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Abstract

Given a graph G, a 2-coloring of the edges of Kn is said to contain a balanced copy of G if we
can find a copy of G such that half of its edges is in each color class. If there exists an integer k such
that, for n sufficiently large, every 2-coloring of Kn with more than k edges in each color contains a
balanced copy of G, then we say that G is balanceable. The smallest integer k such that this holds
is called the balancing number of G.

In this paper, we define a more general variant of the balancing number, the list balancing number,
by considering 2-list edge colorings of Kn, where every edge e has an associated list L(e) which is a
nonempty subset of the color set {r, b}. In this case, edges e with L(e) = {r, b} act as jokers in the
sense that their color can be chosen r or b as needed. In contrast to the balancing number, every
graph has a list balancing number. Moreover, if the balancing number exists, then it coincides with
the list balancing number.

We give the exact value of the list balancing number for all cycles except for 4k-cycles for which
we give tight bounds. In addition, we give general bounds for the list balancing number of non-
balanceable graphs based on the extremal number of its subgraphs, and study the list balancing
number of K5, which turns out to be surprisingly large.

1 Introduction
Ramsey Theory studies the presence of ordered substructures in large, arbitrarily ordered structures.
For instance, the seminal Ramsey Theorem [14] states that, for every integer r, every 2-coloring of the
edges of Kn contains a monochromatic Kr whenever n is sufficiently large. However, it is also possible to
look for other kinds of ordered substructures. In this line, Bollobás (see [7]) conjectured in 2008 that, for
any real 0 < ε ≤ 1

2 , and for large enough n, any 2-coloring of Kn with at least ε
(
n
2

)
edges in each color

contains a K2t where one of the colors induces a clique of size t, or two disjoint cliques of size t. This
conjecture was confirmed by Cutler and Montágh in [7] and an asymptotically tight bound was obtained
by Fox and Sudakov in [9]. Making the connection to extremal problems in graphs, Caro, Hansberg and
Montejano [5] considered ε as a function of n tending to 0, and reconfirmed Bollobás conjecture obtaining
also a subquadratic bound on the number of edges that are required in each color. Recently, Girão and
Narayanan [11] showed that Ω(n2−

1
t ) edges from each color are sufficient and, conditional on the Kővari-

Sós-Turán conjecture for the Turán number for complete bipartite graphs [12], they showed that this
bound is sharp up to the involved constants. The notion of balanceability, which was introduced in [5],
is enclosed within this setting, as it is concerned with finding copies of a given graph G in 2-colorings
of the edges of Kn, the only condition being that the copy contains half of its edges in each of the color
classes R and B.

∗This work has been supported by PAPIIT IN111819, PAPIIT TA100820 and CONACyT project 282280.
†Corresponding author
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More formally, a 2-coloring of the edges of Kn is a function f : E(Kn) → {r, b}. We can see a
2-coloring of the edges of Kn as a partition E(Kn) = R tB where we define the color class R (resp. B)
as the set of edges e such that f(e) = r (resp. such that f(e) = b). Edges in R are called red, edges in
B are called blue. Let G(V,E) be a simple, finite graph; a 2-coloring R t B of the edges of Kn is said
to contain a balanced copy of G if we can find a copy of G such that its edge-set E is partitioned in two
evenly divided parts (E1, E2) with E1 ⊆ R, E2 ⊆ B; that is, such that ||E1| − |E2|| ≤ 1. Note that if |E|
is even, then the copy of G has exactly half of its edges in each color class.

Within the range of Ramsey Theory and Extremal Graph Theory, balanceability of graphs deals with
the question of the existence and the determination of the minimum number (if it exists) of edges in
each color class to guarantee the existence of a balanced copy of a graph G in any 2-coloring of the edges
of Kn, as well as with studying the extremal structures.

Definition 1. Let G be a simple, finite graph. If there exists an integer k = k(n) such that, for n
sufficiently large, every 2-coloring RtB of the edges of Kn with |R|, |B| > k contains a balanced copy of
G, then G is balanceable. The smallest such k is then called the balancing number of G and is denoted
by bal(n,G).

In their introductory paper [5], Caro, Hansberg and Montejano gave a structural characterization of
balanceable graphs. Beyond the computational question of deciding whether a given graph is balanceable
or not, there is also the theoretical problem of optimizing the function k(n); that is, providing exact values
or bounds for the Turán-type parameter bal(n,G).

Several authors studied the problem of balanceability and the optimization problem of determining
the balancing number. Caro, Hansberg and Montejano proved in [4] that the only nontrivial balanceable
complete graph with an even number of edges is K4. They also determined the balancing number of
K4, as well as of paths and stars, in [5]. Later, Caro, Lauri and Zarb [6] exhaustively studied the
balancing number of graphs of at most four edges. Finally, the first, third and fourth authors studied the
balanceability of several graph classes [8]. In [3], colorings with arbitrary many colors are studied and
the corresponding 3-balancing number for paths is determined upon a constant factor. In this paper, we
tackle the case of balanceable cycles (see Section 3.1).

Although the question of the balancing number is still open for many graph classes, we are also
interested in gauging how we may obtain balanceable copies of a nonbalanceable graph, under the
relaxation of the 2-coloring we consider. In this paper, we extend the notion of balancing number by
extending the class of colorings under consideration to list edge colorings. In this case, each edge receives
a nonempty list of colors, and we may choose one among them as needed in order to construct a balanced
copy of a graph G.

More formally, a 2-list coloring of the edges of Kn is a function L : E(Kn)→ {{r}, {b}, {r, b}}, that
induces two sets R and B, called its color classes, which are defined as follows: R = {e ∈ E(Kn) | r ∈
L(e)} and B = {e ∈ E(Kn) | b ∈ L(e)}. As we can see, R ∪ B = E(Kn), but the two color classes do
not necessarily form a partition of the edges of Kn. The edges in R∩B are called bicolored edges, in the
sense that we can choose their color as needed when looking for a balanced copy of a graph. This leads
to a new definition of a balanced copy of a graph, which is a generalization of the previous one:

Definition 2. Let L : E(Kn) → {{r}, {b}, {r, b}} be a 2-list coloring of the edges of Kn inducing color
classes R and B. For a given graph G(V,E), a balanced copy of G is a copy of G whose edge-set has a
partition E = E1 t E2 such that E1 ⊆ R, E2 ⊆ B and ||E1| − |E2|| ≤ 1.

Note that some of the edges in the copy of G may be in R∩B; for example, if e ∈ E1 and e ∈ R∩B
then we say that we choose color r for the bicolored edge e.

