
HAL Id: hal-03015204
https://hal.science/hal-03015204

Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensorless Nonlinear Stroke Controller for an
Implantable, Undulating Membrane Blood Pump

Mattias Scheffler, Nazih Mechbal, Marc Rebillat, Eric Monteiro, Nicolas
Barabino

To cite this version:
Mattias Scheffler, Nazih Mechbal, Marc Rebillat, Eric Monteiro, Nicolas Barabino. Sensorless Non-
linear Stroke Controller for an Implantable, Undulating Membrane Blood Pump. 58th Conference
on Decision and Control, Dec 2019, Nice, France. pp.1-8, �10.1109/CDC40024.2019.9030123�. �hal-
03015204�

https://hal.science/hal-03015204
https://hal.archives-ouvertes.fr


  

+ 

Abstract— This paper describes an original methodology to 

operate a  new nonlinear vibrating membrane pump, actuated 

by a moving magnet actuator without the use of a motion sensor, 

in the scope of cardiac assistance. A nonlinear mathematical 

model of the system is established and used to parametrize a 

nonlinear position observer that uses the coils current as an 

input and which output is a feedback to a stroke controller. 

Actuator’s parameters are identified by a recursive least square 

algorithm and direct measurements. Finally, a numerical 

experiment illustrates the implementation of the algorithm and 

its possible applications. 

 Index terms— Biomedical, Control Application, Left 

Ventricular Assist Device, Non-linear system, observer, 

sensorless control. 

I. INTRODUCTION 

Chronic heart failure (CHF) is a medical condition where 

the heart is unable to pump blood sufficiently to meet body 

needs. It is a common, yet costly and often fatal condition. It 

is estimated that overall 2% of adults in the western 
hemisphere suffer from heart failure [1]. Depending on the 

severity of CHF, therapies vary from dietary restriction to 

heart transplantation. For the most advanced CHF patients, in 

cases where prompt heart transplantation is impossible due to 

patient ineligibility or donor organ scarcity, a left ventricular 

assist device (LVAD) can be surgically implanted. It consists 

of a pump whose inlet is connected to the ventricle while the 

outlet is connected to the aorta. Blood is directly pumped from 

the ventricle and ejected to the aorta, thus restoring blood 

perfusion. It differs from total artificial hearts such as [2] in 

that no part of the heart is removed during surgery. 
Several pumping technologies have been adapted to heart 

assistance prior to this submission, and all are subject to 

common critical requirements: (i) pump flow must be 

sufficient to restore perfusion; (ii) the system must not be 

subject to failure when used for several months or even years; 

(iii) the pump must be small-sized so it can be surgically 

implanted inside the thorax and last, (iv) the system efficiency 

must be high enough for it to be powered by portable batteries 

for several hours, to guarantee patient autonomy. 

The first generation of LVADs was blood-filled sacs 

emptied by an air compressor or an electrically driven pusher 

plate like [3]. Although able to produce a high-fidelity blood 

flow which was close to natural heart flow rate, pulsatility 

and low blood damage, those are not used anymore due to 

their lack of reliability. The second and third generations 

consist of rotative pumps such as in [4]. More reliable and 

with a reduced size, these pumps have improved patient 

survival rates. However, this improvement is at the expense 

of a drastic loss of flow pulsatility control as these pumps are 

operated at an almost constant rotation speed. New medical 

complications appeared, largely caused by the continuous 

operation of these pumps [5]. Ventricular suction, described 
in [6], may occur and must be avoided via control strategies 

such as [7]. Mechanical haemolysis due to blood cell shear 

stress near the pump’s rotating blades is now a design issue. 

Thrombus formation inside the pump and gastrointestinal 

bleeding require medical attention [8]–[10]. All these pumps 

require control laws to ensure safe operation, which is a 

challenge because adding sensors in the human body or to the 

pump itself is always detrimental to biocompatibility. 

This contribution deals with the control of a new type of 

LVAD, based on an undulating membrane pump technology. 

It aims to produce near instantaneous flow modulations while 
at the same time keeping the required power surge at a 

reasonable level, and an implantable size. Both its design and 

operation principle differ from existing LVADs as it does not 

contain any rotating parts that have a momentum of inertia 

that significantly limits the rate at which flow can be changed. 

