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1

Given a simple polygon P on n vertices, two points x ,y in P are said to be visible to each other if the line2

segment between x and y is contained in P. The Point Guard Art Gallery problem asks for a minimum set3

S such that every point in P is visible from a point in S . The Vertex Guard Art Gallery problem asks for4

such a set S subset of the vertices of P. A point in the set S is referred to as a guard. For both variants, we5

rule out any f (k)no(k/logk ) algorithm, where k := |S | is the number of guards, for any computable function f ,6

unless the Exponential Time Hypothesis fails. These lower bounds almost match the nO (k ) algorithms that7

exist for both problems.8
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1 INTRODUCTION16

Two points x ,y in a simple polygon P are said to be visible to each other if the line segment17

between x and y is contained in P. The Point Guard Art Gallery problem asks for a minimum18

set S such that every point in P is visible from a point in S . The Vertex Guard Art Gallery19

problem asks for such a set S subset of the vertices of P. In both cases, such a set S is a guarding set20

and its elements are called guards. In the decision versions, given a simple polygon and an integer,21

one has to decide if there is a guarding set for the polygon of cardinality at most the integer. In22

what follows, n refers to the number of vertices of P and k to the allowed number of guards.23

The art gallery problem is arguably one of the most well-known problems in discrete and24

computational geometry. Since its introduction by Viktor Klee in 1976, numerous research papers25

were published on the subject. O’Rourke’s early book from 1987 [41] has over two thousand26

citations, and each year, top conferences publish new results on the topic. Many variants of the art27

gallery problem, based on different definitions of visibility, restricted classes of polygons, different28

∗supported by the LABEX MILYON (ANR-10- LABX-0070) of Université de Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
†supported by the ERC Consolidator Grant 615640-ForEFront. The author acknowledges generous support from the
Netherlands Organisation for Scientific Research (NWO) under project no. 016.Veni.192.250.

Authors’ addresses: Édouard Bonnet, edouard.bonnet@ens-lyon.fr, Univ Lyon, CNRS, ENS de Lyon, Université Claude
Bernard Lyon 1, LIP UMR5668; Tillmann Miltzow, t.miltzow@gmail.com, Utrecht University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1549-6325/2020/1-ART1 $15.00
https://doi.org/10.1145/3398684

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3398684
https://doi.org/10.1145/3398684
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shapes of guards, have been defined and analyzed. One of the first results is the elegant proof of Fisk29

that ⌊n/3⌋ guards are always sufficient and sometimes necessary for a polygon with n vertices [23].30

The art gallery problem was shown NP-hard by Aggarwal in his PhD thesis [3] and by Lee and31

Lin [36]. Eidenbenz et al. [21] even showed APX-hardness for the most standard variants. See32

also [13, 31, 35] for other hardness constructions. Very recently, Abrahamsen et al. [2] showed33

that Point Guard Art Gallery is ∃R-complete. In particular, this problem is unlikely to be in34

NP. This is maybe intuitive, if we consider simple instances of the art gallery problem, which35

need irrational numbers for an optimal guard placement [1]. In contrast, Dobbins, Holmsen and36

Miltzow [17] showed how to find a solution with rational coordinates using the concept of smoothed37

analysis. Due to those negative results, most papers focus on finding approximation algorithms38

and on variants or restrictions that are polynomially tractable [25, 32, 34, 35, 39]. For the Point39

Guard Art Gallery problem on simple polygons, there is an O(logOPT)-approximation under40

some assumptions (integer coordinates and some special general position of the vertices) [12]. The41

approximation relies on the construction of ε-nets and ideas from Efrat and Har-Peled [20]. For42

polygons with h holes, there is a polynomial approximation algorithm with ratioO(logOPT · logh)43

which guards all but a δ -fraction of the polygon [22]. Recently, a constant-factor approximation was44

announced for Vertex Guard Art Gallery [9]. However, a mistake was later found [7]. Another45

approach is to find heuristics to solve large instances of the art gallery problem [16]. Naturally, the46

fundamental drawback of this approach is the lack of performance guarantees.47

In the last twenty-five years, another fruitful approach gained popularity: parameterized complex-48

ity. The underlying idea is to study algorithmic problems with dependence on a natural parameter.49

If the dependence on the parameter is practical and the parameter is small for real-life instances,50

we attain algorithms that give optimal solutions with reasonable running times. For a gentle in-51

troduction to parameterized complexity, we recommend Niedermeier’s book [40]. For a thorough52

reading highlighting complexity classes, we suggest the book by Downey and Fellows [19]. For a53

recent book on the topic with an emphasis on algorithms, we advise to read the book by Cygan et54

al. [15]. An approach based on logic is given by Flum and Grohe [24]. Despite the recent successes55

of parameterized complexity, only very few results on the art gallery problem are known prior to56

this paper.57

The first such result is the trivial algorithm for the vertex guard variant to check if a solution of58

sizek exists in a polygonwithn vertices. The algorithm runs inO(nk+2) time, by checking all possible59

subsets of size k of the vertices. The second not so well-known result is the fact that one can find in60

timenO (k ) a set of k guards for the point guard variant, if it exists [20], using tools from real algebraic61

geometry [8]. This was first observed by Sharir [20, Acknowledgment]. Despite the fact that the first62

algorithm is extremely basic and the second algorithm, even with remarkably sophisticated tools,63

uses almost no problem specific insights, no better exact parameterized algorithms are known.64

The Exponential Time Hypothesis (ETH) asserts that there is no 2o(N ) time algorithm for Sat on65

N variables. The ETH is used to attain more precise conditional lower bounds than the mere NP-66

hardness. A simple reduction from Set Cover by Eidenbenz et al. shows that there is no f (k)no(k )67

algorithm for these problems, when we consider polygons with holes [21, Sec.4], unless the ETH68

fails. However, polygons with holes are very different from simple polygons. For instance, they69

have unbounded VC-dimension while simple polygons have bounded VC-dimension [26, 27, 30, 42].70

We present the first lower bounds for the parameterized art gallery problems restricted to simple71

polygons. Here, the parameter is the optimal number k of guards to cover the polygon.72

Theorem 1.1 (Parameterized hardness point guard). Point Guard Art Gallery is not73

solvable in time f (k)no(k/logk ), even on simple polygons, where n is the number of vertices of the74

polygon and k is the number of guards allowed, for any computable function f , unless the ETH fails.75
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Theorem 1.2 (Parameterized hardness vertex guard). Vertex Guard Art Gallery is not76

solvable in time f (k)no(k/logk ), even on simple polygons, where n is the number of vertices of the77

polygon and k is the number of guards allowed, for any computable function f , unless the ETH fails.78

These results imply that the previous noted algorithms are essentially tight, and suggest that79

there are no significantly better parameterized algorithms. Our reductions are from Subgraph80

Isomorphism and therefore an f (k)no(k )-algorithm for the art gallery problem would also imply81

improved algorithms for Subgraph Isomorphism and for CSP parameterized by treewidth, which82

would be considered a major breakthrough [37]. Let us also mention that our results imply that83

both variants areW [1]-hard parameterized by the number of guards.84

After the conference version of this paper appeared, the parameterized complexity of the art85

gallery and related problems was investigated further. The parameterized complexity of the terrain86

guarding problemwas studied [6]. The terrain guarding problem is a particular case of the art gallery87

problem, where instead of a polygon, one should guard an x-monotone curve. This restriction is88

still NP-hard [33], even on rectilinear (that is, every edge is horizontal or vertical) terrains [10]. The89

authors of [6] present an nO (
√
k )-time algorithm (hence 2O (n1/2 logn)) for guarding general n-vertex90

terrains with k guards, and an FPT kO (k )nO (1)-time algorithm for guarding the vertices of rectilinear91

terrains. Note that there is no 2o(n1/3) algorithm for terrain guarding, unless the ETH fails [10].92

The art gallery problem parameterized by the number of reflex vertices is considered by Agrawal93

et al. [5]. The authors present an FPT algorithm for Vertex Guard Art Gallery under this94

parameterization. See also [4] for FPT algorithms on the (strong) conflict-free coloring of terrains.95

2 PROOF IDEAS96

In order to achieve these results, we slightly extend some known hardness results of geometric97

set cover/hitting set problems and combine them with problem-specific insights of the art gallery98

problem. One of the first problem-specific insights is the ability to encode Hitting Set on interval99

graphs. The reader can refer to Figure 1 for the following description. Assume that we have some100

fixed pointsp1, . . . ,pn with increasingy-coordinates in the plane. We can build a pocket “far enough101

to the right” that can be seen only from {pi , . . . ,pj } for any 1 ⩽ i < j ⩽ n.

a1 a2 a3 a4 a5 a6

p1

p2

p3

p4
p5
p6

Fig. 1. Reduction from Hitting Set on interval graphs to a restricted version of the art gallery problem.

102

Let I1, . . . , In be n intervals with endpoints a1, . . . ,a2n . Then, we construct 2n points p1, . . . ,p2n103

representing a1, . . . ,a2n . Further, we construct one pocket “far enough to the right” for each interval104

as described above. This way, we reduce Hitting Set on interval graphs to a restricted version of105

the art gallery problem. This observation is not so useful in itself since Hitting Set on interval106

graphs can be solved in polynomial time.107
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1:4 Édouard Bonnet and Tillmann Miltzow

Fig. 2. Two instances of Hitting Set “magically” linked.