Furthermore, every simple, finite graph G(V,E) has a 2-list edge coloring where we may find a
balanced copy of G. Namely, the 2-list coloring L of Kn such that L(e) = {r, b} for every edge e; to see
this, observe that in any copy of G, we may choose the color r for half its edges and the color b for the
rest. This allows us to define the list balancing number of a graph, as follows:

Definition 3. Let G(V,E) be a finite, simple graph. For n ≥ |V |, the list balancing number of G,
denoted by lbal(n,G), is the smallest integer k such that every 2-list coloring L of the edges of Kn

inducing the color classes R and B with |R|, |B| > k contains a balanced copy of G.

As we can see, the list balancing number is a natural extension of the balancing number. Indeed,
every 2-coloring, represented by a partition E(Kn) = R t B, corresponds to a 2-list coloring where
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every list L(e) has exactly one element. It is important to observe that this extension does not add
more complexity to the problem when bal(n,G) exists, and in which case satisfies bal(n,G) < 1

2

(
n
2

)
(for

details, see Proposition 4 in Section 2).
The main interest of the list balancing number is the study of non-balanceable graphs, where we

interpret having lbal(n,G) close to 1
2

(
n
2

)
as G being close to balanceable, in the sense that a few more

than 1
2

(
n
2

)
edges from each color (implying that there must be a few bicolored edges) are sufficient to

guarantee a balanced copy of G. We refer to the needed number of edges that exceeds 1
2

(
n
2

)
in each

color as the list-color excess of edges in each color. For example, we prove in Section 3.2, that, for
cycles C4k+2 of length congruent to 2 modulo 4, which are not balanceable, a list-color excess of just 1
edge in each color is sufficient for guaranteeing a balanced copy of C4k+2. In other words, we show
that lbal(n,C4k+2) = 1

2

(
n
2

)
, which is the smallest possible value for the list balancing number of a non-

balanceable graph. On the other hand, there are graphs for which a much larger list-color excess in each
color is necessary to guarantee a balanced copy of them. Such is the case of K5 where the list-color
excess is of order θ(n

3
2 ); see Theorem 14.

One of the key elements of Theorems 7, 9, and 14 is the use of the extremal number (or Turán
number) of a graph family; recall that, given a graph family H and an integer n, the number ex(n,H) is
the highest number of edges in a graph of order n that does not contain any (not necessarily induced)
subgraph in H.

This paper is organized as follows: we first give, in Section 2, some general results about the list-
balancing number and about its connection to the balancing number. We then move on to studying the
balancing number of the balanceable cycles, that is, odd cycles and cycles on 4k vertices, for k ≥ 1, as
well as the list balancing number of non-balanceable cycles, i.e. cycles on 4k + 2 vertices, where k ≥ 2.
We close in Section 4 with the analysis of the complete graph K5, giving asymptotically tight bounds
for its list balancing number.

Note that, in all figures throughout the paper, edges in the color class R will be depicted in red, and
edges in the color class B will be depicted in blue.

2 List balancing number: preliminaries and general results
In this section, we provide general bounds for the list balancing number, which are relevant for graphs
where the balancing number does not exist. In particular, Proposition 6 says that looking at the number
of bicolored edges suffices to get upper bounds; which, in turn, leads to consider the Turán number for a
particular class of graphs described in Theorem 7. Before proceeding to these results, we provide a proof
of the fact mentioned in the introduction: if bal(n,G) exists for a graph G, then lbal(n,G) = bal(n,G).

Proposition 4. Let G be a graph. If bal(n,G) exists, then bal(n,G) = lbal(n,G) < 1
2

(
n
2

)
.

Proof. Consider a graph G = G(V,E) and n for which bal(n,G) exists; in particular n ≥ |V |. As we
previously discussed, the class considered for lbal(n,G) extends the class of 2-colorings; this implies that
bal(n,G) ≤ lbal(n,G). On the other hand, it is clear by definition that bal(n,G) < 1

2

(
n
2

)
.

To establish the equality we prove that every 2-list coloring E(Kn) = R ∪ B satisfying |R|, |B| >
bal(n,G) has a balanced copy of G. Suppose that there is a 2-coloring E(Kn) = R′ ∪ B′ with R′ ⊂ R,
B′ ⊂ B and |R′|, |B′| > bal(n,G), then a balanced copy of G under the 2-coloring R′∪B′ corresponds also
to a balanced copy of G under the 2-list coloring R∪B. Hence, it remains to show that we may construct
a coloring R′ ∪ B′ with such properties. If |R \ B| > bal(n,G) we simply let R′ = R \ B and B′ = B.
Otherwise, let R′ ⊂ R be an arbitrary subset such that R \ R′ ⊂ B and |R′| = bal(n,G) + 1, then let
B′ = B\R′. In either case we have R′ ⊂ R and B′ ⊂ B. The constraint on the size of R′ and B′ is clearly
satisfied also; for B′ in the latter case, observe that bal(n,G) < 1

2

(
n
2

)
implies |B′| =

(
n
2

)
−|R′| ≥ bal(n,G)

completing the proof that bal(n,G) = lbal(n,G). Hence, every 2-list coloring E(Kn) = R ∪B satisfying
|R|, |B| > bal(n,G) has a balanced copy of G.

Proposition 4 immediately implies the following statement:

Corollary 5. Let G = G(V,E) be a graph and n ≥ |V | be an integer. If bal(n,G) does not exist, then
1
2

(
n
2

)
≤ lbal(n,G) <

(
n
2

)
.
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The next result, which is the key for the main theorem of the section, uses a simple relation between
the sizes of the color classes and the necessary number of bicolored edges.

Proposition 6. Let G be a graph and let b be a positive integer. If every 2-list edge coloring with at
least b bicolored edges has a balanced copy of G then lbal(n,G) ≤ 1

2

(
n
2

)
+
⌈
b
2

⌉
− 1.

Proof. First observe that an inclusion-exclusion argument gives that if R ∪ B are the color classes of a
2-list edge coloring of Kn satisfying |R| = |B| = 1

2

(
n
2

)
+ m, then there are exactly 2m bicolored edges.

Consequently, for any 2-list edge coloring inducing color classes R and B with |R|, |B| ≥ 1
2

(
n
2

)
+
⌈
b
2

⌉
,

there are at least b bicolored edges, and so, by hypothesis, there is a balanced copy of G.

The following theorem uses the idea of exploiting the flexibility of bicolored edges. Once we have
a copy of G we have to choose the color of the bicolored edges, and we do so according to the edges
which have a unique color. In particular, if more than half the edges of such copy are bicolored then
we may distribute these between the two color classes to balance the copy, regardless of the color of the
rest of the edges. With this perspective, a general bound on the list balancing number may be reduced
to guaranteeing that the 2-list edge colorings have enough bicolored edges. To this aim, we need to
consider, for a graph G, the family of all its subgraphs having half of the edges,

H(G) =

{
H : H ≤ G, e(H) =

⌊
e(G)

2

⌋
, H has no isolates

}
.

We note at this point that this family was already used in [2] to gain a similar insight in studying
the existence of balanced copies of spanning subgraphs of a 2-colored Kn.