Indeed, the fluid is propelled by the undulation of a 

membrane made of a lightweight polymer material. The 

miniaturization of this technology into an LVAD requires to 

solve several issues. The present contribution focuses on 

control issues raised by this choice of technology. 

II. THE IMPLANTABLE UNDULATING MEMBRANE PUMP 

This technology, originally patented in [11] is made of an 

inlet, an outlet and a pump body that is the operation space 

bounded by rigid walls where a deformable membrane is 

excited at one end by a periodic force exerted normally to the 

membrane surface [12], [13]. The excitation results in a 

deformation wave that propagates from the excited end of the 

membrane, close to the inlet, to the opposite end, which is 

near the outlet. The propagation of the wave transmits energy 
to the fluid to create a flow and pressure gradient in the 

direction of the propagation [11]. 

In our application, the generated periodic excitation is 

made by an axisymmetric, moving magnet actuator (see 

Figure 1 and Figure 2). This actuator consists of two coils 

wound inside a stator that are powered by alternative current, 

and a permanent magnet moving ring to which the excited  
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Figure 1. Commercial schematics of the pump. Flow direction is 

indicated by red arrows 

 

end of the membrane is attached. The magnet ring is centred 

around the stator and kept around a rest position by a set of 

springs. The design of a prototype that fulfils all the 

requirements mentioned above necessitates to overcome 

many challenges in terms of mechanical design and 

manufacturing process. It is also a challenge from a control 
perspective because unlike rotary pumps, the operation point 

of a vibrating membrane pump is set by the frequency and 

amplitude of membrane excitation. Indeed, the higher the 

frequency or the stroke is, the higher the pressure head will 

be. As a consequence, the stroke needs to be set accurately 

with sufficient speed to be able to switch the operating point 

of the pump fast enough to recreate a pulse synchronized to 

heartbeats. At the same time, it must be restrained so as not 

to damage either the membrane, the springs or the blood by 

excessive stress. Overstress of the mechanical parts can be 

caused by overpowering the actuator or by the effect of 

perturbation forces induced by the remaining activity of the 
left ventricle. Due to the specific medium (blood) in which 

the pump is operating, it is highly recommended to avoid 

adding position, velocity or acceleration sensors that would 

significantly increase the complexity and size of the pump. 

Approaches that bypass the use of motion sensors have 

been studied for similar actuators or applications. One of 

those consists in measuring current ripple generated by a 

PWM voltage input [14] to estimate an equivalent circuit 

inductance that is related to the magnet position. This method 

only works if the magnetic parts’ velocity is close to zero 

which is not the case in the vibrating membrane pump that 

operates at frequencies close to 100 𝐻𝑧. Other methods 

compute the back electromotive force (𝑏𝑎𝑐𝑘 𝑒𝑚𝑓, 

proportional to velocity) from an inverted equivalent electric 

circuit [15] and directly integrate the estimated speed to get 

the position. This last method only requires knowledge of 
electrical parameters and no information about the 

mechanical subsystem of the actuator are needed. However, 

coil current derivative must be computed which is not trivial 

in a noisy environment. Latham et al.[16] present a velocity 

observer to estimate the 𝑏𝑎𝑐𝑘 𝑒𝑚𝑓 that does not rely on 

computing any time derivative. The resulting position from 

integrating the estimated velocity [15]–[17] is sensitive to 

measurement bias that propagates into the velocity estimation 

which results in drift when integrated. This effect can be 

bounded by adding another stage to the observer as proposed 

in [18]. This stage adds partial knowledge about the 
mechanical subsystem of the actuator, and is robust to 

unknown, bounded forces. However, these studies are limited 

to a linear domain of the actuator, where the parameters of the 

equivalent electric circuit of the actuator can be approximated 

as constants. This approximation is valid for these 

applications, but not in our case because the actuator size is 

made as small as possible and it is expected to perform along 

its whole stroke range.  

This contribution thus aims to synthesize a stroke nonlinear 

controller for the pump that will only rely on actuator current 

measurement. It will be robust to pressure and flow changes 
inside the pump head and allow fast change of pump 

operation point. To do so, a two-stage, nonlinear position 

observer is developed based on a reduced order nonlinear 

model of the electromagnetic actuator. As the actuator is very 

small regarding its performance requirements, we cannot 

make the linear approximation of the equivalent electric 

circuit that is commonly made. To meet nevertheless the 

required operation range of the controller, parameters’ 

variations regarding state variables will be included in the 

model and the observer. Means to identify actuator’s 

nonlinear model are given by a recursive least squares (RLS) 

so they can be incorporated in a into the observer. A forgetting 
factor is included in the RLS to capture model parameters’ 

variations regarding state variables. We propose to validate 

our approach with numerical simulations of the identification 

process and then of the controller. 