The situation changes rapidly if we consider Hitting Set on 2-track interval graphs, as described108

in the preliminaries. Unfortunately, we are not able to just “magically” link (see Figure 2) some109

specific pairs of points in the polygon of the art gallery instance. Instead, we construct linking110

gadgets, which work “morally” as follows. We are given two set of points P and Q and a bijection111

σ between P and Q . The linking gadget is built in a way that it can be covered by two points112

(p,q) of P × Q , if and only if q = σ (p). The Structured 2-Track Hitting Set problem will be113

specifically designed so that the linking gadget is the main remaining ingredient to show hardness.114

This intermediate problem is a convenient starting point for parameterized reductions to other115

geometric problems. For instance, the parameterized hardness of Red-Blue Points Separation,116

where given a set of blue points and a set of red points in the plane, one has to find at most k lines117

so that no cell of the arrangement is bichromatic, was obtained by a reduction from Structured118

2-Track Hitting Set [11].119

Organization. The rest of the paper is organized as follows. In Section 3, we introduce some120

notations, discuss the encoding of the polygon, give some useful ETH-based lower bounds, and121

prove a technical lemma. In Section 4, we prove the lower bound for Structured 2-Track Hitting122

Set (Theorem 4.2). Lemma 4.1 contains the key arguments. From this point onward, we can reduce123

from Structured 2-Track Hitting Set. In Section 5, we show the lower bound for the Point124

Guard Art Gallery problem (Theorem 1.1). We design a linking gadget, show its correctness,125

and show how several linking gadgets can be combined consistently. In Section 6, we tackle the126

Vertex Guard Art Gallery problem (Theorem 1.2). We have to design a very different linking127

gadget, that has to be combined with other gadgets and ideas.128

3 PRELIMINARIES129

For any two integers x ⩽ y, we set [x ,y] := {x ,x + 1, . . . ,y − 1,y}, and for any positive integer130

x , [x] := [1,x]. Given two points a,b in the plane, we define seg(a,b) as the line segment with131

endpoints a,b. Given n points v1, . . . ,vn ∈ R2, we define a polygonal closed curve c by seg(v1,v2),132

. . . , seg(vn−1,vn), seg(vn ,v1). If c is not self intersecting, it partitions the plane into a closed133

bounded area and an unbounded area. The closed bounded area is a simple polygon on the vertices134

v1, . . . ,vn . Note that we do not consider the boundary as the polygon but rather all the points135

bounded by the curve c as described above. Given two points a,b in a simple polygon P, we say136

that a sees b or a is visible from b if seg(a,b) is contained in P. By this definition, it is possible to137

“see through” vertices of the polygon. We say that S is a set of point guards of P, if every point138

p ∈ P is visible from a point of S . We say that S is a set of vertex guards of P, if additionally S is a139

subset of the vertices of P. The Point Guard Art Gallery problem and the Vertex Guard Art140

Gallery problem are formally defined as follows.141

Point Guard Art Gallery142

Input: The vertices of a simple polygon P in the plane and a natural number k .143

Question: Does there exist a set of k point guards for P?144
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Vertex Guard Art Gallery145

Input: A simple polygon P on n vertices in the plane and a natural number k .146

Question: Does there exist a set of k vertex guards for P?147

For any two distinct points v and w in the plane we denote by ray(v,w) the ray starting at148

v and passing through w , and by ℓ(v,w) the supporting line passing through v and w . For any149

point x in a polygon P, VP(x), or simply V (x), denotes the visibility region of x within P, that is150

the set of all the points y ∈ P seen by x . We say that two vertices v and w of a polygon P are151

neighbors or consecutive if vw is an edge of P. A sub-polygon P ′ of a simple polygon P is defined152

by any l distinct consecutive verticesv1,v2, . . . ,vl of P (that is, for every i ∈ [l − 1],vi andvi+1 are153

neighbors in P) such that v1vl does not cross any edge of P. In particular, P ′ is a simple polygon.154

Encoding.We assume that the vertices of the polygon are either given by integers or by rational155

numbers. We also assume that the output is given either by integers or by rational numbers. The156

instances we generate as a result of Theorem 1.1 and Theorem 1.2 have rational coordinates. We157

can represent each coordinate by specifying the nominator and denominator. The number of bits is158

bounded by O(logn) in both cases. We can transform the coordinates to integers by multiplying159

every coordinate with the least common multiple of all denominators. However, this leads to160

integers using O(n logn) bits.161

ETH-based lower bounds. The Exponential Time Hypothesis (ETH) is a conjecture by Impagli-162

azzo et al. [28] asserting that there is no 2o(n)-time algorithm for 3-SAT on instances with n variables.163

The k-Multicolored-Cliqe problem has as input a graph G = (V ,E), where the set of vertices is164

partitioned into V1, . . . ,Vk . It asks if there exists a set of k vertices v1 ∈ V1, . . . ,vk ∈ Vk such that165

these vertices form a clique of size k . We will use the following lower bound proved by Chen et166

al. [14].167

Theorem 3.1 ([14]). There is no f (k)no(k ) algorithm for k-Multicolored-Clique, for any com-168

putable function f , unless the ETH fails.169

Marx showed that Subgraph Isomorphism cannot be solved in time f (k)no(k/logk ) where k is the170

number of edges of the pattern graph, under the ETH [37]. Usually, this result enables to improve171

a lower bound obtained by a reduction from Multicolored k-Cliqe with a quadratic blow-up172

on the parameter, from exponent o(
√
k) to exponent o(k/logk), by doing more or less the same173

reduction but from Multicolored Subgraph Isomorphism. In the Multicolored Subgraph174

Isomorphism problem, one is given a graph with n vertices partitioned into l color classesV1, . . . ,Vl175

such that only k of the
(l
2
)
sets Ei j = E(Vi ,Vj ) are non empty. The goal is to pick one vertex in each176

color class so that the selected vertices induce k edges. The technique of color coding and the result177

of Marx shows that:178

Theorem 3.2 ([37]). Multicolored Subgraph Isomorphism cannot be solved in time f (k)no(k/logk )179

where k is the number of edges of the solution, for any computable function f , unless the ETH fails.180

Naturally, this result still holds when restricted to connected input graphs. In that case, k ⩾ l − 1.181

Bounding the coordinates. We say a point p = (px ,py ) ∈ Z
2 has coordinates bounded by L182

if |px |, |py | ⩽ L. Given two vectors v,w , we denote their scalar product as v · w . This technical183

lemma will prove useful to ensure that the polygon built in Section 5 can be described with integer184

coordinates.185

Lemma 3.3. Let p1,q1,p2,q2 be four points with integer coordinates bounded by L. Then the inter-186

section point d = (dx ,dy ) of the supporting lines ℓ1 = ℓ(p
1,q1) and ℓ2 = ℓ(p

2,q2) is a rational point.187

The nominator and denominator of dx and dy are bounded by O(L2).188
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Proof. The fact that d lies on ℓi can be expressed as vi · d = bi , with some appropriate vector vi189

and number bi , for i = 1, 2. To be precise vi = (−pix + q
i
x ,p

i
y − qiy ) and bi = vi · pi , for i = 1, 2. We190

define the matrix A = (v1,v2) and the vector b = (b1,b2). Then both conditions can be expressed191

as A · d = b. We denote by Ai the matrix i with the i-th column replaced by b. And by det(M) the192

determinant of the matrixM . By Cramer’s rule, it holds that dx = det(A1)
det(A) and dy = det(A2)

det(A) . □193

4 PARAMETERIZED HARDNESS OF STRUCTURED 2-TRACK HITTING SET194

The purpose of this section is to show Theorem 4.2. As we will see at the end of the section, there195

already exist quite a few parameterized hardness results for set cover/hitting set problems restricted196

to instances with some geometric flavor. The crux of the proof of Theorem 4.2 lies in Lemma 4.1.197

We introduce a few notation and vocabulary to state and prove this lemma.198

Given a finite totally ordered set Y = {y1, . . . ,y |Y |} (that is, for any i, j ∈ [|Y |], yi ≤ yj iff i ⩽ j),199

a subset S ⊆ Y is a Y -interval if S = {y | yi ≤ y ≤ yj } for some i and j. We denote by ≤Y the order200

of Y . A set-system (X ,S) is said to be two-block if X can be partitioned into two totally ordered201

setsA = {a1, . . . ,a |A |} and B = {b1, . . . ,b |B |} such that each set S ∈ S is the union of anA-interval202

with a B-interval.203

Given a set S of subsets of X , k-Set Cover asks to find k sets of S whose union is X . We first204

show an ETH lower bound and W[1]-hardness for k-Set Cover restricted to two-block instances.205

We reduce from Multicolored k-Cliqe for simplicity sake (then from Multicolored Subgraph206

Isomorphism to improve the ETH lower bound). On a high-level, we encode adjacencies in the207

Multicolored k-Cliqe instance by pairs of disjoint sets particularly effective to cover X . On the208

contrary, pairs of non-adjacent vertices will be mapped to pairs of sets overlapping and missing an209

important part of X . This trick will be a recurring theme throughout the paper.210

Lemma 4.1. k-Set Cover restricted to two-block instances with N elements andM sets isW [1]-hard211

and not solvable in time f (k)(N +M)o(k/logk ) for any computable function f , unless the ETH fails.212

Proof. We reduce from Multicolored k-Cliqe which remainsW [1]-hard when each color213

class has the same number t of vertices. LetG = (V1 ∪ . . . ∪Vk ,E) be an instance of Multicolored214

k-Cliqe with V =
⋃

i ∈[k ]Vi , ∀i ∈ [k], Vi = {vi1, . . . ,v
i
t }, m = |E |, and n = |V | = tk . For each215

pair i < j ∈ [k]1, Ei j denotes the set of edges E(Vi ,Vj ) between Vi and Vj . For each Ei j we give an216

arbitrary order to the edges: ei j1 , . . . , e
i j
|Ei j |

. We build an equivalent instance (X ,S) of k-Set Cover217

with 4
(k
2
)
+ 4m + tk(k + 1) + 4k elements and 4m + 2kt sets, and such that (X ,S) is two-block. We218

call A and B the two sets of the partition of X that realizes that (X ,S) is two-block.219