Theorem 7. Let G = G(V,E) be a graph and n ≥ |V | be an integer. Then we have

lbal(n,G) ≤ 1

2

(
n

2

)
+

⌈
ex(n,H(G))

2

⌉
.

Proof. Let G = G(V,E) be a graph, and H be the family of subgraphs of G with at least |E|2 edges. Now,
let R and B be the color classes induced by a 2-list edge coloring ofKn with |R|, |B| > 1

2

(
n
2

)
+d ex(n,H(G))

2 e.
This implies that there are at least ex(n,H(G)) + 1 bicolored edges. In particular, since Kn is of order
n, the subgraph of Kn induced by the bicolored edges contains a graph in H(G), say H. Starting from
H, we can complete with other edges to construct a copy of G. This copy has at least half its edges that
are bicolored, and thus we can make it balanced. Hence, we can find a balanced copy of G, proving the
upper bound on bal(n,G).

Theorem 7 gives a general upper bound on the list balancing number of graphs which, by Proposi-
tion 4, is only relevant when the balancing number does not exist. This fairly general bound may be
tight (up to the order of the second term ex(n,H(G))), as is the case of K5. In Section 4, we will use
this result to give an upper bound on the list balancing number for K5, which will be matched with a
lower bound of the same order. However this general upper bound can also be far from the exact value
of the list balancing number, as can be noticed already in Section in Section 3.2, where we determine
the list balancing number for the unbalanceable cycles.

In the remainder of the paper we say that a 2-list coloring has a list-color excess of b edges, referring
to the number of edges in each color by which 1

2

(
n
2

)
is at least surpassed. More precisely, we say that a

2-list coloring E(Kn) = R ∪ B has a list-color excess of b edges, if |R|, |B| ≥ 1
2

(
n
2

)
+ b. In such a case,

since |R ∩ B| = |R| + |B| − |R ∪ B| = |R| + |B| −
(
n
2

)
≥ 2b, it clearly follows that there have to be at

least 2b bicolored edges.

3 The balancing number and list balancing number of cycles
In [8], it was observed that the cycle C4k is balanceable while the cycle C4k+2 is not. We note here that
all odd cycles are also balanceable, and provide exact values for their balancing number. Moreover, we
give tight bounds, up to the first order term, for the balancing number for cycles of length 4k, for k ≥ 1.
Finally, we determine the list balancing number of C4k+2, for k ≥ 1.
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3.1 Balanceable cycles
Theorem 8 below, which deals with odd-length cycles is a direct consequence of the balanceability of
paths of even length. We denote with P` the path on ` edges (and thus `+ 1 vertices); the exact values
of bal(n, P`) are obtained in [5, Theorem 3.7].

Theorem 8. Let k be a positive integer, let n ≥ 9
2k

2 + 13
4 k + 49

32 , and let α ∈ {−1, 1}. We have the
following:

lbal(n,C4k+α) = bal(n,C4k+α) = bal(n, P4k+α−1) = (k − 1)n− 1

2
(k2 − k − 1− α).

Proof. Let k be a positive integer. The equality lbal(n,C4k+α) = bal(n,C4k+α) is clear from Proposi-
tion 4. Now we will prove that the balancing number of odd cycles is equal to the balancing number of
paths with one edge less. We will demonstrate the result only for C4k+1 (i.e for α = 1) since the exact
same arguments can be made for C4k−1.

First, we prove that bal(n,C4k+1) ≤ bal(n, P4k). Assume that we have a 2-coloring R t B of the
edges of Kn with |R|, |B| > bal(n, P4k). This implies that there is a balanced copy of P4k; that is, a path
with equal number of edges in R and B. Regardless of the color of the edge connecting the endpoints of
the path, the addition of this edge to the path creates a balanced cycle. Hence, we obtain the claimed
upper bound on bal(n,C4k+1).

Now, we prove that bal(n, P4k) ≤ bal(n,C4k+1). Assume that we have a 2-coloring RtB of the edges
of Kn with |R|, |B| > bal(n,C4k+1). This implies that there is a balanced copy of C4k+1; without loss of
generality, assume that this cycle contains 2k red edges and 2k + 1 blue edges. The path obtained from
the cycle by deleting one of the blue edges is a balanced path of length 4k, completing the proof that
bal(n,C4k+1) = bal(n, P4k).

The problem of finding the exact value of the balancing number of cycles of length 4k is more
challenging; Theorem 9 below gives an upper and a lower bound for bal(n,C4k) which are tight up to
the first term, (k− 1)n; note that, contrary to the case of odd-length cycles, we need additional edges in
each color class (of the order of k2) to guarantee a balanced copy of C4k.

Theorem 9. Let k be a positive integer. For n ≥ 9
2k

2 + 13
4 k + 49

32 , we have the following:

(k − 1)n− (k − 1)2 ≤ lbal(n,C4k) = bal(n,C4k) < (k − 1)n+ 12k2 + 3k.

The equality lbal(n,C4k) = bal(n,C4k) is clear from Proposition 4. Thus, the next two lemmas
directly prove the bounds of Theorem 9. First, we show that there is a natural 2-coloring avoiding any
balanced cycle of length 4k which provides us with a lower bound for bal(n,C4k).

Lemma 10. For integers n ≥ 4k, we have bal(n,C4k) ≥ (k − 1)n− (k − 1)2.

Proof. We will give a 2-coloring RtB of the edges of Kn with |B| ≥ |R| = (k−1)n−(k−1)2 and without
a balanced copy of C4k. To this aim, let V (Kn) = V1 t V2, where |V1| = k − 1 and |V2| = n − k + 1,
and we color the edges in E(V1, V2) with red, and the remaining edges get the color blue. This coloring
satisfies |R| = (k− 1)(n− k+ 1) = (k− 1)n− (k− 1)2, and it is not difficult to verify that |B| ≥ |R| for
any k, n ≥ 1. Furthermore, any 4k-cycle in this coloring can have at most k − 1 vertices in V1 and thus
have at most 2k− 2 red edges. It follows that we cannot get a balanced copy of C4k, which implies that
bal(n,C4k) ≥ (k − 1)(n− k + 1).

Similar to the proof idea of Theorem 8, an upper bound for bal(n,C4k) can be given by constructing
a balanced copy of C4k from a balanced copy of C4k−1. We will show that, if this construction is not
possible, then certain structure for the 2-coloring of the edges of Kn is forced, in which we are able
to find, in turn, a balanced 4k-cycle by means of a long red path that is glued together with a long
blue path, together with some extra edges that close the cycle. To guarantee the existence of the long
red path, we make use of the extremal number for paths. Note that the additional edges (namely
(k − 1)n+ 11k2 + 3k − bal(n,C4k−1)) are necessary to guarantee this extremal number is exceeded.

