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Abstract

Despite intensive treatments including temozolomide (TMZ) administration, glioblas-

toma patient prognosis remains dismal and innovative therapeutic strategies are

urgently needed. A systems pharmacology approach was undertaken to investigate

TMZ pharmacokinetics‐pharmacodynamics (PK‐PD) incorporating the effect of local

pH, tumor spatial configuration and micro‐environment. A hybrid mathematical frame-

work was designed coupling ordinary differential equations describing the intracellular

reactions, with a spatial cellular automaton to individualize the cells. A differential drug

impact on tumor and healthy cells at constant extracellular pH was computationally

demonstrated as TMZ‐induced DNA damage was larger in tumor cells as compared to

normal cells due to less acidic intracellular pH in cancer cells. Optimality of TMZ effi-

cacy defined as maximum difference between damage in tumor and healthy cells was

reached for extracellular pH between 6.8 and 7.5. Next, TMZ PK‐PD in a solid tumor

was demonstrated to highly depend on its spatial configuration as spread cancer cells

or fragmented tumors presented higher TMZ‐induced damage as compared to com-

pact tumor spheroid. Simulations highlighted that smaller tumors were less acidic than

bigger ones allowing for faster TMZ activation and their closer distance to blood capil-

laries allowed for better drug penetration. For model parameters corresponding to

U87 glioma cells, inter‐cell variability in TMZ uptake play no role regarding the mean

drug‐induced damage in the whole cell population whereas this quantity was increased

by inter‐cell variability in TMZ efflux which was thus a disadvantage in terms of drug

resistance. Overall, this study revealed pH as a new potential target to significantly

improve TMZ antitumor efficacy.
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1 | INTRODUCTION

Glioblastoma (GBM) is the most frequent and aggressive primary

brain tumor in adults. It is associated with a dismal median patient

survival of approximately 18 months despite intensive treatment

Abbreviations: ABC, ATP-Binding Cassette; AIC, 4-amino-5-imidazole-carboxamide; CA,

Cellular Automaton; MTIC, 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide; ODE, Ordinary

Differential Equation; PDE, Partial Differential Equation; TMZ, temozolomide.
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involving surgery, radiation, and chemotherapy mainly based on the

alkylating agent temozolomide (TMZ).1 No major therapeutic

advance has been accomplished since this current standard of care

was established more than 10 years ago. Moreover, this treatment is

associated with moderate to severe toxicity events, which can be life

threatening in some cases.2 Hence, innovative therapeutic strategies

are urgently needed and there is scope for great progress in terms

of patients survival and quality of life. TMZ is the cornerstone of

GBM management but has also been approved for the treatment of

other solid tumors including pituitary tumors.3

TMZ is a prodrug that spontaneously converts into its metabo-

lite 5‐(3‐methyltriazen‐1‐yl)imidazole‐ 4‐carboxamide (MTIC), which

is subsequently degraded into 4‐amino‐5‐imidazole‐carboxamide

(AIC)–an inactive metabolite and a methyldiazonium cation, the

DNA‐methylating species. The methyldiazonium cation creates

DNA adducts–a marker of TMZ pharmacodynamics (PD)–that trig-

ger DNA damage responses and potentially induce cell death.4,5

Both TMZ and MTIC degradation rates are highly pH‐dependent
as they exponentially increase and decrease with pH values,

respectively.6

Healthy and tumor cells present different regulations of extra‐
and intracellular pH values which may influence TMZ PK although

this has not been studied mechanistically up to our knowledge.

Cancer cells can acidify their micro‐environment which may favor

the development of resistant clones, promote tumor invasion and

suppress the antitumor immune response.7-9 Furthermore, cancer

cells may present an abnormal regulation of their intracellular pH

which allow them to evade from acid‐mediated toxicities whereas

healthy cells would not survive in acidic environment.10,11 Several

anticancer strategies currently under development rely on targeting

the tumor pH such as the administration of proton pump inhibitors

to invert extracellular/intracellular pH gradient or the design of pH‐
controlled nanoparticles releasing the active compound at acid

pH.10

Mathematical modeling of tumor acidity is not new12 and the

integration of the intracellular pH regulation of tumor cell has also

been considered a while ago13 by incorporating the effects of the

different membrane transporters. The complex tumor cell metabo-

lism and its evolution from aerobic to glycolysis were also consid-

ered in tumor models14-16 to establish the extracellular pH dynamics

accompanying the tumor evolution. More recently cellular automaton

approaches were developed so as to integrate the pH as an environ-

mental constraint.17 Such more general and often multiscale hybrid

models have now proved very useful to further evaluate conse-

quences of treatments.18

We here intend to investigate TMZ pH‐dependent pharmacoki-

netics (PK) and simplified pharamcodynamics (PD) in solid tumors

through such hybrid mathematical modeling and validate the poten-

tial of pH as a therapeutic target to increase TMZ exposure benefit

both in terms of efficacy and tolerability. We build on a previously

published non‐spatial model of TMZ PK‐PD which has been incorpo-

rated into a spatial hybrid framework to analyze TMZ efficacy in a

space‐ and pH‐dependent manner.4,19

2 | MATERIALS AND METHODS

2.1 | Non‐spatial model of TMZ cellular PK‐PD

TMZ cellular PK‐PD was firstly represented by an Ordinary Dif-

ferential Equations (ODE)‐based model.4 This model considers

both an extra‐ and an intracellular compartment (Figure 1). In

both compartments, TMZ pH‐dependent activation into MTIC

and MTIC subsequent degradation into AIC are represented by

the law of mass action. MTIC dissociation produces a methyldia-

zonium cation that can create DNA adducts, which is also repre-

sented by the law of mass action. Because TMZ is highly

lipophilic and constitutes a poor substrate of ATP‐Binding
Cassette (ABC) transporters, its cellular transport is modeled as

passive diffusion using Ficks first law. As MTIC displays limited

ability to cross cell membranes and as the methyldiazonium

cation is a highly reactive species, their transport between the

extra‐ and intracellular compartments were not considered.