For each of the color class Vi , we add tk + 2 elements to A with the following order:220

xb (i),
221

x(i, 1, 1), . . . ,x(i, 1, t),
222

x(i, 2, 1), . . . ,x(i, 2, t),
223

. . .
224

x(i, i − 1, 1), . . . ,x(i, i − 1, t),
225

x(i, i + 1, 1), . . . ,x(i, i + 1, t),
226

. . .
227

x(i,k + 1, 1), . . . ,x(i,k + 1, t),
228

xe (i),

1By i < j ∈ [k ], we mean that i ∈ [k ], j ∈ [k ], and i < j .
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and call X (i) the set containing those elements. We also set
X (i, j) := {x(i, j, 1),x(i, j, 2), . . . ,x(i, j, t)}

(hence, X (i) =
⋃

j,i X (i, j) ∪ {xb (i),xe (i)}). For each Ei j , we add to B the 3|Ei j | + 2 of a set Y (i, j)
ordered:

yb (i, j),y(i, j, 1), . . . ,y(i, j, 3|Ei j |),ye (i, j).
For each pair i < j ∈ [k] and for each edge ei jc = viav

j
b in Ei j (with a,b ∈ [t] and c ∈ [|Ei j |]), we add

to S the two sets
S(ei jc ,v

i
a) := {x(i, j,a),x(i, j,a + 1), . . . ,x(i, j, t),x(i, j + 1, 1), . . . ,x(i, j + 1,a − 1)}

∪ {y(i, j, c), . . . ,y(i, j, c + |Ei j | − 1)} and
S(ei jc ,v

j
b ) := {x(j, i,b),x(j, i,b + 1), . . . ,x(j, i, t),x(j, i + 1, 1), . . . x(j, i + 1,b − 1)}

∪ {y(i, j, c + |Ei j |), . . . ,y(i, j, c + 2|Ei j | − 1)}.
Observe that in case j = i + 1, then all the elements of the form x(j, i + 1, ·) in set S(ei jc ,v j

b ) are in
fact of the form x(j, i + 2, ·). We may also notice that in case a = 1 (resp. b = 1), then there is no
element of the form x(i, j + 1, ·) (resp. x(j, i + 1, ·)) in set S(ei jc ,via) (resp. in set S(ei jc ,v j

b )). For each
pair i < j ∈ [k], we also add to A the |Ei j | + 2 elements of a set Z (i, j) ordered:

zb (i, j), z(i, j, 1), . . . , z(i, j, |Ei j |), ze (i, j),

and for each edge ei jc in Ei j (with c ∈ [|Ei j |]), we add to S the two sets

S(ei jc , ⊢) = {zb (i, j), z(i, j, 1), . . . , z(i, j, |Ei j | − c} ∪ {yb (i, j),y(i, j, 1) . . .y(i, j, c − 1)} and

S(ei jc , ⊣) = {z(i, j, |Ei j | − c + 1), . . . , z(i, j, |Ei j |, ze (i, j)} ∪ {y(i, j, c + 2|Ei j |) . . .y(i, j, 3|Ei j |),ye (i, j)}.
Finally, for each i ∈ [k], we add to B the t + 2 elements of a setW (i) ordered:

wb (i),w(i, 1), . . . ,w(i, t),we (i),

and for all a ∈ [t], we add the sets
S(i,a, ⊢) := {xb (i),x(i, 1, 1), . . . ,x(i, 1,a − 1)} ∪ {wb (i),w(i, 1), . . . ,w(i, t − a + 1)} and
S(i,a, ⊣) := {x(i,k + 1,a), . . . ,x(i,k + 1, t),xe (i)} ∪ {w(i, t − a + 2), . . . ,w(i, t),we (i)}.

No matter the order in which we put the X (i)’s and Z (i, j)’s in A (respectively the Y (i, j)’s and
W (i)’s in B), the sets we defined are all unions of an A-interval with a B-interval, provided we keep
the elements within each X (i), Z (i, j), Y (i, j), andW (i) consecutive (and naturally, in the order we
specified). Though, to clarify the construction, we fix the following orders for A and for B:
X (1), . . . ,X (k),Z (1, 2), . . . ,Z (1,k),Z (2, 3), . . . ,Z (2,k), . . . ,Z (k − 2,k − 1),Z (k − 2,k),Z (k − 1,k)
Y (1, 2), . . . ,Y (1,k),Y (2, 3), . . . ,Y (2,k), . . . ,Y (k − 2,k − 1),Y (k − 2,k),Y (k − 1,k),W (1), . . . ,W (k).

We ask for a set cover with 2k2 sets. This ends the construction (see Figure 4 for an illustration of229

the construction for the instance graph of Figure 3).230

For each i ∈ [k], let us denote by Sb (i) (resp. Se (i)), all the sets in S that contains element xb (i)231

(resp. xe (i)). For each pair i , j ∈ [k], we denote by S(i, j) all the sets in S that contains element232

x(i, j, t). Finally, for each pair i < j ∈ [k], we denote by S(i, j, ⊢) (resp S(i, j, ⊣)) all the sets in S that233

contains element yb (i, j) (resp. ye (i, j)). One can observe that the Sb (i)’s, Se (i)’s, S(i, j)’s, S(i, j, ⊢)’s,234

and S(i, j, ⊣)’s partition S into k + k + k(k − 1) + 2
(k
2
)
= 2k2 partite sets2. Thus, as each of the 2k2235

partite sets S′ has a private element which is only contained in sets of S′, a solution has to contain236

one set in each partite set.237

2We do not call them color classes to avoid the confusion with the color classes of the instance of Multicolored k -Cliqe.
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Fig. 3. A simple instance of Multicolored k-Clique. The elements in bold: vertices v12 and v
2
2 , edge v

1
2v

2
2 ,

and half of the edges v12v
3
1 and v

2
2v

3
1 correspond to the selection of sets depicted in Figure 4.
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1
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2
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1
2, v

2
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3
1 ,v

2
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3
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2
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1v

2
2 , ⊢) 1 1 1

S(v12v
2
2, ⊣) 1 1 1 1 1

S(v1
1v

2
2 , ⊣) 1 1 1 1 1

Fig. 4. The sets of Sb (1), Sb (2), Se (1), Se (2), S(1, 2, ⊢), S(1, 2, ⊣), S(1, 2), S(2, 1) for the graph of Figure 3.

The sets of S(1, 3) and S(2, 3) are also represented but only their part in A.

Assume there is a multicolored clique C = {v1
a1 , . . . ,v

k
ak } inG . We show that T = {S(viaiv

j
aj ,v

i
ai )238

| i < j ∈ [k]} ∪ {S(viaiv
j
aj ,v

j
aj ) | i < j ∈ [k]} ∪ {S(i,ai , ⊢) | i ∈ [k]} ∪ {S(i,ai , ⊣) | i ∈ [k]} ∪239

{S(viaiv
j
aj , ⊢) | i < j ∈ [k]} ∪ {S(viaiv

j
aj , ⊣) | i < j ∈ [k]} is a set cover of (S,X ) of size 2k2.240

As C is a clique, T is well defined and it contains 2
(k
2
)
+ 2k + 2

(k
2
)
= 2k2 sets. For each i ∈241

[k], the elements x(i, 1,ai ), . . . ,x(i, 1, t), . . . ,x(i,k + 1, 1), . . . ,x(i,k + 1,ai − 1) are covered by242

the sets S(v1
a1v

i
ai ,v

i
ai ), S(v

2
a2v

i
ai ,v

i
ai ), . . . , S(v

i
aiv

k
ak ,v

i
ai ). Indeed, S(v

j
ajv

i
ai ,v

i
ai ) (or S(v

i
aiv

j
aj ,v

i
ai ) if243

j > i) covers all the elements x(i, j,ai ), . . . ,x(i, j, t),x(i, j + 1, 1), . . . ,x(i, j + 1,ai − 1) (again, in244

case i + 1 = j, replace j+1 by i+1). For each i ∈ [k], the elements xb (i),x(i, 1, 1), . . . ,x(i, 1,ai −245