Lemma 11. For n ≥ 9
2k

2 + 13
4 k + 49

32 , we have bal(n,C4k) ≤ (k − 1)n+ 12k2 + 3k.
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Proof. For k ≥ 1 we have that 9
2k

2 + 13
4 k + 49

32 ≥ 10k − 2; thus we may assume that we can apply
Theorem 8 and that n ≥ 10k − 2, which is a sufficient assumption on n for all forthcoming arguments.

We first verify that the condition min{|R|, |B|} ≥ (k − 1)n + 11k2 + 3k is satisfiable; this is
(
n
2

)
≥

2(k−1)n+22k2 +6k. Using that k ≥ 1, it suffices to verify that n(n−4k+3) ≥ 56k2. Since n ≥ 10k−2
we have, indeed,

n(n− 4k + 3) ≥ (10k − 2)(6k + 1) = 56k2 + (2k − 2)(2k + 1) ≥ 56k2;

so we may consider any 2-coloring of the edges of Kn with |R|, |B| > (k − 1)n+ 12k2 + 3k.
We now prove the lemma by contradiction. Let R t B be a 2-coloring of the edges of Kn with

|R|, |B| ≥ (k − 1)n + 11k2 + 3k. Assume that this coloring has no copy of a balanced 4k-cycle. By
Theorem 8 there is a balanced copy C of C4k−1 in this coloring. Without loss of generality, we may
assume that C consists of a cycle with 2k blue edges and 2k − 1 red edges. This implies that C has, at
some place, a red edge followed by two blue edges: say C has consecutive vertices u0, u1, u2, u3 where
u0u1 ∈ R and u1u2, u2u3 ∈ B.

Let V = V (Kn) andW = V (C). In what follows we will infer a structure among the vertices in V \W
which will lead to a contradiction to the initial assumption that there is no balanced 4k-cycle. The next
three claims stem from the fact that some specific structure outside of C would give a balanced 4k-cycle.
Let X (resp. Y ) correspond to the sets of vertices v ∈ V \W such that u1v ∈ R (resp. u1v ∈ B). Note
that V \W = X ∪ Y , though either X or Y may be empty. We will now strengthen the structure with
three claims.

Claim 11.A. For each v ∈ Y , uiv ∈ B for all 1 ≤ i ≤ 3.

Proof of Claim 11.A. Let v be a vertex in Y . By definition u1v ∈ B. If u2v ∈ R, then we may extend
C by replacing the edge u1u2 with the path u1vu2 to obtain a balanced 4k-cycle, a contradiction (see
Figure 1a). It follows that u2v ∈ B. Now, applying a similar argument (replacing u2u3 with the path
u2vu3), we can conclude that u3v ∈ B. �

Claim 11.B. For each v ∈ X, u0v ∈ B and u2v ∈ R.

Proof of Claim 11.B. Let v be a vertex in X. By definition, u1v ∈ R. The same argument than in
the proof of Claim 11.A gives that u2v ∈ R. Now, assume by contradiction that u0v ∈ R. Then, we
may extend C by replacing the edge u0u1 with the path u0vu1, and thus obtain a balanced 4k-cycle, a
contradiction (see Figure 1b). �

u0

u1

u2

u3

C Y

(a) The proof of Claim 11.A: if, for any v ∈ Y ,
u2v ∈ B, then we can alter C to construct a bal-
anced 4k-cycle.

u0

u1

u2

u3

C X

(b) The proof of Claim 11.B: if, for any v ∈ X,
u0v ∈ R, then we can alter C to construct a bal-
anced 4k-cycle.

Figure 1: Strengthening the structure: Claims 11.A and 11.B.

We now have a more constrained structure, which is depicted on Figure 2.

Claim 11.C. We have E(X,Y ) ⊆ R, and E(X) ∪ E(Y ) ⊆ B.

Proof of Claim 11.C. First, assume by contradiction that there are v, v′ ∈ X such that vv′ ∈ R. By
Claim 11.B, the path u0vv

′u2 consists of two red edges and one blue edge; thus we may extend C by
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u0

u1

u2

u3

C

X

Y

Figure 2: The structure after Claims 11.A and 11.B. All the edges from the uis to vertices in X and Y
follow this structure.

replacing u0u1u2 with the path u0vv′u2 to obtain a balanced 4k-cycle, a contradiction (see Figure 3a).
It follows that vv′ ∈ B for all v, v′ ∈ X.

Next, assume by contradiction that there are v, v′ ∈ Y such that vv′ ∈ R. By Claim 11.A, the path
u1vv

′u3 consists of two blue edges and one red edge; thus we may extend C by replacing u1u2u3 with
the path u1vv′u3 to obtain a balanced 4k-cycle, a contradiction (see Figure 3b). It follows that vv′ ∈ B
for all v, v′ ∈ Y .

Finally, assume by contradiction that there are v ∈ X and v′ ∈ Y such that vv′ ∈ B. Since u1v ∈ R
(by definition) and u3v′ ∈ B (by Claim 11.A), we can replace the path u1u2u3 by the path u1vv′u3, and
obtain a balanced 4k-cycle, a contradiction (see Figure 3c). It follows that for each v ∈ X and v′ ∈ Y ,
vv′ ∈ R. �

u0

u1

u2

u3

C

Y

X

(a) There are no red edges in X.

u0

u1

u2

u3

C

Y

X

(b) There are no red edges in Y .

u0

u1

u2

u3

C

Y

X

(c) There are no blue edges be-
tween X and Y .

Figure 3: Strengthening the structure: Claim 11.C. In every case, we can use C to get a balanced
4k-cycle, a contradiction.

We now use the structure we found in Claim 11.C to find a contradiction. Recall that n ≥ 10k − 2
which implies that |X ∪ Y | = |V \W | ≥ n− 4k + 1 ≥ 6k − 1 and so max{|X|, |Y |} ≥ 3k.

For the remainder of the proof, we have two possibilities: either |X| ≤ |Y | or |X| > |Y |. However,
note that those two cases are symmetrical since we will not care about the specific colors of the edges
between the vertices u0, u1, u2, u3 and X ∪ Y , but rather more in general within and between the sets
W,X, and Y .

Hence, without loss of generality, we assume that |X| ≤ |Y |. This condition will imply |X| < k.
Indeed, assume by contradiction that |X| ≥ k. Then, we can obtain a balanced 4k-cycle by taking a blue
path of length 2k within Y , and then a red path of length 2k closing the cycle by going back and forth
2k times between X and Y (which is possible since |Y | ≥ 3k and |X| ≥ k). This contradiction implies
that |X| < k.

