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Cutting a brittle soft sheet with a blunt object leaves an oscillating crack that seemingly violates
the principle of local symmetry for fracture. We experimentally find that at a critical value of a well
chosen control parameter the straight propagation is unstable and leads to an oscillatory pattern
whose amplitude and wavelength grow by increasing the control parameter. We propose a simple
model that unifies this instability with a related problem, namely that of a perforated sheet, where
through a similar bifurcation a series of radial cracks spontaneously spiral around each other. We
argue that both patterns originate from the same instability.

A problem under active development in fracture the-
ory concerns the prediction of the crack path and the
associated instabilities: when a piece of material breaks,
what determines the shape of the resulting pieces? In
this respect, an oscillatory instability occurring in quasi-
static propagation of cracks in thermally quenched strips
of glass [1] has played an important role in the develop-
ment of theories for unstable fracture path. Such a sim-
ple and clear situation was indeed useful as a test case
for theoretical approaches, and has stimulated a number
of studies over the past years [2-4]. Similar instabili-
ties have been observed in oscillatory cracks in stretched
rubber [5], drying colloidal films [6], and in the failure of
coatings [7], also triggering theoretical developments [8].
In this Letter we analyze two seemingly different crack
path trajectories in brittle thin elastic sheets (an oscilla-
tory and a spiral path), and show that they both result
from the same instability mechanism, by identifying the
common control parameter.

When a thin elastic film, clamped along its edges, is
cut by a blunt tool displaced parallel to the sheet (config-
uration S, for Straight, in Fig.1a), the expected straight
cut is not observed [9-11], but instead an oscillatory path
develops along the tool trajectory, breaking the left-right
symmetry (Fig. 1c¢). In a different situation (configu-
ration C, for Conical), when a conical tool perforates a
brittle sheet (Fig. 1d), N cracks may propagate with a
radial straight trajectory when N > 4. But when N < 3,
intertwined spiraling trajectories [12] are observed. Both
experiments suggest that the straight path is unstable
despite the symmetry of both systems. Previous works
focused on the developed patterns (oscillatory and spi-
ral), with both geometries correctly captured by a sim-
plified theory for tearing [9, 12, 13], but fail in explaining
why the straight path is not observed. In this article we
derive a more general framework that captures this fea-
ture, and compare its predictions with an experimental
setup dedicated to study the instability conditions.

We start by reporting a disregarded experimental fact
in previous experiments with configuration S (Fig. 1a). A
rectangular sheet (bi-oriented polypropylene with thick-
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FIG. 1. (a-c) Configuration S and oscillatory crack insta-
bility: a) Setup: a rigid tool of width w with rectangular
section is driven along a clamped sheet (width W > w); b)
upper view: the white region is the convex hull H of the cut
and the lower edge of the sheet, while the clear grey region
represents the material that is stretched due to the pushing
tool; ¢) scanned crack path for w = 15mm, W = 155mm with
a long straight path before oscillatory instability appears at
1 = 60°. (d-h) Configuration C and spiral crack instability:
d) a rigid cone is driven across a clamped sheet with N = 4
initial radial cuts; e-f) ongoing perforations with N = 4 (e)
and N = 3 (f); g-h) corresponding scanned crack paths: sta-
ble (g) radial path for N = 4 and unstable (h) radial path for
N = 3 leads to three intertwined spiral paths.
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ness t = 30um, length 900mm and width W = 148mm)
is clamped along its two long edges and prepared with
a centered notch (5 to 10mm long) on its lower (short)
edge. The tool has a rectangular section, whose width
w = 15mm (the only relevant dimension), is displaced at



a constant speed v = 20mm/s. The centre of the tool
is aligned with the middle line of the sheet. Attention
was previously focused on characterizing the periodic os-
cillatory regime [9, 10, 13]. We observe however that
starting near the lower edge of a relatively wide sheet,
propagation is first straight, and only becomes oscillatory
beyond a certain distance from the lower edge (Fig. 1b).
Straight path at the beginning is insensitive to changes
in the width, w, of the tool. In this initial regime, we find
that the straight path is stable, as evidenced by pertur-
bations relaxing towards the center. A natural question
now arises : under which circumstances is the symmetric
(straight) path unstable?