1),x(i,k + 1,ai ), . . . ,x(i,k + 1, t),xe (i) and of W (i) are covered by S(i,ai , ⊢) and S(i,ai , ⊣). For246

all i < j ∈ [k], say viaiv
j
aj is the c-th edge ei jc in the arbitrary order of Ei j . Then, the elements247

y(i, j, c),y(i, j, c +1), . . . ,y(i, j, c +2|Ei j | −1) are covered by S(viaiv
j
aj ,v

i
ai ) and S(v

i
aiv

j
aj ,v

j
aj ). Finally,248
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the elementsyb (i, j),y(i, j, 1), . . . ,y(i, j, c−1),y(i, j, c+2|Ei j |), . . . ,y(i, j, 3|Ei j |),ye (i, j) and ofZ (i, j)249

are covered by S(viaiv
j
aj , ⊢) and S(viaiv

j
aj , ⊣).250

Assume now that the set-system (X ,S) admits a set cover T of size 2k2. As mentioned above,251

this solution T should contain exactly one set in each partite set (of the partition of S). For each252

i ∈ [k], to cover all the elements ofW (i), one should take S(i,ai , ⊢) and S(i,a′i , ⊣) with ai ⩽ a′i . Now,253

each set of S(i, j) has their A-intervals containing exactly t elements. This means that the only way254

of covering the tk + 2 elements of X (i) is to take S(i,ai , ⊢) and S(i,a′i , ⊣) with ai ⩾ a′i (therefore255

ai = a′i ), and to take all the k − 1 sets of S(i, j) (for j ∈ [k] \ {i}) of the form S(viaiv
j
sj ,v

i
ai ), for some256

sj ∈ [t]. So far, we showed that a potential solution of k-Set Cover should stick to the same vertex257

viai in each color class. We now show that if one selects S(viaiv
j
sj ,v

i
ai ), one should be consistent with258

this choice and also selects S(viaiv
j
sj ,v

j
sj ). In particular, it implies that, for each i ∈ [k], si should259

be equal to ai . For each i , j ∈ [k], to cover all the elements of Z (i, j), one should take S(ei jci j , ⊢)260

and S(ei jc ′i j
, ⊣) with ci j ⩾ c ′i j . Now, each set of S(i, j) and each set of S(j, i) has their B-intervals261

containing exactly |Ei j | elements. This means that the only way of covering the 3|Ei j | + 2 elements262

of Y (i, j) is to take S(ei jci j , ⊢) and S(ei jc ′i j
, ⊣) with ci j ⩽ c ′i j (therefore, ci j = c ′i j ), and to take the sets263

S(viaiv
j
aj ,v

i
ai ) and S(v

i
aiv

j
aj ,v

j
aj ). Therefore, if there is a solution to the k-Set Cover instance, then264

there is a multicolored clique {v1
a1 , . . . ,v

k
ak } in G.265

In this reduction, there is a quadratic blow-up of the parameter. Under the ETH, it would266

only forbid, by Theorem 3.1, an algorithm solving k-Set Cover on two-block instances in time267

f (k)(N +M)o(
√
k ). We can do the previous reduction from Multicolored Subgraph Isomorphism268

and suppress X (i, j), X (j, i), Z (i, j), and Y (i, j), and the sets defined over these elements, whenever269

Ei j is empty. One can check that the produced set cover instance is still two-block and that the270

way of proving correctness does not change. Therefore, by Theorem 3.2, k-Set Cover restricted to271

two-block instances cannot be solved in time f (k)(N +M)o(k/logk ) for any computable function f ,272

unless the ETH fails. □273

In the 2-Track Hitting Set problem, the input consists of an integer k , two totally ordered274

ground sets A and B of the same cardinality, and two sets SA of A-intervals, and SB of B-intervals.275

In addition, the elements of A and B are in one-to-one correspondence ϕ : A → B and each pair276

(a,ϕ(a)) is called a 2-element. The goal is to find, if possible, a set S of k 2-elements such that the277

first projection of S is a hitting set of SA, and the second projection of S is a hitting set of SB .278

Structured 2-Track Hitting Set is the same problem with color classes over the 2-elements,279

and a restriction on the one-to-one mapping ϕ. Given two integers k and t , A is partitioned into280

(C1,C2, . . . ,Ck )whereCj = {aj1,a
j
2, . . . ,a

j
t } for each j ∈ [k].A is ordered:a11,a12, . . . ,a1t ,a21,a22, . . . ,a2t ,281

. . . ,ak1 ,a
k
2 , . . . ,a

k
t . We define C ′

j := ϕ(Cj ) and b ji := ϕ(aji ) for all i ∈ [t] and j ∈ [k]. We now282

impose that ϕ is such that, for each j ∈ [k], the set C ′
j is a B-interval. That is, B is ordered:283

C ′
σ (1),C

′
σ (2), . . . ,C

′
σ (k ) for some permutation on [k], σ ∈ Sk . For each j ∈ [k], the order of the284

elements within C ′
j can be described by a permutation σj ∈ St such that the ordering of C ′

j is:285

b jσj (1),b
j
σj (2), . . . ,b

j
σj (t )

. In what follows, it will be convenient to see an instance of Structured286

2-Track Hitting Set as a tuple I = (k ∈ N, t ∈ N,σ ∈ Sk ,σ1 ∈ St , . . . ,σk ∈ St ,SA,SB ), where287

we recall that SA is a set of A-intervals and SB is a set of B-intervals. The size |I | of I is defined288

as kt + |SA | + |SB |. We denote by [aji ,a
j′
i′ ] (resp. [b

j
i ,b

j′
i′ ]) all the elements a ∈ A (resp. b ∈ B) such289

that aji ≤A a ≤A aj
′

i′ (resp. b
j
i ≤B b ≤B b j

′

i′ ).290
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a11 a12 a13 a14 a15 a16

C1

a21 a22 a23 a24 a25 a26

C2

a31 a32 a33 a34 a35 a36

C3

a41 a42 a43 a44 a45 a46

C4
A

b34 b32 b33 b36 b31 b35

C ′
3

b12 b14 b11 b15 b16 b13

C ′
1

b43 b46 b45 b42 b41 b14

C ′
4

b21 b25 b22 b24 b26 b23

C ′
2

B

σσ1

≤A:

≤B :

Fig. 5. An illustration of a Structured 2-Track Hitting Set instance, with k = 4 and t = 6. The permutation

σ ∈ Sk is represented with thick edges. Among σ1 ∈ St , . . . , σk ∈ St , we only represented σ1, for the sake of
legibility. We also only represented four intervals of the instance, three A-intervals, [a15,a

2
2] = {a15,a

1
6,a

2
1,a

2
2},

[a16,a
2
4], [a

3
5,a

4
2], and one B-interval [b16 ,b

4
3] = {b16 ,b

1
3 ,b

4
3}.

Again a solution is a set of k 2-elements {(a1i(1),b
1
i(1)), . . . , (a

k
i(k ),b

k
i(k ))}, each from a distinct color291

class, such that a1i(1), . . . ,a
k
i(k ) is a hitting set of SA, and b1i(1), . . . ,b

k
i(k ) is a hitting set of SB .292

We show the ETH lower bound and W[1]-hardness for Structured 2-Track Hitting Set. The293

reduction is from k-Set Cover on two-block instances. We transform the unions of two intervals294

into 2-elements, and the elements of the k-Set Cover instance into A-intervals or B-intervals of295

the Structured 2-Track Hitting Set instance.296

Theorem 4.2. Structured 2-Track Hitting Set isW [1]-hard. Furthermore it is not solvable in297

time f (k)|I|o(k/logk ) for any computable function f , unless the ETH fails.298

Proof. This result is a consequence of Lemma 4.1. Let (A⊎B,S) be a hard two-block instance of299

k-Set Cover, obtained from the previous reduction. We recall that each set S of S is the union of an300

A-interval with a B-interval: S = SA ⊎SB . We transform each set S into a 2-element (xS,A,xS,B ), and301

each element u of the k-Set Cover instance into a setTu of the Structured 2-Track Hitting Set302

instance. We put element xS,A (resp. xS,B ) into setTu wheneveru ∈ S∩A = IA (resp.u ∈ S∩B = IB ).303

We callA′ (resp. B′) the set of all the elements of the form xS,A (resp. xS,B ). We shall now specify an304

order of A′ and B′ so that the instance is structured. Keep in mind that elements in the Structured305

2-Track Hitting Set instance corresponds to sets in the k-Set Cover instance. We order the306

elements of A′ accordingly to the following ordering of the sets of the k-Set Cover instance: Sb (1),307

S(1, 2), . . .,S(1,k),Se (1),Sb (2),S(2, 1), . . .,S(2,k),Se (2), . . .,Sb (k),S(k, 1), . . .,S(k,k−1),Se (k),308

S(1, 2, ⊢), S(1, 2, ⊣), S(1, 3, ⊢), S(1, 3, ⊣), . . ., S(k − 1,k, ⊢), S(k − 1,k, ⊣). We order the elements of309

B′ accordingly to the following ordering of the sets of the k-Set Cover instance: S(1, 2, ⊢), S(1, 2),310

S(2, 1), S(1, 2, ⊣), S(1, 3, ⊢), S(1, 3), S(3, 1), S(1, 3, ⊣), . . ., S(k − 1,k, ⊢), S(k − 1,k), S(k,k − 1),311

S(k − 1,k, ⊣), Sb (1), Se (1), . . ., Sb (k), Se (k). Within all those sets of sets, we order by increasing312

left endpoint (and then, in case of a tie, by increasing right endpoint). One can now check that313

with those two orders ≤A′ and ≤B′ , all the sets Tu ’s are A′-interval or B′-interval. Also, one can314

check that the 2-Track Hitting Set instance is structured by taking as color classes the partite315

sets Sb (i)’s, Se (i)’s, S(i, j)’s, S(i, j, ⊢)’s, and S(i, j, ⊣)’s. Now, taking one 2-element in each color316

class to hit all the sets Tu corresponds to taking one set in each partite set of S to dominate all the317

elements of the k-Set Cover instance. □318

2-track (unit) interval graphs are the intersection graphs of (unit) 2-track intervals, where a319

(unit) 2-track interval is the union of a (unit) interval in each of two parallel lines, called the first320
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track and the second track. A (unit) 2-track interval may be referred to as an object. Two 2-track321

intervals intersect if they intersect in either the first or the second track. We observe here that322

many dominating problems with some geometric flavor can be restated with the terminology of323