Thus, we have a partition V = Y t(W ∪X) where all the edges within Y are blue and |Y | ≥ n−5k+2
(since |X∪Y | = n−4k+1 and |X| ≤ k−1). We will now study the number of red edges in E(Y,W ∪X).
Let H be the bipartite graph induced by the set of red edges contained in E(Y,W ∪ X). We start by
giving a lower bound on the number of edges in H, which is the number of red edges in Kn minus the
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number of red edges in E(W ∪X); recall that E(X) ∪ E(Y ) ⊆ B by Claim 11.C. Hence, we have:

|E(W ∪X) ∩R| ≤ e(W ) + e(W,X) <

(
4k − 1

2

)
+ k(4k − 1) = (4k − 1)(3k − 1)

and so, we have:

e(H) = |R| − |E(W ∪X) ∩R| ≥ (k − 1)n+ 12k2 + 3k − (4k − 1)(3k − 1)

≥ (k − 1)n+ 10k − 1.

However, Theorem 5.5 in [10] states that ex(n, P2k−1) ≤ (k − 1)n, which means that, in a graph with
n vertices and at least (k − 1)n edges, there is a path on 2k − 1 edges. As a consequence, there is a
path P of length 2k − 1 edges in H. Since P has an even number of vertices, we may assume that
P = v1w1v2 . . . wk−1vkwk with all vi ∈ Y and all wi ∈W ∪X.

Let H ′ = (Y ′, X ′) be the subgraph of H induced by Y ′ = Y \ {v1, . . . , vk} and X ′ = (W ∪ X) \
{w1, . . . , wk−1}. Observe that |X ′| = |W ∪X| − (k − 1) ≤ 4k − 1 and using the lower bound on e(H),
we get

e(H ′) = e(H)− e(Y, {w1, . . . , wk−1})− e(W ∪X, {v1, . . . , vk})
≥ e(H)− (n− 5k + 2)(k − 1)− (4k − 1)k

= e(H)− (k − 1)n+ k2 − 6k + 2

≥ (k − 1)n+ 10k − 1− (k − 1)n+ k2 − 6k + 2

> 4k.

It follows that e(H ′) > |X ′| and, by the pigeonhole principle, there is a vertex w ∈ X ′ that has two
neighbors v and v′ in Y ′.

However, this allows us to construct a balanced 4k-cycle. Indeed, start from v1 and take the path P
all the way to vk (this gives us 2k − 2 red edges, then go to v and take the path vwv′ (this gives one
blue edge and two red edges), and finally take a path of 2k − 1 blue edges that ends back in v1 and
using vertices x1, . . . , x2k−2 in Y ′. Note that we can select the xi’s as distinct from the vi’s and from v
and v′, since |Y | ≥ 3k. This cycle, shown on Figure 4, has 2k edges in each color class, thus we have a
contradiction.

W ∪X Y

X ′ Y ′

w1
...

wk−1

wk

v1

...

vk

v

v′

w

x1

x`

Figure 4: Constructing a balanced 4k-cycle by using the structure between W ∪ X and Y (we have
` = 2k − 2).

This contradiction proves the lemma.

3.2 Non-balanceable cycles
In this section, we obtain the exact value of the list balancing number for C4k+2, for k ≥ 1, which
represents the class of non-balanceable cycles. This case is remarkable because it suffices that each color
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class covers at least half the edges in Kn plus one additional edge (i.e. the coloring has a list-color excess
of 1), which implies that, no matter how is the coloring, there are necessarily at least two bicolored edges.
However, the construction of the balanced cycle in Theorem 13 uses the existence of only one bicolored
edge, justifying the heuristic that the list balancing number (when it is at least 1

2

(
n
2

)
) provides a measure

of how close the graph is to being balanceable.
First, let us apply Theorem 7 to get a first upper bound for the list balancing number of non-

balanceable cycles, which we will then prove to be far from the exact value of the parameter.

Corollary 12. Let k be a positive integer and n be sufficiently large. Then

lbal(n,C4k+2) ≤ 1

2

(
n

2

)
+ θ(kn− k2).

Proof. Let H = H(C4k+2), that is, the family of all union of disjoint paths such that the sum of the
lengths of the paths is 2k+1. Theorem 2 in [13] states that, for n sufficiently large, the extremal number
of H is the following:

ex(n,H) =

(∑̀
i=1

⌊vi
2

⌋
− 1

)(
n−

∑̀
i=1

⌊vi
2

⌋
+ 1

)
+

(∑`
i=1

⌊
vi
2

⌋
− 1

2

)
+ c

where vi (for i ∈ {1, . . . , `}) is the order of the ith component, and c = 1 if all of the vi’s are odd
and c = 0 otherwise. Since, in this case,

∑`
i=1 vi = 2k + 1 + `, we have ex(n,H) = θ(kn − k2). Hence,

Theorem 7 yields the statement.

We base the construction of the balanced cycle on the existence of one of two substructures that are
called unavoidable patterns and are closely related to the characterization of balanceable graphs; see [5].
In fact, one of these substructures, if it is large enough, naturally contains a balanced C4k+2; that is,
the color of the bicolored edges may be established before looking for the balanced cycle. However, for
the second substructure, the construction of the balanced cycle uses a bicolored edge to leverage the fact
that C4k+2 is not balanceable; that is, in such case the balanced copy always includes a bicolored edge.

Theorem 13. Let k be a positive integer. For n sufficiently large, we have lbal(n,C4k+2) = 1
2

(
n
2

)
.

Proof. Since C4k+2 is not balanceable, by Proposition 4, we have lbal(n,C4k+2) ≥ 1
2

(
n
2

)
. To prove the

equality, we simply have to consider a 2-list edge coloring of Kn inducing color classes R and B where
|R|, |B| ≥ 1

2

(
n
2

)
+ 1 and find a balanced copy of C4k+2. Note that there are at least 2 bicolored edges in

the 2-list edge coloring. Let t be an integer verifying t ≥ 3k + 1.
For the first step, let us ignore the fact that we have bicolored edges: every bicolored edge is set to

a fixed color, making sure that both color classes remain balanced and thus contain half (±1) the edges
of Kn. This allows us to apply Theorem 2.1 in [5], which ensures that, within Kn, there is a copy H of
K2t such that there is a partition of its vertex set V (H) = X ∪ Y such that |X| = |Y | = t, and one of
the following hold:

• E(X) ⊆ R, and E(Y ) ∪ E(X,Y ) ⊆ B (or vice-versa). We call this a type-A copy of K2t;

• E(X) ∪ E(Y ) ⊆ R, and E(X,Y ) ⊆ B (or vice-versa). We call this a type-B copy of K2t.

Let now e ∈ R∩B be one of the bicolored edges (the other one will not be needed at all). We prove that
whichever type of copy of K2t exists and wherever the bicolored edge e is in Kn, we can find a balanced
copy of C4k+2. There are four cases to consider.

Case 1: H is of type-A. In this case, it is possible to construct the following balanced (4k + 2)-cycle:
follow a red path of length 2k + 1 in X, then go to Y through a blue edge, follow a blue path of length
2k−1 in Y , and finally close the cycle by going back to the first vertex that we used in X (using another
blue edge). Note that we did not make use of any bicolored edge in this case.