The paper is organised as follows: Section III introduces 

the different elements of the pump model. Section IV and V 

synthetize the position observer and pump’s stroke controller. 

Section VI details the identification scheme that is used and 

finally Section VII shows the results of the implementation 

and a comparison of the expected operation range of the pump 

when the non-linearities of the actuator are included or not. 

III. MODELLING OF THE SYSTEM 

The pump is a complex system that is represented in Figure 

2. To help designing the stroke controller we set up a model 

of the pump. D. Wiedemann in [19] proposes a clear 

methodology to transform a finite elements method model 

(FEM) of a moving magnet actuator into a lumped parameters 

model represented by a system of ODEs. We do propose to 

follow the same approach to transform the complex system 

shown in Figure 2 into the simpler lumped parameters model  

of Figure 4. It relies on the computation of the co-energy 

𝑊 of the system for various position of the magnet and coils  



  

 
Figure 2. Pump CAD 

current as depicted in Figure 6. The FEM model is set up by 

following the methodology presented in [20] on a commercial 

software (MagNet 2D/3D). An overview of the simulated 

geometry and mesh is visible in Figure 3. In our case we 

simulate the static response of the actuator to a prescribed 

current density inside the coils area, and magnet ring position. 
Before running the simulation, a mesh convergence study has 

been done. In areas with the most flux’s variations (i.e. in the 

airgap between the magnet and the core), the size of the 

elements is reduced. 

 
Figure 3. Simulated geometry and mesh overview 

With that resulting co-energy variable (seen in Figure 6) a 

lumped parameters model is deduced from the FEM model. 

The partial derivatives of 𝑊 are computed and identified to 

the parameters of an equivalent circuit which is expressed as 

(1). The one degree of freedom motion equation of the magnet 

ring of the pump is given in (2): 

𝑉𝑖𝑛(𝑡) = 𝑅𝐼 + 𝐿(𝑥, 𝐼)
𝑑𝐼

𝑑𝑡
+ 𝐸(𝑥, 𝐼)

𝑑𝑥

𝑑𝑡
 (1) 

𝑚𝑥̈(𝑡) = 𝐹𝑚𝑎𝑔(𝑥, 𝐼) + 𝐹𝑠(𝑥) + 𝐹𝑚𝑒𝑚𝑏(𝑡) (2) 

𝐹𝑠(𝑥) = 𝑎𝑥3 + 𝑏𝑥 (3) 

where 𝑉𝑖𝑛 , 𝑥, 𝐼, 𝑅, 𝐿 and 𝐸 are respectively the input voltage, 

magnet position, coils current, coils resistance, coils 

inductance and 𝐸 the 𝑏𝑎𝑐𝑘 𝑒𝑚𝑓 factor. Springs reaction force 

𝐹𝑠 (Figure 5) is identified to a third-degree polynomial of 𝑥 

given in (3). It takes into account design induced 
nonlinearities that are measured on a pull tester 

𝐿, 𝐸, 𝐹𝑚𝑎𝑔 are related to 𝑊 by the following relationships that 

are demonstrated in details in [19]: 

𝐿(𝑥, 𝐼) =
𝜕2𝑊(𝑥, 𝐼)

𝜕𝐼2
 (4) 

𝐸(𝑥, 𝐼) =
𝜕2𝑊

𝜕𝑥𝜕𝐼
 (5) 

𝐹𝑚𝑎𝑔(𝑥, 𝐼) =
𝜕𝑊(𝑥, 𝐼)

𝜕𝑥
 (6) 

Those relations between co-energy and the parameters of the 
lumped model are interesting for two reasons. First, it is a 

good test to validate the FEM simulation, because the 

parameters computed from partial derivatives of 𝑊 should 

have limited variations from point to point. Then the 

knowledge of the variation of those parameters will reveal the 

limits of the linear operation range of the actuator. 