2-track (unit) interval graphs.324

In particular, a result very close to Theorem 4.2 was obtained recently:325

Theorem 4.3 ([38]). Given the representation of a 2-track unit interval graph, the problem of326

selecting k objects to dominate all the intervals isW [1]-hard, and not solvable in time f (k)no(k/logk )327

for any computable function f , unless the ETH fails.328

We still had to give an alternative proof of this result because we will need the additional property329

that the instance can be further assumed to have the structure depicted in Figure 5. This will be330

crucial for showing the hardness result for Vertex Guard Art Gallery.331

Other results on dominating problems in 2-track unit interval graphs include:332

Theorem 4.4 ([29]). Given the representation of a 2-track unit interval graph, the problem of333

selecting k objects to dominate all the objects isW [1]-hard.334

Theorem 4.5 ([18]). Given the representation of a 2-track unit interval graph, the problem of335

selecting k intervals to dominate all the objects isW [1]-hard.336

The result of Dom et al. is formalized differently in their paper [18], where the problem is defined337

as stabbing axis-parallel rectangles with axis-parallel lines.338

5 PARAMETERIZED HARDNESS OF THE POINT GUARD VARIANT339

As exposed in Section 2, we give a reduction from the Structured 2-Track Hitting Set problem.340

The main challenge is to design a linker gadget that groups together specific pairs of points in the341

polygon. The following introductory lemma inspires the linker gadgets for both Point Guard Art342

Gallery and Vertex Guard Art Gallery.343

Lemma 5.1. The only minimum hitting sets of the set-system S = {Si = {1, 2, . . . , i, i + 1, i + 2,344

. . . ,n} | i ∈ [n]} ∪ {S i = {1, 2, . . . , i, i + 1, i + 2, . . . ,n} | i ∈ [n]} are {i, i}, for each i ∈ [n].345

Proof. First, for each i ∈ [n], one may easily observe that {i, i} is a hitting set of S. Now, because346

of the sets Sn and Sn one should pick one element i and one element j for some i, j ∈ [n]. If i < j,347

then set S i is not hit, and if i > j, then S j is not hit. Therefore, i should be equal to j. □348

Henceforth we keep this bar notation to denote pairs of homologous objects (points, vertices)349

that we wish to link together.350

Theorem 1.1 (Parameterized hardness point guard). Point Guard Art Gallery is not351

solvable in time f (k)no(k/logk ), even on simple polygons, where n is the number of vertices of the352

polygon and k is the number of guards allowed, for any computable function f , unless the ETH fails.353

Proof. Given an instance I = (k ∈ N, t ∈ N,σ ∈ Sk ,σ1 ∈ St , . . . ,σk ∈ St ,SA,SB ) of354

Structured 2-Track Hitting Set, we build a simple polygon P withO(kt + |SA | + |SB |) vertices,355

such that I is a YES-instance iff P can be guarded by 3k points.356

Outline. We recall that A’s order is: a11, . . . ,a1t , . . . ,ak1 , . . . ,akt and B’s order is determined by σ357

and the σj ’s (see Figure 5). The global strategy of the reduction is to allocate, for each color class358

j ∈ [k], 2t special points in the polygon α j
1, . . . ,α

j
t and β j1, . . . , β

j
t . Placing a guard in α j

i (resp. β
j
i )359

shall correspond to picking a 2-element whose first (resp. second) component is aji (resp. b
j
i ). The360

points α j
i ’s and β ji ’s ordered by increasing y-coordinates will match the order of the aji ’s along the361
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z1

z2

z3

z4

p1

p2

p3

p4

p5

p6

Fig. 6. Interval gadgets encoding {p1,p2,p3}, {p2,p3,p4,p5}, {p4,p5}, and {p4,p5,p6}.

order ≤A and then of the b ji ’s along ≤B . Then, far in the horizontal direction, we will place pockets362

to encode each A-interval of SA, and each B-interval of SB (see Figure 6).363

The critical issue will be to link point α j
i to point β

j
i . Indeed, in the Structured 2-Track Hitting364

Set problem, one selects 2-elements (one per color class), so we should prevent one from placing365

two guards in α j
i and β

j
i′ with i , i

′. The so-called point linker gadget will be grounded in Lemma 5.1.366

Due to a technicality, we will need to introduce a copy α j
i of each α j

i . In each part of the gallery367

encoding a color class j ∈ [k], the only way of guarding all the pockets with only three guards will368

be to place them in α j
i , α

j
i , and β

j
i for some i ∈ [t] (see Figure 8). Hence, 3k guards will be necessary369

and sufficient to guard the whole P iff there is a solution to the instance of Structured 2-Track370

Hitting Set.371

We now get into the details of the reduction. We will introduce several characteristic lengths and372

compare them; when l1 ≪ l2 means that l1 should be thought as really small compared to l2, and373

l1 ≈ l2 means that l1 and l2 are roughly of the same order. The motivation is to guide the intuition374

of the reader without bothering her/him too much about the details. At the end of the construction,375

we will specify more concretely how those lengths are chosen.376

Construction.We start by formalizing the positions of the α j
i ’s and β

j
i ’s. We recall that we want377

the points α j
i ’s and β

j
i ’s ordered by increasing y-coordinates, to match the order of the aji ’s and b

j
i ’s378

along ≤A and ≤B , with first all the elements of A and then all the elements of B. Starting from some379

y-coordinate y1 (which is the one given to point α1
1 ), the y-coordinates of the α

j
i ’s are regularly380

spaced out by an offsety; that is, they-coordinate of α j
i isy1+(i+(j−1)t)y. Between they-coordinate381

of the last element in A (i.e., akt whose y-coordinate is y1 + (kt − 1)y) and the first element in B,382

there is a large offset L, such that the y-coordinate of β ji is y1 + (kt − 1)y + L + (ind(b ji ) − 1)y (for383

any j ∈ [k] and i ∈ [t]) where ind(b ji ) is the index of b ji along the order ≤B , that is the number of384

b ∈ B such that b ≤B b ji .385

For each color class j ∈ [k], let x j := x1 + (j − 1)D for some x-coordinate x1 and value D, and386

yj := y1 + (j − 1)ty. The allocated points α j
1,α

j
2,α

j
3, . . . ,α

j
t are on a line at coordinates: (x j ,yj ), (x j +387

x ,yj +y), (x j + 2x ,yj + 2y), . . . , (x j + (t − 1)x ,yj + (t − 1)y), for some value x . We place, to the left of388

those points, a rectangular pocket Pj,r of width, say, y and length, say3, tx such that the uppermost389

longer side of the rectangular pocket lies on the line ℓ(α j
1,α

j
t ) (see Figure 7). The y-coordinates390

of β j1, β
j
2, β

j
3, . . . , β

j
t have already been defined. We set, for each i ∈ [t], the x-coordinate of β ji to391

x j + (i − 1)x , so that β ji and α
j
i share the same x-coordinate. One can check that it is consistent with392

3the exact width and length of this pocket are not relevant; the reader may just think of Pj,r as a thin pocket which forces
to place a guard on a thin strip whose uppermost boundary is ℓ(α j1 , α

j
t )
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the previous paragraph. We also observe that, by the choice of the y-coordinate for the β ji ’s, we393

have both encoded the permutations σj ’s and permutation σ (see Figure 9 or Figure 7).394

Our construction almost exclusively rely on so-called triangular pockets. Henceforth, for a vertex395

v and two points p and p ′, we call a triangular pocket rooted at vertex v and supported by ray(v,p)396

and ray(v,p ′) a sub-polygonw,v,w ′ (a triangle) such that ray(v,w) passes through p, ray(v,w ′)397

passes through p ′, whilew andw ′ are close to v (sufficiently close not to interfere with the rest of398

the construction). We say that v is the root of the triangular pocket, that we often denote by P(v).399

We also say that the pocket P(v) points towards p and p ′.400

We now encode the A-intervals and B-intervals with triangular pockets. At the x-coordinate401

xk + (t − 1)x + F , for some large value F , we put between y-coordinates y1 and yk + (kt − 1)y, for402

each A-interval Iq = [aji ,a
j′
i′ ] ∈ SA we put one triangular pocket P(zA,q) rooted at vertex zA,q and403

supported by ray(zA,q ,α j
i ) and ray(zA,q ,α j′

i′ ). Intuitively, if y ≪ x ≪ D ≪ F , the only α j′′
i′′ seeing404

vertex zA,q should be all the points such that aji ≤A aj
′′

i′′ ≤A aj
′

i′ (see Figure 9 and Figure 6). We place405

those |SA | pockets along the y-axis, and space them out by distance s . To guarantee that we have406

enough room to place all those pockets, s ≪ y shall later hold. Similarly, we place at the same407

x-coordinate xk + (t − 1)x + F each of the |SB | triangular pockets P(zB,q) rooted at vertex zB,q and408

supported by ray(zB,q , β ji ) and ray(zB,q , β j
′

i′ ) for B-interval [b
j
i ,b

j′
i′ ] ∈ SB ; and we space out those409

pockets by distance s along they-axis between x-coordinatesy1+ (kt −1)y+L andy1+2(kt −1)y+L.410

We do not specify an order to the zA,q ’s (resp. the zB,q ’s) along the y-axis since we do not need that411

to prove the reduction correct. The different values (s , x , y, D, L, and F ) introduced so far compare412

in the following way: s ≪ y ≪ x ≪ D ≪ F , and x ≪ L ≪ F (see Figure 9).413

We now describe the linker gadget, or how to force consistent pairs of guards α j
i and its associate414