Regarding TMZ PD, the methyldiazonium cation is the sole spe-

cies able to form DNA adducts that are considered as an early

marker of TMZ efficacy.

The system of ODEs for TMZ extracellular concentration (To)

and for the intracellular dynamics of TMZ (Ti), MTIC (Mi), Cation (Ci)

and DNA adducts (Add) concentrations (Figure 2) are defined by:

dTo
dt

¼ pT2
Vo

þ kT pHeð Þ
� �

Ti � pT
Vo

To (1)

dTi
dt

¼ � pT2
Vi

þ kT pHið Þ
� �

Ti þ pT
Vi

To (2)

dMi

dt
¼ kT pHið ÞTi � kM pHið ÞMi (3)

dCi

dt
¼ kM pHið ÞMi � kcat þ kaddð ÞCi (4)

dAdd
dt

¼ kaddCi (5)

where Vo, Vi and pHe, pHi are respectively the volumes and pH

values of the extra‐ and intracellular compartments, pT and pT2

are TMZ uptake and efflux rate constants, respectively, kT pHð Þ
and kM pHð Þ are the pH‐dependent rate constants of TMZ trans-

formation into MTIC and subsequent MTIC activation into the

cation C, kcat is the cation degradation rate constant which pre-

sents a high reactivity, and kadd is the DNA‐adduct formation rate

constant. As in Ballesta et al.,4 kT pHð Þ and kM pHð Þ are modeled as

follows:

kT pHð Þ ¼ k0Te
λT �pH (6)

kM pHð Þ ¼ k0Me
�λM �pH (7)

where (k0T, λT) and (k0M, λM) are non‐physiological parameters to esti-

mate. All model parameters were estimated from in vitro studies in
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buffer solutions or in U87 glioma cells and the best‐fit model

achieved a very good fit to data4; Table 1).

2.2 | Spatial hybrid model of TMZ PK‐PD

In order to account for tumor heterogeneities depending on spatial

cell location in its environment or inter‐cell variability, the ODE‐
based model was coupled to a spatial cellular automaton (CA). The

CA gives an explicit representation of each individual cell in the

tumor and this allows to relate each cell to its environment in terms

of other cells and of extracellular molecular species (ie, oxygen,

hydrogen ions, chemotherapeutic drugs, etc.). The CA is defined as a

two‐dimensional grid with 200 × 200 square elements representing

a 25mm2 area. Each tumor cell can occupy one element i; jð Þ of the

grid with dimensions Δx ¼ Δy. The binary variable c is set as ci;j ¼ 1,

if there is one tumor cell at location (i; j) and 0 otherwise. The tumor

cell population in the CA is thus defined as follows:

C ¼ f xi; yj
� �jci;j ¼ 1; xi ¼ iΔx; yj ¼ jΔyg (8)

TMZ intracellular PK‐PD is solved for each tumor cell using the

ODE‐based model (equations 2-5). No inter‐variability is considered

in the model parameters. The extracellular TMZ dynamics is now

represented by a Partial Differential Equation (PDE) assuming an

uniform spatial diffusion of the drug in the extracellular

F IGURE 1 TMZ PK as considered in
the original ODE‐based model. It
differentiates the extra and intracellular
TMZ transformation. In the integration
with the cellular automaton, the elements
in the dotted box are not described since
they play no part in the generation of
DNA adducts, the output variable of
interest

F IGURE 2 Models representations. (A)
Standard two‐compartment model where
the volume of the intracellular
compartment is the total volume of all
cells; (B) CA model where each cell is
explicitly represented and its PK is
individually calculated. A hybrid PDE
describes the extracellular TMZ
concentration in space resulting from TMZ
diffusion and local exchange with cells; (C)
PK model reduced to the intracellular
compartment, as used in (A) and (B)
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environment (equation 9). Reaction terms are added to represent

TMZ cellular uptake and efflux, together with its pH‐dependent
transformation into MTIC in the extracellular medium. Extracellular

spatiotemporal TMZ dynamics, To x; y; tð Þ, is thus given by the fol-

lowing PDE:

∂To
∂t

¼ Dr2To � kT pHð ÞTo � pT
Vo

To þ pT2
Vo

Ti|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
if x;yð Þ∈C

(9)

where D ¼ 1:7� 10�5 cm2/s is the TMZ diffusion coefficient20 and

Vo is the volume of the extracellular medium (Appendix A). TMZ

transport into/from the cells only occurs at spatial location occupied

by cells. The intracellular concentrations of TMZ (Ti ), MTIC (Mi),

cations (Ci) and DNA‐adducts (Add) are now cell‐dependent (ie,

space‐dependent).
As a preliminary test, we reproduced with the hybrid model the

PK results obtained with the non‐spatial model which were based on

experimental measurements in U87 cultured cells4 (Appendix B). For

that, we considered a circular tumor mass of 8000 cells (approximat-

ing 20% confluence of the CA grid). As simulations were performed

on a duration of less than 10 hours, we disregarded cells

proliferation and cell death on this short time scale. This benchmark-

ing test validated the scaling stage of the hybrid model parameters

(Appendix A).

2.3 | Modeling pH evolution

TMZ PK being largely driven by local pH values,4,6 it is important to

adequately represent the extra‐ and intracellular pH for both tumor

and healthy cells. In all in vitro studies, the extracellular pH was

assumed to be constant and uniform across the Petri dish since the

cell culture medium is theoretically a buffer solution aiming to main-

tain constant pH values. At the opposite, in the in vivo context, the

pH depends on the cells presence and on the vascular environment.

This results in the appearance of large spatial heterogeneities.