 
Figure 4. Schematic representation of Eqs (1) and (2) 

We assume that the membrane force 𝐹𝑚𝑒𝑚𝑏 is bounded and 

piecewise continuous. Its effects will be dealt with by a robust 
observer. Indeed, the fluid-structure interaction between the 

membrane and the fluid is too complex to be reduced to an 

analytic function. This is a source of problems because it 

forces us to find a control approach that is robust to the 

variations of this almost unknown force. Then to test 

numerically the developed controller we will have to choose 

an ersatz force to enabling the realization of simple tests. This 

means that we should expect differences between the 

numerical test bench, and an implementation on a real 

prototype. 

 
Figure 5. Springs reaction force polynomial identified from 

measurements 

IV. POSITION OBSERVER FOR SENSOR-LESS CONTROL 

Now that a model of the system is provided, we need to 

design a stroke controller. The variable to be controlled is 

magnet position 𝑥, however, as we mentioned above it is not  

possible to measure 𝑥 with a sensor. Hence, we propose to 

build a position observer that will allow to control the 

excitation of the membrane with an estimate of 𝑥. The 

previous section shows that our system presents unmodelled 
forces. This means that our observer has to be robust to  



  

 
Figure 6. Co-energy computed from the FEM model, displayed as a 

function of magnet ring’s position and coil current. 

unmodelled dynamics. As it is possible to directly measure 

current (with a probe placed inside the power electronics, i.e. 

outside patient’s body), and the electric dynamics is well 

known, we will rely  mostly on Eq (1), ([16], [18]). This 
equation can be used to create an estimate of velocity, that can 

be integrated to the position [15]. However, any bias in 

current measurement will result in a constant error of velocity, 

that will result in a drift of position. This situation can be 

improved if we can bound position error with Eq (2). We also 

need to find an acceptable way to compute current derivative 

that will not amplify measurement noises. In order to cope 

with these constraints, we propose a two stage strategy 

(Figure 7): 

 The first stage is a velocity estimator (𝑥̂̇) that is 

directly deduced from Eq. (1). It includes a current 
derivative estimator to tackle the current derivation 

problem. 

 The 2nd stage is a position observer (𝑥) that takes 
current measurement and the velocity estimate of the 

1st stage as inputs. 

 

From (1) the velocity estimator can be expressed as: 

𝑥̂̇ =
1

𝐸(𝑥, 𝐼)
(𝑉𝑖𝑛 − 𝑅𝐼 − 𝐿(𝑥, 𝐼)

𝑑𝐼

𝑑𝑡
) (7) 

It is obvious that the current derivative in (7) will make the 
estimation extremely sensitive to measurement noise if left 

as it is. Different solutions exist to deal with this estimation 

problem such as low pass filtering or more elaborated 

techniques ([17]). Following the work of [21]–[23] we 

propose a derivative estimator: 

𝑑𝐼

𝑑𝑡

̂
(𝑡) = −

6

𝑇3
∫ (𝑇 − 2𝜏)𝐼(𝑡 − 𝜏)𝑑𝜏

𝑡

𝑡−𝑇

 (8) 

with 𝑇 the length of the integration windows. This 

estimation is straightforward to implement as a discrete 

FIR filter by using the trapezoidal method: 

𝑑𝐼

𝑑𝑡

̂
(𝑘𝑇𝑠) = 

 −
6

(𝑁𝑇𝑠)3
∑ 𝑤𝑖(𝑁𝑇𝑠 − 2𝑖𝑇𝑠)𝐼(𝑘𝑇𝑠 − 𝑖𝑇𝑠)𝑑𝜏𝑁

𝑖 = 0  
(9) 

𝑁 being an integer chosen so that  𝑇 = 𝑁𝑇𝑠, 𝑤0 = 𝑤𝑁 =
𝑇𝑠

2
 

and 𝑤𝑖 = 𝑇𝑠  ( 𝑖 = 1, … 𝑁 − 1). 
 Based on the idea proposed in [18], the 2nd stage of the 

observer is designed. If 𝑥 and 𝑥̃̇ are the observed position 

and velocity, the observer is expressed as: 