β ji . The idea is that pairs of guards α
j
i , β

j
i will be very effective since the two points see disjoint sets415

of pockets, whereas pairs α j
i , β

j
i′ (with i , i ′) will overlap on some pockets, and miss some other416

pockets completely.417

For each j ∈ [k], let us mentally draw ray(α j
t , β

j
1) and consider points slightly to the left of this418

ray at a distance, say, L′ from point α j
t . Let us call R

j
left that informal region of points. Any point in419

R
j
left sees, from right to left, in this order α j

1 , α
j
2 up to α j

t , and then, β
j
1, β

j
2 up to β jt . This observation420

relies on the fact that y ≪ x ≪ L. So, from the distance, the points β j1, . . . , β
j
t look almost flat. It421

makes the following construction possible. In R
j
left, for each i ∈ [t − 1], we place a triangular pocket422

P(c ji ) rooted at vertex c ji and supported by ray(c ji ,α
j
i+1) and ray(c ji , β

j
i ). We place also a triangular423

pocket P(c jt ) rooted at c jt supported by ray(c jt , β
j
1) and ray(c jt , β

j
t ). We place the vertices c ji (i ∈ [t])424

at the same y-coordinate and we space them out by distance x along the x-axis (see Figure 7).425

Similarly, let us informally refer to the region slightly to the right of ray(α j
1, β

j
t ) at a distance L′426

from point α j
1, as R

j
right. Any point R j

right sees, from right to left, in this order β j1, β
j
2 up to β jt , and427

then, α j
1, α

j
2 up to α j

t . Therefore, one can place in R
j
left, for each i ∈ [t − 1], a triangular pocket428

P(d ji ) rooted at d ji supported by ray(d ji , β
j
i+1) and ray(c ji ,α

j
i ). We place also a triangular pocket429

P(d jt ) rooted at d jt supported by ray(d jt ,α
j
1) and ray(d jt ,α

j
t ). Again, those t pockets can be put at430

the same y-coordinate and spaced out horizontally by x (see Figure 7). We denote by Pj,α,β the431

set of pockets {P(c j1), . . . ,P(c jt ),P(d j1), . . . ,P(d jt )} and informally call it the weak point linker (or432

simply, weak linker) of α j
1, . . . ,α

j
t and β j1, . . . , β

j
t . We may call the pockets of R j

left (resp. R
j
right) left433

pockets (resp. right pockets).434

As we will show later, if one wants to guard with only two points all the pockets of Pj,α,β =435

{P(c j1), . . . ,P(c jt ),P(d j1), . . . ,P(d jt )} and one first decides to put a guard on point α j
i (for some436
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α1α2α3α4
α5α6

β1 β2 β3 β4
β5 β6

d1c1 d2c2 d3c3 d4c4 d5c5 d6c6

Fig. 7. Weak point linker gadget Pj,α,β with t = 6. We omit the superscript j in all the labels.

i ∈ [t]), then one is not forced to put the other guard on point β ji but only on an area whose437

uppermost point is β ji (see the shaded areas below the b ji ’s in Figure 7). Now, if β j1, . . . , β
j
t would all438

lie on a same line ℓ, we could shrink the shaded area of each β ji (Figure 7) down to the single point439

β ji by adding a thin rectangular pocket on ℓ (similarly to what we have for α j
1, . . . ,α

j
t ). Naturally440

we need that β j1, . . . , β
j
t are not on the same line, in order to encode σj .441

The remedy we suggest is to make a triangle of weak linkers. For each j ∈ [k], we allocate442

t points α j
1,α

j
2, . . . ,α

j
t on a horizontal line, spaced out by distance x , say, ≈ D

2 to the right and443

≈ L to the up of β jt . We put a thin horizontal rectangular pocket Pj,r of the same dimension as444

Pj,r such that the lowermost longer side of Pj,r is on the line ℓ(α j
1,α

j
t ). We add the 2t pockets445

corresponding to a weak linker Pj,α,α between α j
1, . . . ,α

j
t and α

j
1, . . . ,α

j
t as well as the 2t pockets446

of a weak linker Pj,α,β between α j
1, . . . ,α

j
t and β j1, . . . , β

j
t as pictured in Figure 8. We denote by Pj447

the union Pj,r ∪ Pj,r ∪ Pj,α,β ∪ Pj,α,α ∪ Pj,α,β of all the pockets involved in the encoding of color448

class j. Now, say, one wants to guard all the pockets of Pj with only three points, and chooses to449

put a guard on α j
i (for some i ∈ [t]). Because of the pockets of Pj,α,α ∪ Pj,r , one is forced to place a450

second guard precisely on α j
i . Now, because of the weak linker Pj,α,β the third guard should be451

on a region whose uppermost point is β ji , while, because of Pj,α,β the third guard should be on a452

region whose lowermost point is β ji . The conclusion is that the third guard should be put precisely453

on β ji . This triangle of weak linkers is called the linker of color class j. The k linkers are placed454

accordingly to Figure 9. This ends the construction.455

Specification of the distances. We can specify the coordinates of positions of all the vertices456

by fractions of integers. These integers are polynomially bounded in n. If we want to get integer457

coordinates, we can transform the rational coordinates to integer coordinates by multiplying all of458

them with the least common multiple of all the denominators, which is not polynomially bounded459

anymore. The length of the integers in binary is still polynomially bounded.460
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Pj,α,β

Pj,α,α

Pj,α,β

Fig. 8. Point linker gadget Pj : a triangle of (three) weak point linkers Pj,α,β , Pj,α,α , Pj,α,β , and two

rectangular pockets forcing one guard on the lines ℓ(α
j
1,α

j
2) = ℓ(α

j
1,α

j
t ) and ℓ(α

j
1,α

j
2) = ℓ(α

j
1,α

j
t ).

We can safely set s to one, as it is the smallest length, we specified. We will put |SA | pockets461

on track 1 and |SB | pockets on track 2. It is sufficient to have an opening space of one between462

them. Thus, the space on the right side of P, for all pockets of track 1 is bounded by 2 · |SA |. Thus463

setting y to |SA | + |SB | secures us that we have plenty of space to place all the pockets. We specify464

F = (|SA | + |SB |)Dk = y · D · k . We have to show that this is large enough to guarantee that the465

pockets on track 1 distinguish the picked points only by the y-coordinate. Let p and q be two points466

among the α j
i . Their vertical distance is upper bounded by Dk and their horizontal distance is lower467

bounded by y. Thus the slope of ℓ = ℓ(p,q) is at least y
Dk . At the right side of P the line ℓ will be at468

least F y
Dk above the pockets of track 1. Note F y

Dk = yDk ·
y
Dk > y2 > |SA |

2 > 2 · |SA |. The same469

argument shows that F is sufficiently large for track 2.470

The remaining lengths x ,L,L′, and D can be specified in a similar fashion. For the construction471

of the pockets, let s ∈ SA be an A-interval with endpoints a and b, represented by some points p472

and q and assume the opening vertices v andw of the triangular pocket are already specified. Then473

the two lines ℓ(p,v) and ℓ(q,w) will meet at some point x to the right of v andw . By Lemma 3.3, x474

has rational coordinates and the integers to represent them can be expressed by the coordinates of475

p,q,v, andw . This way, all the pockets can be explicitly constructed using rational coordinates as476

claimed above.477

Correctness. We now show that the reduction is correct. The following lemma is the main478

argument for the easier implication: if I is a YES-instance, then the gallery that we build can be479

guarded with 3k points.480

Lemma 5.2. ∀j ∈ [k], ∀i ∈ [t], the three associate points α j
i , α

j
i , β

j
i guard Pj entirely.481
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F

F

D

P1,α,β P2,α,β P3,α,β

P1,α,α P2,α,α P3,α,α

P1,α,β

P2,α,β

P3,α,β

L

P1,r

P2,r

P3,r

P1,r

P2,r

P3,r
track 1

track 2

α

α
β

Fig. 9. The overall picture of the reduction with k = 3. The combination of Pj,α,β , Pj,α,α , Pj,α,β , Pj,r ,

and Pj,r forces to place pairs of guards at α
j
i(j), β

j
i(j), analogously to the Structured 2-Track Hitting Set

semantics. They-coordinates of these points encode the total orders overA and B. TheA-intervals are encoded
by triangular pockets in track 1, while the B-intervals are encoded in track 2.

Proof. The rectangular pockets Pj,r and Pj,r are entirely seen by α j
i and α

j
i , respectively. The482

pockets P(c j1),P(c j2), . . .P(c ji−1) and P(d ji ),P(d ji+1), . . .P(d jt ) are all entirely seen by α j
i , while483

the pockets P(c ji ),P(c ji+1), . . .P(c jt ) and P(d j1),P(d j2), . . .P(d ji−1) are all entirely seen by β ji . This484

means that α j
i and β ji jointly see all the pockets of Pj,α,β . Similarly, α j

i and α
j
i jointly see all the485

pockets of Pj,α,α , and α j
i and β ji jointly see all the pockets of Pj,α,β . Therefore, α j

i , α
j
i , β

j
i jointly486

see all the pockets of Pj . □487

Assume that I is a YES-instance and let {(a1s1 ,b
1
s1 ), . . . , (a

k
sk ,b

k
sk )} be a solution. We claim that488

G = {α1
s1 ,α

1
s1 , β

1
s1 , . . . ,α

k
sk ,α

k
sk , β

k
sk } guard the whole polygon P. By Lemma 5.2, ∀j ∈ [k], Pj is489

guarded. For each A-interval (resp. B-interval) in SA (resp. SB ) there is at least one 2-element490

(ajsj ,b
j
sj ) such that ajsj ∈ SA (resp. b jsj ∈ SB ). Thus, the corresponding pocket is guarded by α j

sj491

(resp. β jsj ). The rest of the polygon P (which is not part of pockets) is guarded by, for instance,492

{α1
s1 , . . . ,α

k
sk }. So, G is indeed a solution and it contains 3k points.493

We now assume that there is a set G of 3k points guarding P. We will then show that I is a494

