignment-based
tempo model τ PID

t and the beat-based one τBEAT
t .

calc← NONE
waiting ← 0
τ0 ← 1
for all frames xt in X do

if εt > εS
i then

if (δBACK
t > εB and |dhdt − τ

BEAT
t | > εT) or

(τt−1 /∈ ( 1
3 , 3)) then

waiting ← ∆tAi
end if
if waiting > 0 then
τt ← τBEAT

t {computed by the beat tracker.}
calc← BEAT

else
if calc = BEAT then
h̃t ← ht {jump back to alignment path pos.}

end if
τt ← τ PID

t {computed in Equation (5).}
calc← PID

end if
else if εt ≤ 1 and calc 6= NONE then
τt ← dh

dt {use current path slope.}
calc← NONE {disable tempo model.}

end if
if waiting > 0 then
waiting ← waiting − 1

end if
h̃t ← h̃t−1 + τt

end for

When one of the two conditions is hit, the beat tracker
drives the tempo for at least one ∆tAi beat. Afterwards,
if the conditions are inactive, the alignment-based tempo
model regains control, and the accompaniment cursor h̃t
jumps to the respective path position ht. This entire switch-
ing algorithm is laid out in Listing 1.

We can follow the algorithm’s execution through the ex-
ample shown in Figure 4. For the first third of the run-
through, the live target closely matches the reference. In
the next third, the musician starts improvising, keeping the
same tempo but diverging from the original pitches signifi-
cantly. The (δBACK

t > εB and |dhdt − τ
BEAT
t | > εT) condition

is activated and the tempo is now controlled by the beat
tracker, τt ← τBEAT

t . The condition remains active until
a few seconds after the musician has resumed playing the
scored pitches. By that time, the online DTW path has re-
joined the accompaniment path, so the transition back to
the original tempo model is seamless.

In the next section we study a more challenging case and
test the limits of our proposed accompaniment system.

5. CASE STUDY

The alignment performance of our online DTW engine has
been evaluated in [3], with results on par with equivalent
implementations. The beat tracker is evaluated in [5]. In
order to thoroughly assess the performance of models pre-
sented in this paper, we would require experimental pro-
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Figure 5: Example scenario. (a) lead instrument score,
unknown by the system; (b) reference track; (c) accompa-
niment track. (b) and (c) are pre-loaded into the system.

cedures and reference benchmarks that exceed the current
standard methods for score following or beat tracking tasks,
which mostly measure keyframe-matching ability without
specifically studying the musical quality of the resulting
accompaniment.

The case for a wider test bench that includes not just
several performances of a piece, but also the correspond-
ing accompaniment tracks, is further strengthened by the
beat-based tempo model we introduced in section 4, which
strongly relies on backing track information. In the ab-
sence of such an evaluation database, a preliminary case
study will demonstrate the qualitative improvements over
our previous system and equivalent followers.

The materials we produced for this example scenario are
presented in Figure 5. A backing track (drums) plays by
itself for one measure to cue in the lead instrument (gui-
tar). The two play together for one measure (section A),
followed by an improvisation (section B) where the back-
ing track keeps a steady beat. The lead instrument decides
when to conclude the improvisation by entering the final
two measures (section C).

There are two major questions that our system must an-
swer, without referring to any symbolic information or pro-
grammed instructions: what to do when the musician starts
improvising, and how to latch back on at the conclusion.

Figure 6 shows one realisation of the scenario, where the
musician first misses the cue to start playing, which causes
the alignment to remain stuck at the start of section A.
Other online aligners might produce the same result, but
our machine does not stop here: the beat tracker takes con-
trol, setting the tempo to 1, which allows the waiting vari-
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Figure 6: Example execution of the scenario in Figure 5.
Notations in Figure 4 apply. See text for interpretation.

able to elapse during one beat. At the end of this beat, the
accompaniment cursor goes back to the baseline, and the
process is repeated. Thus, our musician (and the audience)
is given a steady beat; once they start playing over it, the
alignment-based tempo model regains control.

To model the space for improvisation, we found that fill-
ing the space in the reference audio with musical silence
(actually the natural background noise of the instrument)
gives the desired result. This way, the contrast between
(target) activity and (reference) silence makes it instantly
obvious when the improvisation begins: the online DTW
starts evolving unpredictably, δBACK

t explodes and the beat
tracker takes control.

The realignment in the final measures (as seen in the ver-
tical jump in Figure 6) depends on one important condi-
tion: that the musician pause between the end of the im-
provisation and the start of the scored coda. This allows
the DTW process to match one transition to the other. We
found for our particular example 6 a pause of 1.1s to be
sufficient, for an online DTW window of 1.49s 7 .

6. CONCLUSIONS

We have presented an online audio-to-audio following and
accompaniment system that combines a tempo model based
on the alignment path produced by an online DTW process
with a tempo model tied to beat tracking, without reference
to any symbolic score data. The two models constantly in-
form each other, producing a synergistic relationship.

This framework is geared to a specific scenario, where a
musician creates a reference audio track by playing along
to a fixed backing track. This accompaniment track is then
warped in real time to match a live target. Such a scenario
applies more to popular beat-based music genres than the
classical concerto or solo performances that followers such
as [2,18] are designed around. Thus, while the added rigid-

6 All test and demo files for this paper are available at https://
github.com/RVirmoors/RVdtw-/tree/master/_smc

7 c = 128 frames with a hop of 512 samples, at 44.1kHz sample rate.
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ity serves beat-centred material well, it is less appropriate
for strong rubato, where pure alignment-based models per-
form better. The user can address this by raising the εB and
εT thresholds, causing the beat tracker to engage less easily.

We anticipate several avenues for future work. Firstly, an
evaluation framework based on a cross-genre database of
backing tracks and isolated performances is needed in or-
der to ensure measurable progress. Our proposed embed-
ding of beat tracking into the alignment process is certainly
not the only possible method, and so far we have relied on
piecewise experimentation to move forward.

Secondly, we are looking to develop new tempo models
that make integral use of both performance alignment and
beat tracking. The adaptation of the PID model introduced
in section 4 is a start, but we might conceive models from
the ground up with this configuration in mind.

Thirdly, we intend to further increase system robustness
through parallel observations. Among the research direc-
tions worth considering are multi-agent following [19],
asynchrony compensation [20] to capture the timing
nuances of several musical facets, and parallel trackers for
two or more musicians jointly driving the accompaniment.

Finally, we plan to move beyond warped backing tracks,
to produce more dynamic accompaniments where the tim-
ing information extracted from live target performance(s)
informs temporal deviations within the accompaniment’s
individual components.
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