[𝑥̃̇
𝑥̃̈

] = 𝑨 [
𝑥
𝑥̃̇

] + [
0

𝐹(𝑥, 𝑥̃̇, 𝐼)
] + [

𝑘1

𝑘2
] (𝑥̂̇ − 𝑥̃̇) (10) 

with 𝑨 a constant square matrix regrouping the linear terms 
of Eq.  and 𝐹  the function regrouping the nonlinear 
elements, and 𝑘1 and 𝑘2 two gains to be chosen to guarantee:

lim
𝑡→∞

[
𝑥 − 𝑥
𝑥̇ − 𝑥̃̇

] = 𝟎 (11) 

V. POSITION CONTROLLERS  

 
Figure 7. Multistage control diagram 

From the observed position a stroke controller that will satisfy 

the requirements (setting the excitation to a desired stroke 𝑆𝑑 , 

for a given frequency 𝑓𝑑  while limiting overshoots) is 

designed. It consists of a feedforward and a PI controller. The 
feedforward is a linearization of Eqs (1) and (2) around the 

resting point (𝑥 = 0, 𝐼 = 0), given in (12) and (13). It takes 

as input the desired position 𝑥𝑑 at each time step to compute 

𝑉𝑖𝑛  as: 

𝑉𝑖𝑛 = 𝑅𝐼𝑑 + 𝐿(0,0)
𝑑𝐼𝑑

𝑡
+ 𝐸(0,0)

𝑑𝑥𝑑

𝑑𝑡
 (12) 

𝜕𝐹𝑚𝑎𝑔

𝜕𝐼
(0,0)𝐼𝑑

= 𝑚𝑥̈𝑑 −
𝜕𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝑠(0)

𝜕𝑥
𝑥𝑑 − 𝛼

𝑑𝑥𝑑

𝑑𝑡
 

(13) 

where 𝛼 represents a viscous damping coefficient that could 

be related to the membrane force. We choose to keep a linear 
formulation of the feedforward as its effect will be 

predominant only at startup or a change of operation point.  

The reference signal 𝑥𝑑 is generated to be sufficiently smooth, 

in such a way to not create any discontinuity in the 

feedforward during startup or change of desired stroke 𝑆𝑑  or 

frequency 𝑓𝑑  (which is supposed to happen frequently in order 

to change the operation point of the pump) To do so the 

transfer function 𝐻(𝑠) is introduced: 
𝑥𝑑(𝑡) = 𝑆(𝑡)sin (𝜑(𝑡)) (14) 

𝜑(𝑡) = 2𝜋𝑓(𝑡) (15) 

 
𝑆(𝑠)

𝑆𝑑(𝑠)
(𝑠) =

𝑓(𝑠)

𝑓𝑑(𝑠)
=

𝑘𝑓
3

(𝑠 + 𝑘𝑓)
3 = 𝐻(𝑠) (16) 

where 𝑘𝑓 is a positive, real number that guarantee the stability 

of 𝐻(𝑠). 

Then, the remaining errors due to un-modeled dynamics are 

cancelled by a PI controller that adjust the amplitude of the 

excitation. One way to estimate this amplitude is to define an 



  

amplitude estimator 𝑆̂(𝑡) that is valid if 𝑥(𝑡) is sufficiently 
close to a sinus function, i.e.: 

𝑆̂(𝑡) = √𝑥̂(𝑡)2 + 𝑥 (𝑡 −
1

4𝑓(𝑡)
)

2

 (17) 

VI. PARAMETERS IDENTIFICATION 

In order to validate the model of section III and adjust it with 

experimental data, an estimation of the electric parameters 

(𝑅, 𝐿(𝑥, 𝐼), 𝐸(𝑥, 𝐼)) is developed. A recursive least square 

estimation scheme that include a forgetting factor is used. As 

the weight of the oldest samples will gradually be reduced, we 

will see time variation of the electric sub-model. By adjusting 

the current and position of the magnet, we will run the 
estimation process for every point that was simulated with the 

FEM model and compare the resulting inductance and 

𝑏𝑎𝑐𝑘 𝑒𝑚𝑓. 

 Parameters 𝑅, 𝐿 and 𝐸 are unknown and slowly time 

varying. The variables 𝑉𝑖𝑛 , 𝐼 and 𝑥 are piecewise continuous 

and bounded, and all equal to zero at 𝑡 = 0. The problem is 

set by integrating (1) over time, i.e.  