2.3.1 | Extracellular pH

One characteristics of the tumor cells is their high level of glucose

consumption.21 Positron emission tomography (PET scan) is now

standardly used to highlight the tumor sites thanks to this specific

signature.22,23 The increased glycolytic metabolism is related to

hypoxia: as the tumor grow the increased cell population increases

oxygen consumption and contribute to the local vascular disruption

that together result in a local deficit of oxygen. To survive, the cells

switch their metabolism to glycolysis. Even if oxygen levels come

back to normal, tumor cells tend to favor the glycolytic pathway as

the source of energy, this is known as the Warburg effect.24 Hydro-

gen ions are by‐products of glycolysis and accumulate in and around

the tumor since they are not efficiently washed out by the locally

damaged vascular network. This contributes to build up the acidic

tumor environment. Some models explicitly describe the hydrogen

ions production by the tumor cells,7,15 however to make things sim-

ple we made the choice to directly index the level of acidity to the

level of hypoxia since both phenomena are very often co‐localized in

tumors. On the long term, local re‐oxygenation of the tissue, through

angiogenesis, might not necessary lead to a decreased acidity in the

same proportion because of the Warburg Effect,25 however since

we will only consider short‐term events (of a few hours) in this

study, we assume that the oxygen level can be taken as a good indi-

cator of local acidity. Therefore, we constructed a function that

directly gives the extracellular pH given the stationary oxygen con-

centration since this quantity can easily be computed through the

cellular automaton26,27 (Appendix C).

Given the local oxygen concentration (Oxy) and a threshold value

for oxygen (Oxythr) below which the pH is assumed to saturate to its

minimum pH min (due to the limited production rate of H+ by the

cells), the pH is computed as follows:

if Oxy>Oxythr then pH ¼ pH max � Δ pH
ΔOxy

Oxymax �Oxyð Þ (10)

else pH ¼ pH min (11)

where pH max is the pH in normal healthy tissues (ie, normally oxy-

genated tissue, corresponding to Oxymax) and is typically 7.4 and

pH min is the lower pH level found in tumors which can be as low

as 6.5.28,29 We set these two values to pH max and pH min respec-

tively. ΔOxy ¼ Oxymax �Oxythr and Δ pH ¼ pH max � pH min

(Appendix Figure A2).

2.3.2 | Intracellular pH

One hallmark of the tumor cells is their ability to survive in an acidic

environment – that they contribute to generate – by maintaining

their intracellular pH at physiological levels. On the other hand, this

acidic environment is detrimental to normal cells that have not

acquire this ability.28 Intracellular pH regulation is a complex process

that is not completely elucidated yet.30,31 However, simultaneous

measurements of extra and intracellular pH were made in several

TABLE 1 Model parameters of TMZ PK, all taken from the
original ‐experimentally validated‐ model by (4), except parameters
with symbol (*) that were rescaled as described in Appendix A

Parameters Unit Value Description

TMZ0 μmol/L 62 Initial TMZ concentration

Vi
� l 8e−12 tumor cell volume

Vo
� l 25e−6 Extracellular volume

pT� l/h 4.34e−9 TMZ influx

pT2� l/h 9.14e−9 TMZ efflux

k0T h�1 1.1e−7 TMZ metabolism into MTIC

λT h�1 2.09

k0M h�1 292 MTIC metabolism into cations

λM h�1 0.31

kcat h�1 6000 Methylating cation degradation

kadd h�1 0.005 DNA adducts formation rate
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tumor cell types that all exhibit the reversed pH property where the

intracellular pH is higher than the extracellular one.30,32-34

For this study, we needed to evaluate the intracellular pH given

the extracellular one. To that end, we compiled from the literature

intra and extracellular measurements performed on different cell

types that were available for a wide range of extracellular pH. The

different points obtained from four different studies, corresponding

to four different tumor cell types: mice mammary carcinoma (SCK),34

Chinese hamster lung fibroblasts (CC139),33 human pancreatic carci-

noma (PANC‐1),32 general tumor cells30 could be fitted by linear

regression to calculate the coefficients a; bð Þ ¼ 0:4928;3:9226ð Þ to

give the pH e‐pH i relationship for tumor cells (Figure 3, f xð Þ):

pH i ¼ a� pH e þ b (12)

For normal cells, the physiological status point was well charac-

terized in different cell types with pH e=7.4 and pH i=7.
35-38 The

intracellular pH is found to evolve passively with the extracellular

pH, being around half a unit lower39 which gives a; bð Þ ¼ 1;0:4ð Þ for
normal cells (Figure 3, g xð Þ).

2.4 | Data and Statistical analysis

The simulations for the in vitro settings were realized with Matlab

(version 9.1, R2016b). The hybrid model was developed as a graphi-

cal Microsoft application under Visual Studio.net 2003 using a C++

compiler. The ODE was solved with an Euler numerical scheme. The

PDE was solved using the Thomas Algorithm (for tridiagonal matri-

ces) and the Alternate Direction Implicit (ADI) Method to solve the

diffusion equation in each of the two space dimensions alternatively.

The same numerical grid was used to solve the PDE and to imple-

ment the cellular automaton. Data and statistical analysis comply

with the recommendations on experimental design and analysis in

pharmacology.40

3 | RESULTS

3.1 | TMZ pH‐dependent PK‐PD in tumor and
normal cultured cells

We first used TMZ PK‐PD ODE‐based model to investigate the drug

pharmacology in the context of an in vitro setting. In this scenario,

two cell types corresponding to normal and tumor cells were

assumed to be cultured as monolayers ensuring a uniform pH and

access to the drug. TMZ exposure concentration was set to 60

μmol/L. Extracellular pH values were assumed to be constant as cul-

ture media are theoretically buffer solutions. Under acidic conditions,

TMZ was hardly transformed into MTIC (Figure 4A). As pH

increased, its stability decreased to become extremely unstable with

a complete degradation in less than 2 hours for pH above physiolog-

ical values. Although normal and tumor cells were exposed to the

same extracellular TMZ concentrations, TMZ pH‐dependent PD

appeared radically different in the simulations for normal and tumor

cells as a result of different intracellular pH regulation (Figure 4B,C,

see Materials and Methods). In normal cells, intracellular pH (pH i)