Case 2: H is of type-B and e ∈ E(H). Then either e ∈ E(X) (or e ∈ E(Y ), but this is symmetric), or
e ∈ E(X,Y ). Let e = uv. Both subcases are depicted on Figure 5.
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• Subcase 2.1: The bicolored edge e ∈ E(X). Let y ∈ Y . We construct a cycle of length 4k + 2
starting with the path uvy, following with a red path of length 2k + 1 with all its vertices in Y ,
and then we alternate between Y and X passing through 2k−1 blue edges and closing the cycle in
u. This cycle has 2k blue edges, 2k + 1 red edges, as well as the bicolored edge e. By considering
the bicolored edge as being blue, we have a balanced copy of C4k+2. This is depicted on Figure 5a.

• Subcase 2.2: The bicolored edge e ∈ E(X,Y ). Say u ∈ X and v ∈ Y . We construct the following
cycle: starting from vertex u, we go to v through the bicolored edge, then alternate between Y
and X following a blue path of length 2k+ 1, and complete the cycle with a red path of length 2k
inside Y that ends in u. This cycle has 2k + 1 blue edges, 2k red edges, and the bicolored edge e.
By considering the bicolored edge as being red, we have a balanced copy of C4k+2. This is depicted
on Figure 5b.

u

v y

...
... ...X YP2k+1

P2k−1

(a) Subcase 2.1: we consider the bicolored edge
xkxk+1 as having the color b.

u v

... ...

...X Y

P2k+1

P2k

(b) Subcase 2.2: we consider the bicolored edge
x1y1 as having the color r.

Figure 5: Illustration of Case 2 of the proof. The bicolored edge is depicted thick and with both colors.

Case 3: H is of type-B, and e = uv with u ∈ V (H) and v ∈ V \V (H). Assume, without loss of generality,
that u ∈ X. We construct the following path of length 4k: take a red path of length 2k in X, and com-
plete it with a blue path of length 2k alternating vertices between X and Y . Let w ∈ X be the last vertex
of this path. Now, if vw ∈ R (resp. vw ∈ B), then we consider the bicolored edge as being in B (resp. in
R). The cycle we constructed has 2k+1 edges of each color class, and thus it is a balanced copy of C4k+2.

Case 4: H is of type-B, and e = uv with u, v ∈ V \ V (H). There are two possible subcases to study.
Both subcases are depicted on Figure 6.

• Subcase 4.1: There is a red edge ux (or vx) for some x ∈ X. We construct the following cycle: for
any vertex w ∈ X \ {x}, take the 3-path wvux, then follow with a red path of length 2k − 1 in X,
and, alternating between X and Y , close with a blue path of length 2k that ends in w.

This cycle has 2k red edges and 2k blue edges between that are different from uv and vw. If vw is
red (resp. blue), then we consider uv as being blue (resp. red) and have a balanced copy of C4k+2.
This is depicted on Figure 6a.

• Subcase 4.2: All edges ux and vx are blue for every x ∈ X. For any two vertices x, x′ ∈ X, we
construct the following cycle: take the 3-path x′vux, continue with a red path of length 2k + 1 in
X, then alternate vertices between X and Y building a blue path of length 2k − 2 that finishes in
w and closes the cycle (if k = 1, just take w as the last vertex of the red path).

This cycle has 2k + 1 red edges, 2k blue edges and the bicolored edge e, that can be considered as
being blue. Hence, we have a balanced copy of C4k+2. This is depicted on Figure 6b.

All the cases have been covered: if there is a bicolored edge in Kn, then we can find a balanced copy
of C4k+2, which proves the result.

Note that there is an important difference between the upper bound given by Theorem 7 and stated
in Corollary 12, and the exact value of the list balancing number as stated in Theorem 13: the general
upper bound gives us a sufficient condition for the existence of θ(kn− k2) bicolored edges to guarantee
a balanced C4k+2, but we actually need only a list-color excess of 1.
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u v

x w

... ...
...X YP2k−1

P2k

(a) Subcase 4.1: we consider the bicolored edge uv
as being in a color class different from x3ku.

u v

x w

... ...
...X YP2k+1

P2k−2

(b) Subcase 4.2: we consider the bicolored edge uv
as having the color b.

Figure 6: Illustration of Case 4 of the proof on C14. The bicolored edge is depicted thick and with both
colors.

4 The list balancing number of K5

Using the characterization of balanceable graphs, it was proved that K5 is not balanceable [4]. In this
section, we provide lower and upper bounds for the list balancing number of K5; surprisingly, these
bounds are matching up to the relevant term. To clarify, trivially, lbal(n,K5) ≥ 1

2

(
n
2

)
and the estimates

we obtain in the next theorem have an additional term of order ex(n, {C3, C4, C5}) = θ(n
3
2 ). This implies

that guaranteeing a balanced copy of K5 requires a remarkably high list-color excess, implying that we
need always a very high amount of bicolored edges.

Theorem 14. Let c = 2
(√

2−1
2
√
2

) 5
2

. For any ε > 0 and n sufficiently large, we have

1

2

(
n

2

)
+ (1− ε)cn 3

2 ≤ lbal(n,K5) ≤ 1

2

(
n

2

)
+ (1 + ε)

1

4
√

2
n

3
2 .

Observe that c ≈ 0.016 while 1
4
√
2
≈ 0.177. The proof of Theorem 14 follows directly from Corollary 16

and Lemma 17 that we state and prove below. For both arguments we focus on the structure of the
graph induced by the bicolored edges, where we take into account the girth and the edge number. Recall
that, for a graph G, the length of a smallest cycle in G is called the girth and is denoted by g(G); if G has
no cycles, then its girth is defined to be infinity. Throughout this section we rely on ex(n, {C3, C4, C5}),
the extremal number for graphs of girth at least 6; more precisely, we exploit that ex(n, {C3, C4, C5}) is
strictly increasing on n and that

ex(n, {C3, C4, C5}) = (1 + o(1))
1

2
√

2
n

3
2 , (1)

where the asymptotic expression is given in Theorem 4.5 of [10]. To verify that ex(n, {C3, C4, C5}) is
strictly increasing, suppose that m = ex(n, {C3, C4, C5}), and take a graph G on n−1 vertices and m−1
edges with girth at least 6. Then we may construct a graph G′ on n vertices and m edges with girth at
least 6 by just adding to G a new vertex connected by an edge to any of the vertices in G. This proves
that m ≤ ex(n, {C3, C4, C5}) and so ex(n − 1, {C3, C4, C5}) ≤ ex(n, {C3, C4, C5}) − 1. By iteratively
applying this argument, it follows more generally that ex(n− k, {C3, C4, C5}) ≤ ex(n, {C3, C4, C5})− k.

For the upper bound, we make use of Theorem 7, which boils down to analysing ex(n,H(K5)); this
is done in the following theorem, where we show that ex(n,H(K5)) = ex(n, {C3, C4, C5}).