YES-instance. We observe that no point of P sees inside two triangular pockets one being in Pj,α,γ495

and the other in Pj′,α,γ ′ with j , j ′ and γ ,γ ′ ∈ {β ,α }. Further,V (r (Pj,α,β ∪Pj,α,α ))∩V (r (Pj′,α,β ∪496

Pj′,α,α )) = ∅ when j , j ′, where r maps a set of triangular pockets to the set of their root. Also, for497

each j ∈ [k], seeing Pj,α,β and Pj,α,α entirely requires at least 3 points. This means that for each498

j ∈ [k], one should place three guards in V (r (Pj,α,β ∪ Pj,α,α )). Furthermore, one can observe that,499

among those three points, one should guard a triangular pocket Pj′,r and another should guard500

Pj′′,r . Thus a set S1, consisting of three guards of G , sees P1 and two rectangular pockets Pj′,r and501

Pj′′,r .502

Let us call ℓ1 (resp. ℓ′1) the line corresponding to the extension of the uppermost (resp. lowermost)503

longer side of P1,r (resp. P1,r ). The only points of P that can see a rectangular pocket Pj′,r and at504

least t pockets of P1,α,α are on ℓ1: more specifically, they are the points α1
1 , . . . ,α

1
t . The only points505

that can see a rectangular pocket Pj′′,r and at least t pockets of P1,α,α are on ℓ′1: they are the points506

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Parameterized Hardness of Art Gallery Problems 1:17

α1
1, . . . ,α

1
t . As P1,α,α has 2t pockets, S1 should contain two points α1

i and α
1
i′ . By the argument of507

Lemma 5.1, i should be equal to i ′ (otherwise, i < i ′ and the left pocket pointing towards α1
i′−1 and508

α1
i′ is not seen, or i > i ′ and the right pocket pointing towards α1

i+1 and α
1
i is not seen). We denote509

by s1 this shared value. Now, to see the left pocket P(c1s1 ) and the right pocket P(d1s1−1) (that should510

still be seen), the third guard should be to the left of ℓ(c1s1 , β
1
s1 ) and to the right of ℓ(d1s1−1, β

1
s1 ) (see511

shaded area of Figure 7). That is, the third guard of S1 should be on a region in which β1s1 is the512

uppermost point. The same argument with the pockets of P1,α,β implies that the third guard should513

also be on a region in which β1s1 is the lowermost point. Thus, the third guard of S1 has to be the514

point β1s1 . Therefore S1 = {α1
s1 ,α

1
s1 , β

1
s1 }, for some s1 ∈ [t].515

As none of those three points see any pocket Pj,α,β with j > 1 (we already mentioned that516

no pocket of Pj,α,β and Pj,α,α with j > 1 can be seen by those points), we can repeat the517

argument for the second color class; and so forth up to color class k . Thus, G is of the form518

{α1
s1 ,α

1
s1 , β

1
s1 , . . . ,α

k
sk ,α

k
sk , β

k
sk }. As G also guards all the pockets of tracks 1 and 2, the set of k519

2-elements {(a1s1 ,b
1
s1 ), . . . , (a

k
sk ,b

k
sk )} hits all the A-intervals of SA, and the B-intervals of SB . □520

6 PARAMETERIZED HARDNESS OF THE VERTEX GUARD VARIANT521

We now turn to the vertex guard variant and show the same hardness result. Again, we reduce from522

Structured 2-Track Hitting Set and our main task is to design a linker gadget. Though, linking523

pairs of vertices turns out to be very different from linking pairs of points. Therefore, we have to524

come up with fresh ideas to carry out the reduction. In a nutshell, the principal ingredient is to525

link pairs of convex vertices by introducing reflex vertices at strategic places. As placing guards on526

those reflex vertices is not supposed to happen in the Structured 2-Track Hitting Set instance,527

we design a so-called filter gadget to prevent any solution from doing so.528

Theorem 1.2 (Parameterized hardness vertex guard). Vertex Guard Art Gallery is not529

solvable in time f (k)no(k/logk ), even on simple polygons, where n is the number of vertices of the530

polygon and k is the number of guards allowed, for any computable function f , unless the ETH fails.531

Proof. From an instance I = (k ∈ N, t ∈ N,σ ∈ Sk ,σ1 ∈ St , . . . ,σk ∈ St ,SA,SB ), we build532

a simple polygon P with O(kt + |SA | + |SB |) vertices, such that I is a YES-instance iff P can be533

guarded by 3k vertices.534

Linker gadget. This gadget encodes the 2-elements. We build a sub-polygon that can be seen535

entirely by pairs of convex vertices if and only if they correspond to the same 2-element.536

For each j ∈ [k], permutation σj will be encoded by a sub-polygon Pj that we call vertex linker,537

or simply linker (see Figure 10). We regularly set t consecutive vertices α j
1,α

j
2, . . . ,α

j
t in this order,538

along the x-axis. Opposite to this segment, we place t vertices β jσj (1), β
j
σj (2), . . . , β

j
σj (t )

in this order,539

along the x-axis, too. The β jσj (1), . . . , β
j
σj (t )

, contrary to α j
1, . . . ,α

j
t , are not consecutive; we will later540

add some reflex vertices between them. At mid-distance between α j
1 and β jσj (1), to the left, we put541

a reflex vertex r j
↓
. To the left of this reflex vertex, we place a vertical wall d je j (r j

↓
, d j , and e j are542

three consecutive vertices of P), so that ray(α j
1, r

j
↓
) and ray(α j

t , r
j
↓
) both intersect seg(d j , e j ). That543

implies that for each i ∈ [t], ray(α j
i , r

j
↓
) intersects seg(d j , e j ). We denote by p ji this intersection. The544

greater i , the closer p ji is to d j . Similarly, at mid-distance between α j
t and β jσj (t ), to the right, we put545

a reflex vertex r j
↑
and place a vertical wall x jy j (r j

↑
, x j , and y j are consecutive), so that ray(α j

1, r
j
↑
)546

and ray(α j
t , r

j
↑
) both intersect seg(x j ,y j ). For each i ∈ [t], we denote by q ji the intersection between547

ray(α j
i , r

j
↑
) and seg(x j ,y j ). The smaller i , the closer q ji is to x j .548
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For each i ∈ [t], we put around β ji two reflex vertices, one in ray(β ji ,p
j
i ) and one in ray(β ji ,q

j
i ).549

Later we may refer to these reflex vertices as intermediate reflex vertices. In Figure 10, we merged550

some reflex vertices but the essential part is that V (β ji )∩ seg(d j , e j ) = seg(d j ,p ji ) and V (β ji )∩551

seg(x j ,y j ) = seg(x j ,q ji ). Finally, we add a triangular pocket rooted atдj and supported by ray(дj ,α
j
1)552

and ray(дj ,α j
t ), as well as a triangular pocket rooted at b j and supported by ray(дj , β jσj (1)) and553

ray(дj , β jσj (t )). This ends the description of the vertex linker (see Figure 10).554

α1 α2 α3 α4 α5 α6

β4 β2 β5 β3 β6 β1

r↓d

e
f

a

c

r↑ x

yh

д

b

p1

p2
p3p4 q3

q4
q5

q6

Fig. 10. Vertex linker gadget Pj . We omitted the superscript j in all the labels. Here, σj (1) = 4, σj (2) =
2, σj (3) = 5, σj (4) = 3, σj (5) = 6, σj (6) = 1.

The following lemma formalizes how exactly the vertices α j
i and β ji are linked: say, one chooses555

to put a guard on a vertex α j
i , then the only way to see Pj entirely, by putting a second guard on a556

vertex of {β j1, . . . , β
j
t } is to place it on the vertex β ji .557

Lemma 6.1. For any j ∈ [k], the sub-polygon Pj is seen entirely by {α j
v , β

j
w } iff v = w .558

Proof. The regions of Pj not seen by α j
v (i.e., Pj \V (α j

v )) consist of the triangles d jr j↓p
j
v , x jr j↑q

j
v559

and partially the triangle ajb jc j . The triangle ajb jc j is anyway entirely seen by the vertex β ji , for560

any i ∈ [t]. It remains to prove that d jr j
↓
p jv ∪ x jr j

↑
q jv ⊆ V (β jw ) iff v = w .561

It holds that d jr j
↓
p jv ∪ x jr j

↑
q jv ⊆ V (β jv ) since, by construction, the two reflex vertices neighboring562

β jv are such that β jv sees seg(d j ,p jα ) (hence, the whole triangle d jr j↓p
j
v ) and seg(x j ,q jα ) (hence, the563

whole triangle x jr j
↑
q jv ). Now, let us assume that v , w . If v < w , the interior of the segment564

seg(pv ,pw ) is not seen by {α j
v , β

j
w }, and if v > w , the interior of the segment seg(qv ,qw ) is not565

seen by {α j
v , β

j
w }. □566

The issue we now have is that one could decide to place a guard on a vertex α j
i and a second567

guard on a reflex vertex between β jσj (w )
and β jσj (w+1) (for somew ∈ [t − 1]). This is indeed another568
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way to guard the whole Pj . We will now describe a sub-polygon Fj (for each j ∈ [k]) called filter569

gadget (see Figure 11) satisfying the property that all its (triangular) pockets can be guarded by570

adding only one guard on a vertex of Fj iff there is already a guard on a vertex β ji of Pj . Therefore,571

the filter gadget will prevent one from placing a guard on a reflex vertex of Pj . The functioning of572

the gadget is again based on Lemma 5.1.573

Filter gadget. Let d j1, . . . ,d
j
t be t consecutive vertices of a regular, say, 20t-gon, so that the angle574

made by ray(d j1,d
j
2) and the y-axis is a bit below 45◦, while the angle made by ray(d jt−1,d

j
t ) and575

the y-axis is a bit above 45◦. The vertices d j1, . . . ,d
j
t therefore lie equidistantly on a circular arc C.576