followed pH e with an acidic shift. As a result, the amount of DNA‐
adducts in the normal cells remained to very low levels for acidic

pH e due to TMZ neutralization. In the same acidic conditions, the

amount of DNA adducts in the tumor cells built up much higher as a

result of higher pH values in the intracellular compartment as com-

pared to healthy cells. Interestingly, at physiological pH, that is,

pH e=7.4, DNA adduct concentration was 3.5‐fold higher in tumor

than in normal cells. When pH e was maintained above physiological

F IGURE 3 Relationship between pHe and pHi for normal and tumor cells. The g ðxÞ function corresponds to normal cells and is derived
from the physiological status point (sandglass point). We consider that pHi=pHe � 0:4 as indicated by the function.39 Since normal cells are not
able to survive acidity, the function g ðxÞ is only valid from pHe ¼ 7 under this value we consider that the intracellular acidity is lethal to the
cell. The f ðxÞ function is a linear regression estimated from the points corresponding to different tumor cell types: SCK cells (bullets),34 CC139
cells (squares),33 PANC‐1 cells (triangles),32 other tumor cells (diamonds). The dotted line indicates where pHe = pHi
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levels, DNA damage in the tumor cells were in the same range as

that in normal cells. To further investigate optimal pH values, we

computed the cumulative amount of DNA damage over the entire

TMZ exposure in the form of the Area under the curve (AUC) of

DNA adduct concentration. For any pH e values between 6 and 8.5,

TMZ‐induced DNA damage was larger in tumor cells as compared to

healthy cells (Figure 4D). For all considered exposure durations, max-

imum antitumor efficacy was computationally obtained for pH values

between 6.65 and 7.9, optimal pH decreasing with exposure time.

Optimal pH values inducing the largest difference between DNA

damage in tumor and healthy cells were comprised between 6.8 and

7.5 and decreased with exposure duration (Figure 4E).

3.2 | TMZ pH‐ and space‐dependent PK‐PD in an
in vivo solid tumor

The next step was to computationally investigate TMZ PK‐PD in a

solid tumor within its environment. Tumor tissues may present (a)

modified micro‐environment and in particular abnormal vascular net-

work, (b) different spatial configurations. In this section, we intend

to specifically study these two elements and their influence on local

pH and TMZ PK‐PD. Our hybrid approach that involves a cellular

automaton is particularly well adapted to that task since the model

simultaneously accounts for spatialization and cell individualization.

3.2.1 | TMZ PK‐PD dependency on tumor
microenvironment

We here considered two major sources of environmental hetero-

geneities that can impact on TMZ PK‐PD: the pH that affects the

successive stages of TMZ transformation into its active compound,

and the tumor vascularization that affects TMZ delivery in the tis-

sues. The resources (oxygen, nutrients) and the drugs are delivered

through the capillary network. In a normal healthy tissue, this net-

work is homogeneously covering the volume of the tissue. On the

opposite, in tumors, the capillary network is degraded: (i) vessels are

crushed by the proliferating tumor cells, (ii) the increased acidity trig-

gers apoptosis of the normal endothelial cells, (iii) growth factors

destabilize the capillaries by stimulating vessels sprouting for angio-

genesis.27 As a consequence, two scenari were simulated with the

model: (a) the capillary network was considered to be intact and

TMZ was initially homogeneously distributed to the tumor cells, (b)

the capillary network was degraded, TMZ was delivered from the

intact capillary network outside of the tumor mass which then dif-

fused to reach the tumor cells (Figure 5B, t = 0 h). In reality, the

capillary network may be mostly degraded inside the tumor,

although not completely destroyed. We compared these two

extreme cases to better highlight the consequences on TMZ PK‐PD.

Simulations were performed for a circular tumor mass of radius

R ¼ 50 units (corresponding to 8000 cells), centerd in the cellular

automaton grid i; jð Þ ¼ 100;100ð Þ. The pH spatial variations associ-

ated to the avascularized tumor mass was first computed which

revealed a gradient from the center of the tumor to its periphery as

a result of local oxygen concentration (Figure 5A, Appendix C). pH

distribution for the vascularized tumor was assumed to be the same

as the avascularized tumor so as to uncouple the effects of acidity

and TMZ access. In terms of biology, this illustrates the Warburg

effect by which tumor cells favor glycolysis which is the source for a

sustained acidity even in the presence of oxygen delivered through a

functional capillary network. For the intact vasculature, TMZ was

rapidly transformed into MTIC at the tumor periphery which is at

physiological pH xi ¼ 148ð Þ but was stabilized at the center of the

tumor xi ¼ 100ð Þ, because of the local acidity (Figure 5B, Homoge-

neous capillary network). In the case of a degraded vasculature, TMZ

diffusion was too slow to allow for drug penetration inside the

tumor before its transformation into MTIC in peripheral regions at

physiological pH. Interestingly, TMZ was stabilized by the acidity at

the tumor periphery as shown by the TMZ ring surrounding the

tumor that slowly faded away because of diffusion (Figure 5B,

Degraded capillary network).

TMZ PK‐PD results were presented for three cells located at

three different points in the tumor from the center to the periphery:

xi; yj
� � ¼ 100;100ð Þ, xi; yj

� � ¼ 125;100ð Þ, xi; yj
� � ¼ 148;100ð Þ and

were compared between the intact vasculature and the degraded

one (Figure 5C,D). In both the vascularized and avascularized tumors,

no differences in TMZ PK‐PD were observed for the two most inner

locations (xi=100 and 125) and curves were superimposed, as a

result of environmental conditions in terms of pH and TMZ exposure

being close, the peripheral case (xi=148) was different though. For

the homogeneous capillary network, the drug was more efficient at

the periphery where the pH is closer to the physiological level. DNA

adducts built up more rapidly for these peripheral tumor cells as

compared to cells located inside the tumor (Figure 5C). For the

degraded capillary network, TMZ PK was altered as the drug that

diffused from outside of the tumor only reached the peripheral cells

and most of tumor cells were unaffected due to TMZ slow diffusion

(Figure 5D). The kinetics was slower than that of the vascularized

tumor with 3.5‐fold less DNA adducts produced after 10 hours of

drug exposure.