A key concept in tearing [12-14] is the convex hull
of the cuts in the sheet because it represents the por-
tion of the sheet that can bend away without generating
in-plane stresses. For very thin sheets (with negligible
bending stiffness), stresses and fracture propagation may
therefore only occur when a tool gets past the boundary
of the convex hull. At the early stages of the experiment
in configuration S, the convex hull, 4, is the white trian-
gular region in Fig. 1b, characterized by an angle ¢ at its
base. During the experiment, 1 increases continuously as
the tool moves forward, up to when the instability devel-
ops roughly for ¢ ~ 60° (Fig. 1c). In this Letter we show
that v plays the role of a control parameter that locally
determines the stability of the straight crack.

We devised a variation of the experiment (configura-
tion &', Fig. 2a) in which we can impose a fixed value of
1, and study the transition from straight to oscillatory
propagation, as this control parameter is varied at will.
This is achieved by adding a pair of sharp blades on both
sides of the sheet, at 2.5mm from the clamps (separa-
tion between blades, 150mm). The blades move rigidly,
together with the tool, keeping angle v constant at all
times. For low ¢ a straight path is observed (Fig. 2c),
whereas for larger values oscillations occur (Fig. 2d). We
measure the wavelength A\ and the amplitude A of oscil-
lations. Experimental results (Fig. 3a) present a transi-
tion from straight to oscillating path at a critical angle
P~ 56°.

If bending energy can be neglected, the elastic mem-
brane energy U is a function of penetration of the tool
outside of the convex hull H, which can be defined in
terms of the two penetration angles a; and «, (here .;, ..
refer to left/right) and corresponding lengths between
the pushing point and the crack, [ and r (see close-up in
Fig. 2e). In previous works [12-14] it was assumed that
the tool only crosses the convex hull boundary on one
side of the tool (say, the left side as in Fig.4a). Dimen-
sional analysis [13, 15] then leads to an elastic stretching
energy of the form U ~ Etl?a}", where Et is the stretch-
ing modulus. Here we use an equivalent expression that
simplifies calculations

U(l,a;) = aEtl* tan™ oy, (1)

FIG. 2. Configuration S’: Modified setup for fixed 1) experi-
ments. a) Two lateral blades cut the sheet at the same speed
as the tool; b-d) Paths for different values of ¥: b) ¢ = 45°
- straight path, ¢) ¢ = 56°, close to the transition - small
humps, d) ¢ = 66° - oscillating with measured amplitude (A)
and wavelength (\). Scale is the same on the three cases for
comparison. e) Geometry of configuration S&’. The closeup
defines the geometrical parameters of the theoretical model
(u is the propagation direction).

where (a = 0.0038,n = 3.5) are two dimensionless univer-
sal numbers, determined in previous experiments [16]. As
the energy U only depends on the position of the crack,
the energy release rate (ERR) integrated over the thick-
ness in a direction u is G(u) = [F-u]*, where F = —VU,
and we have noted [.]*, the positive part, as [z]* = x
when z > 0 and [z]* = 0 otherwise. Propagation occurs
when G = ~t (Griffith’s criterion), in the direction that
maximizes G, hence along vector F, with max G = ||F||.
The crack trajectory may therefore be determined using
these geometrical rules and oscillatory trajectories are
well reproduced [9]. When «/E < [, fracture occurs [16]
for a small penetration angle

n (an’YEZ> . (2)

However, this simplified model cannot capture the in-
stability threshold because straight propagation involves
simultaneous penetration on both sides of the crack path.
We extend the model to such cases by making the sim-
plistic assumption that the energy release rate is given by
the sum of the independent energy release rates of each
side of the crack, namely

G(u) = [Fr-u]" +[F, - u]T, 3)

where (F;, F,.) are the gradients of the left and right elas-
tic energies, according to (1). The crack may be driven
only by the left side when F,. - u < 0, only by the right
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FIG. 3. Bifurcation diagrams for the S’ and C configurations.
a) Normalized amplitude A/w of the oscillatory crack (black
circles). Plotted values correspond to the median over many
runs while the error bars indicate the minimum/maximum
measured values (¢» = 90° corresponds to configuration S
[9, 10]). Green line: the threshold of stability for an off-
centred initial crack (see text). Inset: mean values of wave-
length A. Error bars correspond to the standard deviation.
b) Inverse of the pitch of spiral (red line) as a function of
1, as defined in Fig. la. Theoretical prediction for the pitch
according to [12] (continuous line) using a penetration angle
given by Eq. (2) with | &~ w/(2cosv), and in the limit of
vanishing elasticity (o = 0, broken line). N =2 and N = 3
correspond to experimental values (black circles) taken from
[12]. The N = 4 spiral is not observable experimentally. In-
set: Simulated spiral crack (master crack in red, slave cracks
in black, pushing cone in grey) with 140° — rotational symme-
try (non-commensurate with 2), corresponding to ¢ = 70°.

side when F; - u < 0, or by both sides. We find that
G(u) bears in general three local maxima (see for ex-
ample Fig. 5) and we assume that propagation occurs
in the direction corresponding to the largest one, when
Griffith’s criterion is attained.