𝐼 =
1

𝐿
∫ 𝑉𝑖𝑛 +

𝑅

𝐿
∫ 𝐼 +

𝐸

𝐿
𝑥 (18) 

which can be expressed as: 

𝑦 = 𝚿𝑻𝜽 (19) 

𝚿𝑻 = [∫ 𝑉𝑖𝑛 ∫ 𝐼 𝑥] (20) 

𝜽 = [
1

𝐿

𝑅

𝐿

𝐸

𝐿
] (21) 

For each sample 𝑛 > 0, 

𝜽̂𝒏 = 𝜽̂𝒏−𝟏 + 𝑲𝒏(𝑦𝑛 − 𝑦̂𝑛) (22) 

𝑦̂𝑛 = 𝚿𝐧
𝑻𝜽̂𝒏−𝟏 (23) 

where 𝑲𝒏 is updated at each time step to minimize the least 
square error function. 

VII. RESULTS 

The co energy result of the FEM simulations (Figure 6) is 

computed for magnet positions and coils currents that are part 

of the operation range of the pump. The partial derivatives 

that make up the inductance, the back emf coefficient and the 

magnetic force are computed (Figure 8). Their computation 

shows that the FEM model is sufficiently performant to 
guarantee the required smoothness of the parameters after 

derivation. 

A numerical model of the pump and the controller is built 

under Matlab/Simulink to test the implementation of the 

controller and motor parameters’ identification before 

allocating resources to build a dedicated test setup for the 

implementation on the real pump prototype (see Figure 9). 

Actuator’s model is compared to measurement and adjusted 

accordingly. Springs’ reaction force is measured by using a 

pull tester. The same pull tester in Figure 9 is also used to 

measure the magnetic force of the actuator by applying an 
arbitrary constant electric current on actuator’s coils while  

 

 
Figure 8. Co-energy, magnetic force, back emf and inductance from 

FEM simulation and partial derivation 

measuring force. Near the rest point of the actuator, the linear 

approximation of motor parameters gives 

 
Fmag(0, I) = AI (24) 

𝐸(0, 𝐼) =
𝑑𝐹𝑚𝑎𝑔

𝑑𝐼
= 𝐴 (25) 

with A a positive constant. Electric inductance and resistance 

can be estimated with a LRC meter when the magnet ring’s 

motion is blocked to cancel the effect of the back emf. As 

LRC meters’ input current is limited (< 20 𝑚𝐴), inductance 

can only be estimated in this limited area. In quantitative term, 

measurements near the rest point give 𝐿 = 33 mH, and 𝐴 =
18 𝑁𝐴−1, while simulation gives 𝐿 = 24 mH and 𝐴 =
24 𝑁𝐴−1. As membrane force is currently poorly known we 

propose to emulate it by a viscous friction term µ that is a 

sensible first approximation: 
𝐹𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡) =  𝜇(𝑡)𝑥̇ (26) 

Using the verified lumped parameters model deduced from 

FE simulation, we test the whole strategy for identification 

and stroke control. In particular, we aim to compare different 

observer implementations to show the interest of using 

varying electric parameters instead of linear approximations. 

 

Figure 9 Left: actuator mounted on the pull tester. Right: Pump 

mounted on test bench. Motion measurement is made a laser 
sensor. 



  

A. Identification results 

The result of the identification is shown in Figure 10. To 

guarantee a quick convergence two excitation signals are 

applied to the actuator. A voltage excitation that contains a 

high frequency (500 𝐻𝑧) square wave voltage that makes the 

inductance’s voltage to never be close to zero, and a low 

frequency (0.1 𝐻𝑧) sinus component for resistance’s voltage 
and to reach every position. To ensure that back emf is 

represented in the response, an external sinus force is 

simulated at 50 𝐻𝑧. To filter out high frequency variations as 

well as eventual noise, while capturing the low frequency 

variations of the parameters 𝜆 is set to 0.999 via a trial and 

error approach. The recursive least square identification was 

run with different initial conditions. Measurement errors 

(noises, bias, gain) were simulated to verify that their effects 

would not hinder convergence and help to diagnostic future 
experimental issues. RLS algorithm can filter out high 

frequency noises very easily, but gain errors lead to over or 

underestimation of parameters while bias and low frequency 

noise increase estimation error over time.  

 
Figure 10. Identification of resistance, inductance and 

electromotive force. Blue lines: varying parameters from co-
energy derivation. Red dashes: identification results. 