These simulation results showed that both pH and the state of

the capillary network are essential determinants of TMZ PK‐PD.

Interestingly, the concomitant effect of the tumor pH gradient and

of the poor quality of the tumor vascular network participated in

reducing TMZ efficacy.

3.2.2 | TMZ PK‐PD in different tumor spatial
configurations

Different tumor spatial configurations may be observed depending

on the tumor stage, cancer cell migration phenotypes, extracellular

matrix properties, etc. Those may be associated to an increased

tumor aggressiveness where the tumor tends to split into clusters

and/or individual tumor cells escape from the tumor mass to invade

surrounding tissues. This is a typical feature of glioblastoma where

tumor cells often disseminate in the healthy brain tissue.41 There-

fore, we here considered three different tumor configurations to
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better assess the importance of spatiality: a spheroid (case 1, as

before), cell clusters (case 2), spread cells (case 3) (Figure 6A). In the

three cases, the total amount of cells was conserved. Furthermore,

we considered a degraded capillary network so that TMZ was ini-

tially only in the tumor peripheral tissues. As before, pH distribution

was first computed for each tumor configuration from the oxygen

local concentration (Figure 6A). Simulations were made ‐ using the

same set of parameters for all three cases—to evaluate the in vivo

availability of TMZ and its impact based on DNA adduct generation

(Figure 6B). For all three cases, tumor cells were not all homoge-

neously affected, even after 10 hours of drug exposure. Inside the

tumor mass could even totally escape from treatment in the case of

a spheroid or cell clusters. The spheroid case was the less favorable

in that sense, as it led to the smallest averaged DNA adduct intracel-

lular concentrations, which was evaluated over the whole tumor cell

population (Figure 6C, bullets). Next, inter‐cell Standard Deviations

(SD) of DNA adduct concentrations were large as a result of spatial

heterogeneity in the spheroid scenario. Cell aggregates also harbored

unaffected cells with both a slightly increased mean DNA adduct

level and slightly decreased heterogeneity between cells as

compared with the spheroid case (Figure 6C, squares). Finally, spread

cells were all homogeneously targeted with mean DNA adduct over

the whole cell population being approximately 14‐fold higher than in

the spheroid case after 10 hours of TMZ exposure (Figure 6C, trian-

gles).

3.3 | Influence on TMZ PK‐PD of inter‐cell
variability in drug cellular transport

One important hallmark of cancer cells is their large inter‐cell hetero-
geneity regarding intracellular gene and protein levels. We used our

models of TMZ PK‐PD to assess the impact of inter‐cell variability
on the drug response. In TMZ PK‐PD, TMZ transformation into

MTIC and MTIC conversion into the active cation are spontaneous

reactions which are unlikely to present large inter‐cell variability. On

the opposite, TMZ cellular transport may be mediated by active

transporters which could display different expression levels across

the tumor cell population. Hence, we studied TMZ PK‐PD in a

heterogeneous cell population presenting variability in TMZ cellular

uptake and efflux.

F IGURE 4 pH‐dependent TMZ PK‐PD in tumor and normal cultured cells. (A) Extracellular TMZ concentration time profiles for various
extracellular pH values; (B) Intracellular concentration of DNA adducts in tumor cells for various extracellular pH values; (C) Intracellular
concentration of DNA adducts in normal cells for various extracellular pH values; (D) DNA adduct AUC values for various extracellular pH
values and TMZ exposure duration in tumor (upper curve) or normal (lower curve) cells; (E) Difference in DNA adduct AUC values between
tumor and normal cells
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3.3.1 | Inter‐cell variability in an in vitro setting in
acidic conditions

For this simulations, we assumed an in vitro setting in which cells

have uniformly access to TMZ and in which pH is constant and

equal to an acidic value. In acidic conditions, TMZ is not

metabolized and the sole reactions occurring were the drug cellu-

lar uptake and efflux. Since TMZ is stabilized, we assumed that

TMZ total quantity was conserved and equal to Ttot so that

Ti tð Þ þ To tð Þ ¼ Ttot. The steady state of TMZ intracellular concen-

tration T�
i can then easily be derived from equations (1 and 2),

and is equal to:

F IGURE 5 The two considered sources of heterogeneity in the medium. (A) pH spatial variations (the dotted line represents the tumor
boundary); (B) temporal evolution of TMZ concentration for a homogeneous capillary network and for a degraded one. In the
homogeneous case, TMZ is initially (t = 0 h) homogeneously distributed whereas when the capillary network is degraded inside the tumor
mass, the tumor does not have access to TMZ initially. Comparison of TMZ PK depending on the cell location in the tumor spheroid, for
the homogeneous capillary network (left column) and for the degraded one (right column). The PK is represented for three cells located
at three different distance x from the center of the 2D tumor: x ¼ 0 (centre), x ¼ 25 (intermediate), x ¼ 48 (periphery) (tumor radius
R ¼ 50 grid units) as shown in (A)
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T�
i pT; pT2ð Þ ¼ pTTtot

pT þ pT2
(13)

where pT and pT2 are the rate constants of TMZ cellular uptake and

efflux, respectively. Interestingly, TMZ intracellular steady state level

varied with respect to pT and pT2 in a non‐linear manner (Figure 7A).