We numerically solve our enriched model for configura-
tion S, and recover a straight path becoming later oscil-
latory (as in Fig.1c). For the modified configuration &’,
and despite the simplicity of our assumptions the model
predicts the existence of a critical value ¥§ =~ 66.55°
for the onset of oscillations from an initially centered,
straight, longitudinal crack (Fig. 3a). The transition
from straight to oscillatory is subcritical though, as evi-
denced in the numerics by starting from a developed os-
cillatory pattern with ¢ > 15, and iteratively decreasing
1 while taking at each iteration the developed pattern
of the previous iteration as initial condition. This proce-

FIG. 4. Hiding mechanism for oscillatory instability. a) Right
pushing point of the tool is hidden from the crack tip (white
dot): a, = 0; b) Critical condition of hiding for an initially
centered crack: 7/2 — ¢+ oy = 0.

dure leads to a subcritical threshold ¢ ~ 56.61° below
which the oscillations vanish leading to a straight path.
The amplitude and wavelength of the oscillatory pattern
obtained with this procedure is in reasonable agreement
with experiments (Fig. 3a), without adjusting parameters
(we used the same parameters as in an independent ex-
periment [16]). To illustrate the bistability, we consider a
particular initial condition, namely a short longitudinal
crack, off-centred by a distance 6. We find a marginal
curve 6.(1) (green curve in Fig. 3a), with ¢ < ¢ < ¢S,
such that the crack starts oscillating if § > .(¢), whereas
if & < d.(¢) it ends up propagating straight along the
midline. The existence of a bistability region was not
directly evidenced in experiments, but large fluctuations
(see error bars in Fig. 3a) were observed close to the
threshold. Observing straight propagation beyond ¢,
for example for ¢ = 60° would require a precision better
than 0.7mm in the initial cut, which is below our exper-
imental error.

In the case of the spiraling instability, we define the
control parameter in terms of our initial radial geome-
try with N cuts as ¢ = n/N (Fig.le). We can how-
ever only access discrete experimental values of 1, be-
cause of 2r—rotational periodicity of the plane. Experi-
ments [12] report stable straight paths for N > 4, which
corresponds to 1 < 45° whereas radial patterns are un-
stable for N < 3, or ¥ > 60°, suggesting a spiraling
instability threshold between 45° and 60°. In contrast
with experiments, the numerics allows to artificially im-
pose a rotational symmetry which is not commensurate
with 27, and therefore explore arbitrary values of ¢. In
practice we follow the evolution of a crack interacting
with two copy versions of itself rotated by 2¢ and —2¢
(see Fig. 3b, inset). These slave “copy cracks” are used
in the computation of the convex hull to determine the
evolution of the center crack. Note that spiral propaga-
tion occurs as the tool radius increases continuously, and
that the fracture process depends on the system size (for
example in Eq.(2) the penetration angle depends on the
size ). As we wish to compare with the oscillatory case,
where the tool has a fixed width w, we maintain in the nu-
merics the spiral to a size comparable to w by artificially



rescaling it at each step (see Supplemental Material).

Starting from a set of radial cracks we numerically
solve the crack path. We find a critical value 1§ = 65.1°
above which a radial path does not exist and leads
to a logarithmic spiral path, whose radius increases as
exp(of) [0 is the angle polar coordinate, and o is the
pitch]. In this configuration the inverse pitch of the spiral
may play the role of an order parameter, since 0! = 0 in
the radial case and is non-zero for the spiral path. The
radial to spiral bifurcation is also subcritical as can be
shown through a continuation method where the pitch
of a given spiral is progressively increased (by decreasing
). We obtain a critical value ¢{ = 55.65° below which
no spirals are observed (Fig. 3b) for the same parame-
ters as in [16]. The subcritical nature of the transition
can be highlighted by taking as initial condition a de-
veloped logarithmic spiral of given pitch og in the range
¥$ < 1p < 4§, There exists a critical pitch o.(¢) (green
line in Fig. 3b) such that for any o¢ > o.(1) the radial
propagation is recovered while for oy < o.(¢) a spiral
develops. Experimental pitch agree well with the numer-
ics for v» = /N, where N is the number of arms, with
N = 1,2,3 the only possible cases, as predicted (N =4
was however observed [15] in a ductile material).