Theorem 15. For n ≥ 5, we have ex(n,H(K5)) = ex(n, {C3, C4, C5}).

Proof. Let H = H(K5), that is, the family of subgraphs of K5 that have 5 edges and no isolates. Observe
that H contains precisely six graphs; namely, the 5-cycle, the 4-pan1 (also called P , or the banner), its
complementary P , the bull, the cricket and the diamond. Those are depicted on Figure 7.

1The n-pan is an n-cycle with a pendant edge attached to a vertex of the cycle.
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C5 4-pan = P P bull cricket diamond

Figure 7: The family H(K5).

Observe that every graph from H has either a C3, a C4, or a C5. Hence, the class of graphs of order
n having girth at least 6 is contained in the class of the H-free graphs of order n. This implies directly
that ex(n,H(K5)) ≥ ex(n, {C3, C4, C5}).

We will prove now the other inequality, that is, that every graph on n vertices and more than
ex(n, {C3, C4, C5}) edges contains a subgraph from H.

We use and induction argument. Let b = ex(n, {C3, C4, C5}) + 1. Let F be a graph on n vertices
and with at least b edges. We will prove that F contains a subgraph in H. We start with the base cases
n ∈ {5, 6, 7, 8}:

1. If n = 5, then any spanning tree is a maximal graph of girth at least 6, and thus b = 4 + 1 = 5.
This implies that F contains at least 5 edges, and since n = 5, F must have a subgraph in H.

2. If n = 6, then the maximal graph of girth at least 6 is C6, and thus b = 6 + 1 = 7. Let F ′ be a
subgraph of F on exactly 7 edges. Suppose every set of 5 vertices in F ′ induces a graph of at most
4 edges. Since e(F ′) = 7, the vertex not contained in certain 5-set has to have degree at least 3.
But this happens to every set of 5 vertices. Hence, 2e(F ′) ≥ 6 · 3 = 18, implying that e(F ′) ≥ 9,
a contradiction. Hence, there is a 5-set inducing a graph on at least 5 edges in F ′ and thus in F ,
and so F contains a subgraph from H.

3. If n = 7, then the maximal graphs of girth at least 6 are C7 and the 6-pan, and thus b = 7 + 1 = 8.
Let F ′ be a subgraph of F on exactly 8 edges. Observe that F ′ contains at least an induced cycle
of length at most 5. If F ′ contains an induced C5, then it trivially contains a subgraph from H.
If F ′ contains an induced C4, then since there are at least four remaining edges and only three
remaining vertices, this implies that at least one vertex from the 4-cycle has a neighbour among the
other three vertices, which in turn implies that F ′ contains a 4-pan, which is in H. If F ′ contains a
triangle, then there are three cases: first, there are at least two edges between the triangle and the
remaining vertices, and F ′ contains a bull, a cricket, or a diamond, which are in H; second, there
is no edge between the triangle and the 4 remaining vertices, which implies that they must induce
a diamond, which is in H; finally, if there is exactly one edge between the triangle and one of the
remaining vertices, say u, then u has to have a neighbour in the other remaining vertices (since
otherwise there would be four edges among three vertices, which is impossible), and F ′ contains
the complement of a 4-pan, which is in H.
Hence, in every case, F ′, and thus F , contains a graph of H as a subgraph.

4. If n = 8, then the maximal graph of girth at least 6 contains 9 edges (it consists in vertices
a, b, c, d, e, f, e′, f ′ that are arranged in two cycles abcdefa and abcde′f ′a), and thus b = 9+1 = 10.
Let F ′ be a subgraph of F on exactly 10 edges. Then F ′ contains an induced cycle of length at
most 5. If F contains an induced C5, then it trivially contains a subgraph from H. If F ′ contains
an induced C4, then there are two cases: either there is at least one edge between the 4-cycle and
the remaining vertices, and thus F ′ contains a 4-pan, which is in H; or the four remaining vertices
have to induce a diamond, which is in H. If F ′ contains a triangle, then there are two cases: either
there are at least 2 edges between the triangle and the remaining vertices, and thus F ′ contains
either a bull or a cricket, which are in H; or the five remaining vertices have at least 6 edges, and
by the argument in the case n = 5 implies that F ′ contains a subgraph in H.
Hence, in every case, F ′, and thus F , contains a graph of H as a subgraph.

For the induction step, we will use the following general argument. Suppose that F is a graph on n
vertices and at least b = ex(n, {C3, C4, C5}) + 1 edges; if F ′ may be constructed from F by removing k
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vertices and k edges, then F ′ has (also) girth at most 5. To see this, recall that ex(n, {C3, C4, C5}) is
strictly increasing, so that since F ′ has at least b′ = b− k edges satisfying b′ > ex(n, {C3, C4, C5})− k ≥
ex(n − k, {C3, C4, C5}). If n ≥ 9 and k ≤ 4 we may apply the induction hypothesis and infer that F ′
contains a subgraph in H. In what follows we refer to this argument as the removal induction hypothesis.

Now, assume that n ≥ 9. First, if F contains a vertex of degree 1, then we can remove it and apply
the removal induction hypothesis. Thus, we may assume that F has minimum degree at least 2.

Since b > ex(n, {C3, C4, C5}), we know that F has girth at most 5. There are three cases to consider:
Case 1: F has girth 5. Naturally, F contains a subgraph in H; namely, C5.
Case 2: F has girth 4. We may consider a C4 in F . If all four vertices have degree 2, then we can
remove them from F and apply the removal induction hypothesis. Otherwise, at least one of them has a
third neighbour; the cycle together with such neighbor forms a 4-pan, that is F contains a subgraph of
H.
Case 3: F has girth 3. We may consider a C3 in F . If all three vertices have degree 2, then likewise we
can apply the removal induction hypothesis. Otherwise, at least one of them has a third neighbour u.
However, u has degree at least 2, so it itself has another neighbour; we then obtain either the diamond
or the complement of the 4-pan as a subgraph, both of which are in H.

This proves that F contains a subgraph in H whenever it has more than ex(n, {C3, C4, C5}) edges.
Hence ex(n,H) ≤ ex(n, {C3, C4, C5}) and, thus, we can apply Theorem 7, which proves the statement.

By combining Theorem 7 and Theorem 15, we obtain the desired upper bound on lbal(n,K5).

Corollary 16. For any ε > 0 and n sufficiently large,

lbal(n,K5) ≤ 1

2

(
n

2

)
+ (1 + ε)

1

4
√

2
n

3
2 .

Proof. Let ε > 0. For n sufficiently large, we have with Theorem 7, Theorem 15 and (1) that

lbal(n,K5) ≤ 1

2

(
n

2

)
+

⌈
1

2
ex(n,H(K5))

⌉
=

1

2

(
n

2

)
+

⌈
1

2
ex(n, {C3, C4, C5})

⌉
≤ 1

2

(
n

2

)
+ (1 + ε)

1

4
√

2
n

3
2 .