We then studied a heterogeneous cell population in which each cell

displayed a different value of pT. The parameter values were uni-

formly selected in the interval 0:2pyT ;1:8pyT
h i

corresponding to a

deviation of 80% of the value p
y
T estimated from experimental data

in U87 cells. TMZ cumulative intracellular steady state in the whole

cell population was computed by integrating T�
i with respect to pT

on the studied interval and the same quantity was computed for a

homogeneous cell population with no inter‐cell variability (Appendix D).

TMZ intracellular steady state level was predicted to be similar in

the homogeneous cell population and in the cell population present-

ing variability in TMZ uptake when pT2 was set to its value esti-

mated from U87 data pyT2 and pT was varied around its data‐derived
value (Figure 7B). However, simulations for different values of the

fixed parameter pyT2 and of mean pT yielded different results

(Figure 7D). For small pT mean values, TMZ accumulated more in the

heterogeneous cell population compared to the homogeneous one

whereas for pT mean values larger than some threshold value, the

situation was reversed. pT threshold value increased with p
y
T2 and

was comprised between 0.0025 and 0.0035 h�1. The same study

was performed for the parameter pT2 which was varied uniformly in

0:2pyT2;1:8p
y
T2

h i
, pyT2 denoting the value estimated from data.

F IGURE 6 Comparison of different tumor conformations. (A) tumor cells in the three different conformation cases: (1) spheroid, (2) cells
clusters, (3) spread cells; corresponding oxygen concentration map; corresponding extracellular pH. (B) TMZ degradation/uptake (first columns)
and associated DNA‐adducts accumulation in tumor cells (second columns) for the three tumor conformations. (C) mean amount of DNA
adducts accumulation per cell for the three different tumor configurations. Note: the mean amount of DNA adducts is calculated over the all
tumor cell population for each case
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Interestingly, variability in the parameter pT2 increased the cumula-

tive intracellular concentration of TMZ present in the cell population

at steady state (Figure 7C). Again, this result was dependent on the

chosen values for the fixed parameter pT and the varied one pT2

(Figure 7E). For small pT2 mean values, TMZ accumulation was larger

in the homogeneous cell population as compared to the population

with inter‐cell variability in TMZ efflux. When pT2 was larger than a

threshold value in [0.0056, 0.0073], increasing with pyT value, the sit-

uation was reversed.

3.3.2 | Inter‐cell variability in a solid tumor

We then used the hybrid model to investigate the impact of inter‐
cell variability on TMZ PK‐PD in a solid tumor. As for the in vitro

study, we varied pT and pT2 parameters which correspond to TMZ

uptake and efflux rate constants, respectively. One advantage of

using a cellular automaton was the possibility to test variability in

individual cell properties. Thus, we randomly assigned to each cell a

perturbed value of pT and pT2 separately (ie, in two different simula-

tions). Different perturbation amplitudes were considered and the

effects only started to be visible for �80% amplitude (Figure 7F,G,

H). Interestingly, the impact of these two parameters was very close

to the results in the in vitro setting. Perturbation of the efflux

parameter pT2 produced a bigger impact on the resulting mean DNA

adducts level in the whole cell population. On the other hand, the

impact of varying pT was small compared to the unperturbed case

with only a slight decrease in the mean DNA adducts concentration.

4 | DISCUSSION

Although pH is known to critically influence TMZ PK‐PD,4 its poten-

tial impact on the drug efficacy has not yet been fully investigated.

Thus, we designed a complete theoretical framework to study TMZ

PK‐PD in both in vitro and in vivo settings, incorporating pH depen-

dency, spatial heterogeneities, and inter‐cell variability in TMZ trans-

port. Overall, all simulations in all scenari predicted that optimal

TMZ efficacy was obtained when tumor pH was close to physiologi-

cal pH. This is clearly an argument for considering pH as a therapeu-

tic target and advocates for future research on the combination of

TMZ with pH‐regulating agents.

We first evaluated the differential response to TMZ of tumor

and healthy cells presenting different intracellular pH regulations.

Interestingly, the model provided quantitative predictions regarding

the drug differential impact on normal or cancer cells and optimal

pH values leading to an advantage for healthy cells. Tumor cells

were able to maintain relatively high intracellular pH in acidic envi-

ronment, whereas normal cells were assumed to regulate their pH

proportionally to the extracellular one. As a consequence, at the

same extracellular pH, both cell types presented different sensitivity

to TMZ. Indeed, our simulation results showed that, for extracellular

pH between 5.8 and 8.2, TMZ transformation into its active com-

pound and subsequent DNA damage were larger in tumor cells as

compared to normal cells thanks to less acidic intracellular pH in

cancer cells. This indicated that the local acidity often encountered

in tumor tissues was still a favorable ground for TMZ effectiveness.

However, optimality of TMZ efficacy defined as a maximum differ-

ence between drug‐induced damage in tumor and healthy cells was

reached between 6.8 and 7.5 which is closer to physiological values.

Next, we computationally investigated TMZ PK‐PD in a solid

tumor taking into account its environment. In vivo cells are not

homogeneously exposed to the same pH, nor to the same drug con-

centration. These essentially depend on the location of the cells in

the tumor tissue (central parts versus periphery). Non‐spatial PK‐PD
approaches only describe temporal aspects assuming that the whole

cell population is homogeneously exposed to the same environmen-

tal conditions and reacts in the same way to the drug. To overcome

these limitations, we proposed a hybrid framework incorporating a

cellular automaton that allowed to explicitly compute TMZ PK‐PD
for each individual tumor cell given its particular local environment.

Our simulations showed that spread cancer cells or fragmented

tumors presented higher TMZ‐induced damage as compared to com-

pact tumor spheroid. The model provided insights into molecular

explanations for this result. First, pH values close to normal in smal-

ler tumors micro‐environment allowed for TMZ activation whereas

bigger tumors were more acidic and prevented the drug from trans-

formation into its active metabolites. This potential mechanism of

resistance to TMZ has not been described in the literature up to our

knowledge. The model also confirmed as expected that isolated can-

cer cells or fragmented tumors could be reached by the drug

whereas, at the heart of a tumor spheroid, the most inner cells had

no access to the drug due to damaged vascular network and insuffi-

cient drug diffusion in the interstitial fluid.