We now mentally draw two lines ℓh and ℓv ; ℓh is a horizontal line a bit below d j1, while ℓv is a577

vertical line a bit to the right of d jt . We put, for each i ∈ [t], a vertex x ji at the intersection of ℓh and578

the tangent to C passing through d ji . Then, for each i ∈ [t − 1], we set a triangular pocket P(x ji )579

rooted at x ji and supported by ray(x ji ,d
j
1) and ray(x ji , β

j
σj (i+1)). For convenience, each point β jσj (i) is580

denoted by c ji on Figure 11. We also set a triangular pocket P(x jt ) rooted at x jt and supported by581

ray(x jt ,d
j
1) and ray(x

j
t ,d

j
t ). Similarly, we place, for each i ∈ [t − 1], a vertex y ji at the intersection of582

ℓv and the tangent to C passing through d ji+1. Finally, we set a triangular pocket P(y ji ) rooted at y ji583

and supported by ray(y ji , β
j
σj (i)

) and ray(y ji ,d
j
t ), for each i ∈ [t − 1] (see Figure 11). We denote by584

P(Fj ) the 2t − 1 triangular pockets of Fj .585

d1

d2

d3
d4

d5
d6

x1x2x3x4x5x6

c1 c2 c3 c4 c5 c6

y1

y2

y3
y4

y5

Fig. 11. The filter gadget Fj . Again, we omit the superscript j on the labels. Vertices c1, c2, . . . , ct are not part

of Fj and are in fact the vertices β
j
σj (1)
, β

j
σj (2)
, . . . , β

j
σj (t )

and the vertices in between the ci ’s are the reflex

vertices that we have to filter out.
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Lemma 6.2. For each j ∈ [k], the only ways to see P(Fj ) and the triangle a
jb jc j entirely with only586

two guards on vertices of Pj ∪ P(Fj ) is to place them on vertices c ji and d
j
i (for any i ∈ [t]).587

Proof. Proving this lemma will, in particular, entail that it is not possible to see P(Fj ) entirely588

with only two vertices if one of them is a reflex vertex between c ji and c
j
i+1. We recall that such a589

vertex is called an intermediate reflex vertex (in color class j). Because of the pocket ajb jc j , one590

should put a guard on a c ji (for some i ∈ [t]) or on an intermediate reflex vertex in class j. As591

vertices aj , b j , and c j do not see anything of P(Fj ), placing the first guard at one of those three592

vertices cannot work as a consequence of what follows.593

Say, the first guard is placed at c ji (= β jσ (i)). The pockets P(x j1),P(x j2), . . . ,P(x ji−1) and P(y ji ),594

P(y ji+1), . . . ,P(x jt−1) are entirely seen, while the vertices x ji ,x
j
i+1, . . . ,x

j
t and y

j
1,y

j
2, . . . , y

j
i−1 are595

not. The only vertex that sees simultaneously all those vertices is d ji . The vertex d
j
i even sees the596

whole pockets P(x ji ),P(x ji+1), . . . ,P(x jt ) and P(y j1),P(y j2), . . . , P(y ji−1). Therefore, all the pockets597

P(Fj ) are fully seen.598

Now, say, the first guard is put on an intermediate reflex vertex r between c ji and c
j
i+1 (for some599

i ∈ [t − 1]). Both vertices x ji and y
j
i , as well as x

j
t , are not seen by r and should therefore be seen by600

the second guard. However, no vertex simultaneously sees those three vertices. □601

Putting the pieces together. The permutation σ is encoded the following way. We position602

the vertex linkers P1,P2, . . . ,Pk such that Pi+1 is below and slightly to the left of Pi . Far below603

and to the right of the Pi ’s, we place the Fi ’s such that the uppermost vertex of Fσ (i) is close and604

connected to the leftmost vertex of Fσ (i+1), for all i ∈ [t − 1]. We add a constant number of vertices605

in the vicinity of each Pj , so that the only filter gadget that vertices β j1, . . . , β
j
t can see is Fj (see606

Figure 12). Similarly to the point guard version, we place vertically and far from the α j
i ’s, one607

triangular pocket P(zA,q) rooted at vertex zA,q and supported by ray(zA,q ,α j
i ) and ray(zA,q ,α j′

i′ ),608

for each A-interval Iq = [aji ,a
j′
i′ ] ∈ SA (Track 1). Finally, we place vertically and far from the d ji ’s,609

one triangular pocket P(zB,q) rooted at vertex zB,q and supported by ray(zB,q ,d ji ) and ray(zB,q ,d
j′
i′ ),610

for each B-interval Iq = [b jσj (i),b
j′

σj′ (i′)
] ∈ SB (Track 2). We make sure that, all projected on the611

x-axis, Fσ (1) is to the right of P1 and to the left of Track 1, so that, for every i ∈ [t], the vertex dσ (1)i612

sees the top edge of the gallery entirely. This ends the construction (see Figure 12).613

Correctness. We now prove the correctness of the reduction. Assume that I is a YES-instance614

and let {(a1s1 ,b
1
s1 ), . . . , (a

k
sk ,b

k
sk )} be a solution.We claim that the set of verticesG = {α1

s1 , β
1
s1 ,d

1
σ −1
1 (s1)
,615

. . . , αksk , β
k
sk ,d

k
σ −1
k (sk )

} guards the whole polygon P. Let z j := d j
σ −1
j (sj )

for notational convenience. By616

Lemma 6.1, for each j ∈ [k], the sub-polygon Pj is entirely seen, since there are guards on α j
sj and617

β jsj . By Lemma 6.2, for each j ∈ [k], all the pockets of Fj are entirely seen, since there are guards618

on β jsj = c
j
σ −1
j (sj )

and d j
σ −1
j (sj )

= z j . For each A-interval (resp. B-interval) in SA (resp. SB ) there is at619

least one 2-element (ajsj ,b
j
sj ) such that ajsj ∈ SA (resp. b jsj ∈ SB ). Thus, the corresponding pocket is620

guarded by α j
sj (resp. β

j
sj ). The rest of the polygon is seen by, for instance, zσ (1) and zσ (k ).621

We now assume that there is a set G of 3k vertices guarding P. We will show that I is a YES-622

instance. For each j ∈ [k], vertices b j , дj , and x jt are seen by three pairwise-disjoint sets of vertices.623

The first two sets are contained in the vertices of sub-polygon Pj and the third one is contained624

in the vertices of Fj . Therefore, to see Pj ∪ P(Fj ) entirely, three vertices are necessary. Summing625

that over the k color classes, this corresponds already to 3k vertices which is the size of G . Thus, G626

contains a set S j of exactly 3 guards among the vertices of Pj ∪ P(Fj ).627
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Track 1

Track 2

P1

P2

P3

P4

P5

F5

F3

F1

F4

F2

Fig. 12. Overall picture of the reduction with k = 5, and σ = 42531. The linker gadgets Pj , together with Fj ,

force guards at vertices α
j
i(j), β

j
i(j). The filter gadgets Fj transmit the choice of β

j
i(j) and ensure that no other

guard placement can be made in Pj . The A-intervals of the Structured 2-Track Hitting Set instance are

encoded by triangular pockets on Track 1, while the B-intervals are encoded on Track 2.

The guard of S j responsible for seeing дj does not see b j nor any pockets of P(Fj ). Hence there628

are only two guards of S j performing the latter task. Therefore, by Lemma 6.2, there should be629

an sj ∈ [t] such that both d jsj and c
j
sj = β jσj (sj ) are in G. The only vertices seeing дj are f j ,дj ,hj630

and aj1, . . . ,a
j
t . As d

j
sj and the 3k − 3 guards of G \ S j do not see the edges d je j and x jy j at all, by631

Lemma 6.1, among aj1, . . . ,a
j
t the only possibility for the third guard of S j is α j

σj (sj )
. We can assume632

that the third guard of S j is indeed α j
σj (sj )

, since f j ,дj ,hj do not see any pockets outside of Pj633

(whereas α j
σj (sj )

, in principle, does in Track 1).634

So far, we showed that G is of the form {α1
σ1(s1)
, β1σ1(s1),d

1
s1 , . . . ,α

j
σj (sj )
, β jσj (sj ),d

j
sj , . . . ,α

k
σk (sk )

,635

βkσk (sk )
,dksk }. It means that α1

σ1(s1)
, . . . ,αkσk (sk )

see all the pockets of Track 1, while d1s1 , . . . ,d
k
sk see636

all the pockets of Track 2. Therefore the set of k 2-elements {(a1σ1(s1),b
1
σ1(s1)

), . . . , (akσk (sk )
,bkσk (sk )

)}637

is a hitting set of both SA and SB , hence I is a YES-instance.638

Let us bound the number of vertices of P. Each sub-polygon Pj or Fj contains O(t) vertices.639

Track 1 contains 3|SA | vertices and Track 2 contains 3|SB | vertices. Linking everything together640

requires O(k) additional vertices. So, in total, there are O(kt + |SA | + |SB |) vertices. Thus, this641

reduction together with Theorem 4.2 implies that Vertex Guard Art Gallery is W[1]-hard and642

cannot be solved in time f (k)no(k/logk ), where n is the number of vertices of the polygon and k the643

number of guards, for any computable function f , unless the ETH fails. □644
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