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Extending Riemannian Brain-Computer Interface to Functional
Connectivity Estimators

Sylvain Chevallier1, Marie-Constance Corsi2, Florian Yger3 and Camille Noûs4

Abstract— This abstract describes a novel approach for
handling brain-computer interfaces (BCI), that could be used
for robotic applications. State-of-the-art approaches rely on
the classification of covariance matrices in the manifold of
symmetric positive-definite matrices. Functional connectivity
estimators have demonstrated their reliability and are good
candidates to improve the classification accuracy of covariance-
based methods. This abstract explores possible application of
functional connectivity in Riemannian BCI.

I. INTRODUCTION

Brain-Computer Interfaces (BCI) consists of a device
that translates brain activity into commands for control and
communication[1]. BCI devices can be a valuable tool in
the treatment of neurological disorders [2]. They can also
constitutes a motor substitution in the case of neuropros-
thesis by building alternative pathways [3]. Recently, an
exoskeleton controlled by an epidural wireless BCI enabled
a tetraplegic patient to walk [4]. This result constitutes a
first proof-of-concept performed in the laboratory. Despite its
clinical applications, many issues remain. The most limiting
one is the inter/intra-subject variability or also known as
”BCI inefficiency” [5]. Indeed, a non-negligible part of the
users (between 15 and 30% [6]) cannot control the BCI
device despite several training sessions. It clearly limits the
BCI usability. Among the possible approaches to tackle this
issue is the search of alternative features and classification
tools that could enhance the discrimination of subjects’ men-
tal state. Relying on functional connectivity, our approach
investigates the contribution of synchrony and/or phase to
compensate potential misclassifications induced by power-
related information available in golden standard methods.

II. RIEMANNIAN BCI

Approaches relying on covariance estimated over
electroencephalographic signals are widespread in BCI.
Covariance-based techniques are found in state-of-the-art
spatial filters that are necessary for estimating subjects’
mental command. These filters use Euclidean approach to
process the symmetric positive-definite (SPD) covariance
matrices. Riemannian BCI aims at working with covariance
matrices directly on the manifold of SPD matrices, by
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adapting machine learning algorithms to such curved
spaces. These Riemannian approaches outperformed filter-
based methods on numerous datasets and have won several
data competition[7], [8].

A simple, yet effective, classifier is the Minimum Distance
to Mean (MDM). The barycenter of each class of training
trial, in the sense of the Fisher distance, is used to determine
the class of a newly seen trial. The trial is associated to the
class with the closest barycenter. Applying a Fisher Geodesic
Discriminant Analysis before computing the barycenter (Fg-
MDM) yield robust results on experimental datasets [9].

III. PROPOSED METHOD

Functional connectivity (FC) enables to study the interac-
tion between different brain areas [10], and has the potential
to provide alternative features to BCI classifiers [11]. Here,
as an exploratory study, we considered complementary undi-
rected FC estimators associated to Riemannian geometry:
spectral and phase estimators. In the following subsections,
we defined the metrics computed between two given signals
referred as s1(t) and s2(t) between two EEG sensors.

A. Spectral estimation

We computed one spectral estimator: the coherence (Coh),
deduced from the normalized cross-spectral density S12

obtained from the two given signals s1(t) and s2(t), as
follows:

Coh12(f) =
|S12(f)|2

S11(f).S22(f)
(1)

B. Phase estimation

As a phase estimator method, we worked with the Phase
Locking Value (PLV), which assesses phase synchrony be-
tween two signals in a specific frequency band [12], as
follows:

PLV = |ei∆φ(t)| (2)

where ∆φ(t) = arg(
z1(t).z∗2 (t)

|z1(t)|.|z2(t)| )

∆φ(t) represents the associated relative phase computed
between signals and z(t) = s(t) + i.h(s(t)) the analytic
signal obtained by applying the Hilbert transform on the
signal s(t).

It is possible to build SPD matrices from coherence and
PLV estimators. Instead of using covariance matrices as
input for Riemannian classifier, we propose to use functional
connectivity matrices. These matrices contains information
that is complementary to covariance and could help to
achieve better accuracy or more robust decision.
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Fig. 1. Left: Diversity for a FC estimator is estimated over the samples
that are not correctly estimated (red square) for the reference classifier Ref.
Here diversity is equal to 50%. Right: Diversity of PLV and Coh + FgMDM
classifiers estimated using cross validation on BCI Competition IV dataset.
Reference is Cov + FgMDM.

TABLE I
CLASSIFICATION ACCURACY AVERAGED OVER THE NINE SUBJECTS

Approach Mean ± Std
Cov + FgMDM 0.78 ± 0.13
Coh + FgMDM 0.47 ± 0.03
PLV + FgMDM 0.50 ± 0.03

IV. PROOF OF CONCEPT

We used the dataset 2a from BCI Competition IV that
gathers electroencephalographic recordings from nine sub-
jects (for a complete description of the dataset the reader
can refer to [13]). In this work, we reduced our study to the
classification of two classes (left vs right hand MI).

For a given FC estimator, we averaged the FC values
within the 8-35 Hz frequency band. Computations were made
using the Brainstorm toolbox [14].

We computed the performance obtained with the different
tested approaches: Cov + FgMDM, PLV + FgMDM and
Coh + FgMDM taken separately. First, we compared the
accuracy (see Table I). Clearly, the approach consisting of
considering each FC estimator separately did not give better
results than the state-of-the-art (i.e. the covariance here).
However, we further investigated our results to determine
whether the Cov + FgMDM could benefit from the FC
+ FgMDM approach. For that purpose, we defined the
diversity [15] as the proportion of trials misclassified by the
Cov + FgMDM that have actually been correctly classified
by FC + FgMDM. An illustrative example is proposed in
Fig. 1. In the present work, we respectively obtained an
averaged diversity of 50% with PLV and of 47% with Coh,
meaning that on average, 50% of the misclassified trials by
the Cov + FgMDM approach are correctly classified with
the FC + FgMDM on Fig. 1. This finding suggests that
Cov + FgMDM could benefit from an ensemble approach
consisting of combining Cov + FgMDM and FC + FgMDM
to compensate potential misclassification.

V. DISCUSSION & CONCLUSION

In the present study, we considered alternative SPD matri-
ces as inputs of Riemannian BCI classifier, that are built
on functional connectivity estimations. While using these

matrices directly as features yield modest accuracy, or at
least lower accuracy than covariance-based classifier, they
could bring interesting opportunities when dealing with a
larger number of classes.

A first direction is to adapt the classifier to the specific
geometry of functional connectivity estimators. For example,
some estimators like coherence are complex-valued and
could benefit from a classifier designed to process HPD
matrices. It is also possible to investigate the different esti-
mators formulation to find those that lead to well-conditioned
matrices.

Another direction is to combine the information coming
from functional connectivity and covariance. It could be done
with a machine learning perspective, relying on ensemble
learning or feature selection, hence benefiting from the
diversity of the features to build a robust and accurate model.
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