Our in vivo simulations were performed for a generic solid tumor

as TMZ is approved for the treatments of several types of malignan-

cies, although the drug is mainly used against brain tumors. To

specifically represent a brain tumor and surrounding healthy brain

tissues, one needs to incorporate the blood–brain barrier (BBB) along

the capillaries. While the BBB is intact in the normal tissues and

decreases TMZ penetration rate in the interstitial fluid, the barrier is

often altered at the neighborhood of the tumor mass where the

combination of acidity, growth factors stimulating angiogenesis and

increased cell density destabilize blood vessels and increase their

permeability. Adding the BBB component to our hybrid model may

modify TMZ efficacy on spread cells if they are located in normal tis-

sues where the BBB is too weakly altered to allow for TMZ brain

penetration.

In the last paragraph, we considered the importance of inter‐cell
variability in TMZ cellular transport. We provided a counter‐intuitive
prediction regarding a differential effect of inter‐cell variations on

TMZ uptake or efflux, respectively. Indeed, for model parameters

corresponding to U87 glioma cells, inter‐cell variations of the uptake

parameter play no role regarding the mean amount of DNA adducts

in the whole cell population. On the opposite, variations of the efflux

parameter let to a significant increase of the DNA damages induced

by the TMZ. Indeed, cells with a reduced efflux dramatically
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increased their level of DNA adducts which overcame the impact of

the increased efflux in other cells. Hence, inter‐cell variability in

TMZ efflux was a disadvantage for the tumor cell population in

terms of drug resistance. Exploring other parameter values revealed

that this conclusion may not hold for other cell types presenting dif-

ferent kinetics for TMZ uptake and efflux.

As a conclusion, our study showed that employing new model-

ing approaches enabled us to tackle the full complexity of a drug

(F)

(A) (B)

(G) (H)

(C)

(E)(D)

F IGURE 7 Effect of TMZ transport parameters variability in cells. (A) TMZ intracellular concentration at steady state with respect to TMZ
uptake parameter (pT) or efflux parameter (pT2); (B) TMZ cumulative steady state intracellular concentration in a homogeneous cell population
(no noise) or a heterogeneous population presenting inter‐cell variability in TMZ uptake (pT ± 80%); (C) TMZ cumulative steady state
intracellular concentration in a homogeneous cell population (no noise) or a heterogeneous population presenting inter‐cell variability in TMZ
efflux (pT2 ± 80%); (D) TMZ cumulative steady state intracellular concentration with respect to pT and pT2 in a homogeneous cell population
(dark curve) or a heterogeneous population presenting inter‐cell variability in TMZ uptake (light curve); (E) TMZ cumulative steady‐state
intracellular concentration with respect to pT and pT2 in a homogeneous cell population (dark curve) or a heterogeneous population presenting
inter‐cell variability in TMZ efflux (light curve);(F) DNA adducts accumulation in the perturbed and non‐perturbed cases; (G) mean amount of
DNA adducts accumulation per cells for perturbed inflow (pT) and outflow (pT2) parameters; (H) close up of (G) with standard deviation (SD)
bars removed. Note: the mean amount of DNA adducts is calculated over the all tumor cell population for each case
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pharmacology and thus inform on drug optimal scheduling and

combinations. This is further advocated by the fast developing

fields of systems oncology and systems pharmacology.41,42 Specifi-

cally, our model has allowed to show that pH and drug access are

determining factors and depend on the cell type and tumor config-

uration which gives fundamental insights to decipher the impacts

of interrelated conditions. On the prospective plan, the model high-

lights potential means to enhance the TMZ efficacy by acting

dynamically on the local pH.10 The realization of which opens up

new challenging paths for research with potential high benefit for

patients.
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APPENDIX A

PARAMETERS RESCALING

Volumes

In the original ODE model,4 the extracellular medium is covering

in vitro an overall population of 106 tumor cells. The volume of the

medium, that is, the extracellular volume, is taken as Vo ¼ 2mL. The

volume of each single cell is approximately 7pL so the total intracel-

lular volume is Vi ¼ 7μL.

In the cellular automaton, the simulation domain is taken as a

5 mm long square box. The extracellular medium is assumed to

cover the cells in the automaton grid up to 1mm high. The extracel-

lular medium thus represents a volume Vo ¼ 25μL. The automaton

grid comprises 200 × 200 square elements where each element can

accommodate a cell with a 25μm diameter. In this configuration the

volume of one cell, which represents the intracellular volume in this

case, is approximately Vi ¼ 8pL.

Transport parameters

The transport parameters of TMZ through the tumor cell membrane

are available for the in vitro experiments where V pop
i was represent-

ing the intracellular volume for the entire cell population (see above).

In the cellular automaton, each cell is considered individually so the

intracellular volume Vi now concerns a single cell. The influx and efflux

parameters pT and pT2 are rescaled according to the volume as follows:

pT
Vi

¼ p pop
T

V pop
i

and
pT2
Vi

¼ p pop
T2

V pop
i

(A1)

The parameters for the cell population are given in Ballesta

et al.,4 The transport parameters across the membrane of one single

tumor cells are then:

pT ¼ p pop
T

V pop
i

� Vi ¼ 0:0038

7:10�6 � 8:10�12 ¼ 4:34:10�9 (A2)

pT2 ¼ p pop
T2

V pop
i

� Vi ¼ 0:008

7:10�6 � 8:10�12 ¼ 9:14:10�9 (A3)

APPENDIX B

MODEL VALIDATION WITH PK RESULTS
FROM CELL CULTURE

PK results of Ballesta et al.,4 were reproduced with the hybrid model

formulation. These results (Figure 1B) correspond to experimental

measurements made on U87 cultured cells where the extracellular

pH was monitored and prescribed as an input function. From this

preliminary simulation we note that:

1. the intracellular PK for TMZ, MTIC, Cations and DNA adducts

are strictly the same for all cells of the automaton (no variations

are observed depending on the cell location in the 2D tumor);

2. changing the amount of cells (ie, the level of confluence in the

automaton) does not produce any effects on the extracellular

TMZ concentration which remains spatially homogeneous. This is

not due to diffusion since the TMZ profile remains homogeneous

in the absence of diffusion (ie, for D ¼ 0). The deactivation of

exchanges between extracellular medium and cells does not mod-

ify the extracellular TMZ PK either (this latter observation is con-

firmed with the original ODE model).