We finally note that ¢ ~ ¥ and ¥§ ~ 95, confirming
that oscillatory and spiral paths originate from the same
subcritical instability, and that the geometrical angle v
is the relevant unique control parameter for both cases.

Theoretical estimate for 1o (above which straight solu-
tion cannot be observed). Consider an initially straight,
centered crack in a perfectly symmetric situation (o =
ar = «). In Fig. 5 is plotted the ERR as a function of
putative fracture orientation. The critical value 19 cor-
responds to a propagation equally favourable along the
three maximal directions of the ERR. This occurs for
||F1|| = ||F.|| = ||F; + F,||, which is only possible if F;
and F, form an angle of 120° (Fig. 5b). The condi-
tion for propagation (Griffith criterion) requires simulta-
neously G = «t. A calculation valid in the limit of small
critical penetration angle a < 1 gives (see Suppl. Mat.)
at first order

T n-—2

¢2m§+

Q. (4)

In configurations §" and C, the values of « at the critical
1 are not exactly equal, due to geometric differences.
When v = 7/3, an estimate for a ~ (y/anEw)Y/ (=1 ~
0.2, which is not a very small number. Eq. (4) can
therefore only provide a rough estimate 15 ~ 65°, which
is however close to our numerical findings (within 2°).
Theoretical estimate for 1; (above which stationary
non-straight solutions exist). We note that both station-
ary oscillating and spiraling paths always include a part
where the crack tip is “geometrically hidden”. By that we
mean that one of the penetration angles is zero because
the penetration zone is disconnected from the fracture
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FIG. 5. ERR curves for an initially centered crack. a) 3-lobed
ERR curve for 1) = 55° (below threshold). Local maxima are
marked with black dots, together with the gradient of (ar-
rows) according to the global MERR criterion, in units of ~¢.
Continuous arrow indicates preferred propagation direction
based on the global b) Same as (a) but with ¢» = 75° (above
threshold).

tip as in Fig. 4a where penetration on the right does not
reach the crack tip. In such case an incremental crack
propagation cannot release energy on the right side, con-
sistently with F,, = 0 when «,- = 0, and the crack is only
driven by the left side.

In configuration &', the oscillating crack is always hid-
den when it passes the centerline (as in Fig. 4a). A rough
estimate of the subcritical threshold value 1, is obtained
when the penetration zone has its outer boundary tan-
gent to the crack path at the crack tip. An identical
geometrical construction is obtained for v; in configura-
tion C, by enforcing that a developed spiral always have
their crack tips hidden (see Suppl Mat). We find that

T n-—1
1/’1~Z+ "

a. (5)

With a ~ 0.24, ¥; ~ 55° lies within 2° of numerical
values.

In conclusion, we have unified in this Letter two very
different phenomena observed when fracture of a thin
sheet is caused by a blunt object. The oscillatory and
spiraling paths both result from the same instability, for
which we identified the control parameter 1, a single an-
gle capturing the complex geometry of the cuts and the
blunt tool. We were able to impose ¢ in a dedicated
setup, and also studied theoretically this subcritical in-
stability.

Our results bring some interesting consequences for the
cutting of thin films which is complicated by such insta-
bilities. Since the mechanism involves bending of the
sheet, which may not occur on lengths comparable to its
thickness, an efficient way to impose the cutting path is
to use a very sharp blade, with a cutting edge [17] thinner
than the sheet [14]. This can become a challenge when
dealing with ultra-thin sheets such as graphene whose
tearing and perforation with an AFM tip is intensely
studied [18, 19]. Based on our findings, cutting even with
a blunt tool will lead to sharp straight cuts on a distance
£ if the sheet is held along its edges separated by a width



larger than 2¢/tan; (the instability is neutralized for
P < 1b1). We suggest for example that measuring the
cutting force along such a regular cut could provide the
fracture toughness of ultra-thin films, a quantity difficult
to obtain from standard metrological methods [18].
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