B. Sensor-less control implementations and evaluation 

A discrete version of the controller is implemented on 

Simulink to emulate what would be done by compiling it on 

a hardware target. As the frequency response of the derivative 

estimator of Eq (9) depends of the length of the integration 

window and the sampling rate, and the signals to derivate may 

have frequency up to 100 Hz, we choose to set 𝑇𝑠 = 2. 10−5𝑠 

and 𝑁 = 6 (i.e. integration window of 1,2. 10−4𝑠), which is 

in this case a good trade between noise attenuation and 

performances. Figure 11 displays the response of the actuator 

from startup at 𝑡 = 0 𝑠 to a nominal constant operation point 

(a constant amplitude and frequency). Current and position 

are both reasonably sinusoidal, and after a transition period, 

the amplitude of position reaches the desired amplitude, and 

the observer output keeps track of the variation of position. In 
Figure 12 two cases of change of operation points are depicted  

(a change of frequency and a change of stroke). Those are two 

 
Figure 11. System response to a desired stroke of 0.9 mm at 90 Hz. 

Top: coils’ current. Bottom: position of the mobile parts (red 
dashes: desired stroke, blue line: real position, green: 
observed position) 

ways to increase or decrease pump flow. We can notice that 

overshoots appear during a change of stroke. If not kept below 
a safe level, they could create overstress that could damage 

the membrane and the springs. This can be avoided by making 

the desired stroke signal change smoother. In figure 13 a 

comparison between two observers is given. These observers 

are different through their first stage. One is the velocity 

observer developed in [16]. The other the one is designed 

from Eq (7). In each case, inductance and back emf are 

implemented as constant approximation and as functions. As 

the controller must maintain stroke over a wide range of 

strokes and frequencies, and different reaction forces of the 

membrane that are unknown we need to test combinations of 



  

those three parameters to evaluate the performance of the 

controller. To do so we emulate the variation of the membrane 
force according to flow and pressure inside the pump head by 

varying µ, and we create an error variable 𝑒 that is evaluated 

over a range of strokes, frequency and µ:  

 
𝑒(𝑆𝑑 , 𝑓𝑑) =  max

µ
(|𝑆𝑑 − 0.5(max 𝑥 − min 𝑥)|) (27) 

where max 𝑥 𝑎𝑛𝑑 min 𝑥 are computed from one period of 

oscillation. This formulation of 𝑒 can be compared to a 

maximal admissible error 𝜀 : every operation point [𝑆𝑑 , 𝑓𝑑] 
which presents 𝑒 < 𝜀 can be reached safely (stroke will be 

maintained to deliver the required flow without the risk of 

damaging the device by an overshoot). With this performance 

indicator, we can see that taking into account the variations of 

the inductance and back emf in the velocity  estimator (or 

observer in the case of [16]) results in an increase of the 
operation range of the stroke controller. 

 
Figure 12. System’s reaction to a change of operation point. Top 

change of strokes. Bottom: change of frequency. Red lines: 
desired stroke, blue lines: real position. 

CONCLUSION AND FUTURE WORK 

In this work, we have demonstrated that it is possible to 

synthetize a stroke controller and assess its performance 

with a numerical experiment. This process requires to 

compute the co-energy of the actuator that allows to build 

a dynamic model of the actuator that is accurate and quick 

to run. From the resulting lumped parameters model it is 

possible to formulate a position observer that keeps the 
error bounded, that include magnetic induced non-

linearities of the actuator. At last we propose a way to 

identify the variation of actuator’s parameters that could be 

done in an experiment. In the same perspective of being 

able to test on a live prototype we create numerical 

experiments that evaluate the performance of the controller 

according to requirements. It shows that it is beneficial to 

include the non-linearities of the actuator into the observer 

as it widens the range of the operation of the system, 
whatever the choice of algorithms. Currently, experimental 

implementation is in progress, in order to validate the 

approach before testing it in vivo. 

 
Figure 13. Stroke output error map of the system for different 

observer implementations. Green area: error below 0.1 mm. 
Red area: error above 0.1 mm. Top: 1st stage uses velocity 
estimator. Bottom: 1st stage is made according to [16]. Left: 
constant inductance and back emf. Right: variable 
inductance and back emf 
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