From this we conclude that only the extracellular degradation

(transformation) of TMZ matters for the extracellular TMZ PK
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(exchanges with the cells do not have any influence on this since the

extracellular volume Vo is large). Since TMZ degradation (transforma-

tion) is spatially homogeneous, diffusion does not play any role in

this simulation that reproduces the particular context of an “in vitro

setting” where there is no source of heterogeneity in the extracellu-

lar culture medium that provides an unlimited access to resources

including oxygen, nutrients, and drugs.

APPENDIX C

COMPUTATION OF THE TUMOR
OXYGENATION

The oxygen concentration can be computed using the cellular

automaton grid as in26,27 where full details can be found. To sum

up, the simulation domain that represents the tissue is assumed

to be homogeneously paved with capillaries from which oxygen is

delivered depending on the oxygen concentration locally available

O x; y; tð Þ and the vessels permeability γp. The oxygen then diffuses

in the tissue and is consumed by the tumor cells that occupy the

automaton grid at positions i; jð Þ with uptake rate α. The resulting

equations for the spatiotemporal evolution of oxygen is given by:

∂O
∂t

¼ Dor2Oþ γpvi; j Ov �Oð Þ � αci;j (C1)

where Do is the oxygen diffusion coefficient, Ov is the intravascular

oxygen concentration and vi;j represents the vascular component

given by:
vi;j ¼ 1� ci;j (C2)

meaning that in the presence of tumor cells, the capillaries are locally

degraded (ie, the vascular map appears as the reversed image of the

tumor cells map). Oxygen diffusion (equation A4) is simulated until a

stationary state is reached.

F IGURE B1 Agreement of the hybrid model with the initial ODE‐based model. (A) TMZ and (B,C,D) intracellular MTIC, Cation and DNA
adducts PK, respectively, for any tumor cell of the cellular automaton. These kinetics reproduce the results presented in Ballesta et al.,4
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APPENDIX D

COMPUTATION OF TMZ INTRACELLULAR
STEADY STATE CONCENTRATION IN A CELL
POPULATION

The steady state of TMZ intracellular concentrationT�
i in a single cell

can easily be derived from equations (1 and 2), and is equal to:

T�
i pT; pT2ð Þ ¼ pTTtot

pT þ pT2
(D1)

where pT and pT2 are the rate constants of TMZ cellular uptake and

efflux, respectively.

We then computed TMZ cumulative intracellular steady state

level in an heterogeneous cell population in which each cell dis-

played a different value of pT, respectively pT2. The studied intervals

were here ½aT; bT ¼� ½0:2pyT ;1:8pyT � and ½aT2; bT2 ¼� ½0:2pyT2;1:8p
y
T2�,

respectively, which corresponded to a deviation of 80% of the value

of p
y
T or p

y
T2 estimated from experimental data in U87 cells.

TMZ cumulative steady state level was then computed by integrat-

ing T�
i with respect to pT (denoted I1), respectively pT2 (denoted I2) on

the studied interval. This is equivalent to model an infinity of cells

whose parameters are uniformly selected in the predefined intervals.

The same quantities were computed for a homogeneous cell popula-

tion with no inter‐cell variability, that is, in which pT ¼ p
y
T and pT2 ¼ p

y
T2

for all cells (denoted IT0 and IT20 ). The following formulas were derived:

IT0 p
y
T ; p

y
T2

� �
¼

Z bT

aT

pyTTtot

p
y
T þ p

y
T2

dpT ¼ bT � aTð Þ pyTTtot
p
y
T þ p

y
T2

(D2)

I1 p
y
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� �
¼

Z bT

aT

pTTtot

pT þ p
y
T2

dpT ¼ Ttot bT � aT � ln

�
pyT2 þ bT

p
y
T2 þ aT

�0
@

1
A (D3)

IT20 p
y
T ; p

y
T2

� �
¼

Z bT2

aT2

pyTTtot
p
y
T þ p

y
T2

dpT2 ¼ bT2 � aT2ð Þ pyTTtot
p
y
T þ p

y
T2

(D4)

IT2 p
y
T

� �
¼

Z bT2

aT2

p
y
TTtot

p
y
T þ pT2

dpT2 ¼ Ttotp
y
Tln

�
p
y
T þ bT

p
y
T þ aT

�
(D5)

F IGURE C1 Relationship between oxygen and pH. (A) The stationary state of oxygen concentration is first calculated for a spheroid of a
given radius (R ¼ 50 units). The tumor boundary is materialized by the dotted circle line. (B) The stationary oxygen profile along a line passing
through the middle of the spheroid is given by the U‐shape curve. The minimum for the oxygen concentration (in arbitrary units) is reached at
the center of the tumor (which corresponds to i ¼ 100 units). Since H+ production by the cells is limited it is here assumed to saturate beyond
a threshold level of oxygen (Oxythr) indicated by the lower dashed line. The upper level of oxygen (Oxymax) correspond to the normal
physiological level of oxygen in the tissue. The oxygen variation between these 2 levels (ΔOxy) is assumed to correspond to the maximum pH
variation between the center of the tumor and the surrounding tissue (ΔpH)
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