We will now obtain a lower bound for the list balancing number of K5. In Lemma 17, we provide a
2-list edge coloring of Kn where the subgraph induced by the bicolored edges is of girth at least 6. By
analyzing all possible overlaps of a copy of K5 and the bicolored edges, we prove that this 2-list edge
coloring does not contain a balanced copy of K5.

Lemma 17. Let c = 2
(√

2−1
2
√
2

) 5
2

. For any ε > 0 and n sufficiently large,

lbal(n,K5) ≥ 1

2

(
n

2

)
+ (1− ε)cn 3

2 .

Proof. Suppose that there are integers k, k′ and m such that k ≤ k′ ≤ n and that there exist a graph
H on k vertices, m edges and girth at least 6. The precise values for these integers will be specified, in
terms of n and ε > 0 further on. First, using the assumptions above, we construct a 2-list edge coloring
on Kn and prove that it does not contain a balanced copy of K5.

Let us partition the vertices of Kn in two parts X and Y such that |Y | = k′ (and thus |X| = n− k′);
assign the list {r} to every edge within X; assign the list {r, b} to m edges in Y inducing a copy of H;
and finally assign the list {b} to every other edge within Y and to every edge between X and Y .

We claim that no copy of K5 can be balanced in this coloring. First, any copy of K5 with all its
vertices in X has no blue edges and, thus, it cannot be balanced. Now, let G be a copy of K5 with at
least one vertex in Y and let x and y be the number of vertices of G in X and Y , respectively; note that
y ≥ 1. Recall that bicolored edges form a graph of girth at least 6 and so G has at most y − 1 bicolored
edges in G and precisely

(
x
2

)
red (non-bicolored) edges. To conclude the proof that there is no balanced

copy of K5 observe that if x ≥ 4 then G has at most 4 blue edges, including bicolored ones. Whereas if
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x ≤ 3, then G has at most
(
x
2

)
+ y − 1 ≤ x+ y − 1 = 4 red edges, including bicolored ones; thus, G may

not be balanced.
It remains to prove that, given ε > 0, we may choose k, k′ and m so that the color classes of the

coloring above have size at least 1
2

(
n
2

)
+ (1− ε)cn 3

2 ; as this would establish the lemma.

Fix ε > 0 and let α = 1 − 1√
2
, β =

(
1− ε

2

) (
α
2

) 3
2 ; then let k = dαne, k′ =

⌈
αn+ βn

1
2

⌉
and

m =
⌊
βn

3
2

⌋
. Observe that

m =
⌊
βn

3
2

⌋
≤
(

1− ε

2

)(α
2

) 3
2

n
3
2 ≤

(
1− ε

2

)(k
2

) 3
2

≤ ex(k, {C3, C4, C5});

where the last inequality holds for n large enough since ex(k, {C3, C4, C5}) = (1+o(1))(k2 )
3
2 by Theorem

4.5 of [10]. This establishes the existence of a graph H with girth at least 6, as desired. Moreover, we
have clearly k ≤ k′ ≤ n. Next, we will show that |R|, |B| > n2

4 +
(
1− ε

2

)
αβn

3
2 .

In the following expressions we assume that n is large enough that we may omit rounding to integers
to avoid cumbersome notation; in particular we will simply write n − k′ = (1 − α)n − βn 1

2 (To clarify,
considering the precise expression of n − k′ would only add, to |R| and |B|, terms of order O(n) which
may be neglected).

We clearly have |R| =
(
n−k′

2

)
+m and |B| =

(
k′

2

)
+ k(n− k′). First, we consider the size of R; using

that m = βn
2
3 , we obtain(

n− k′

2

)
+m =

1

2

(
(1− α)n− βn 1

2 )2 − (1− α)n+ βn
1
2

)
+ βn

3
2

=
(1− α)2n2

2
+ αβn

3
2 +

(β2 + α− 1)n

2
+
βn

1
2

2

>
n2

4
+ αβn

3
2 − n

2
;

where in the last inequality we used that 1−α = 1√
2
and removed lower order positive terms. In addition,

we have that εαβ
2 ≥ n

− 1
2 for n large enough, and so

αβn
3
2 − n

2
=
(

1− ε

2

)
αβn

3
2 + n

3
2

(
εαβ

2
− n− 1

2

)
>
(

1− ε

2

)
αβn

3
2 ;

which in turn implies that |R| > n2

4 + (1− ε
2 )αβn

3
2 for n sufficiently large. Similar computations for the

size of B yield(
k′

2

)
+ k′(n− k′) =

1

2

(
(αn+ βn

1
2 )2 − (αn+ βn

1
2 )
)

+
(
αn+ βn

1
2

)(
(1− α)n− βn 1

2

)
=

(
α2

2
+ α(1− α)

)
n2 + β(1− α)n

3
2 − (β2 − 2α)n

2
− β

2
n

1
2

>
n2

4
+ β(1− α)n

3
2 − β2n

2
− β

2
n

1
2 .

In this case we use that 2− 4α = 4√
2
− 2 > 0, and so for n large enough we have

β(1− α)n
3
2 − β2n

2
− βn 1

2 = αβn
3
2 +

βn
3
2

2
(2− 4α− βn− 1

2 − n−1) > αβn
3
2 .

Finally, observe that n2

4 ≥
1
2

(
n
2

)
; on the other side, (1 − ε

2 )αβ ≥ (1 − ε)2(α2 )
5
2 = (1 − ε)c and so we

conclude that, for n large enough,

|R|, |B| > n2

4
+
(

1− ε

2

)
αβn

3
2 ≥ 1

2

(
n

2

)
+ (1− ε)cn 3

2 ;

as desired.
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5 Conclusion
In this paper, we studied the balancing number and the list balancing number of several graph classes.
First, we found the exact value for the balancing number of odd cycles and gave upper and lower bounds
for the balancing number of C4k which are tight up to first order terms. The proofs are based on the
following idea: from a balanced path, we can construct a balanced cycle. We believe that the lower
bound obtained by the construction given in the proof of Lemma 10 is tight and that the upper bound
obtained in Lemma 11 could be improved by means of a carefully analysis of the color patterns inside
the set W .

We also introduced the list balancing number, an extension of the balancing number. We did this
by allowing edges to belong to both color classes, by way of replacing the 2-edge coloring of Kn by a
2-list edge coloring. The goal is to understand exactly if non-balanceable graphs are, in a way, close or
far from being balanceable. For example, we only need a list-color excess of one to guarantee a balanced
copy of C4k+2, while way more (θ(ex(n, {C3, C4, C5})), which is in O(n

3
2 )) are required to guarantee a

balanced K5. Furthermore, while we determined a general upper bound for the list balancing number of
a graph G, based on the extremal number of subgraphs of G containing at least half the edges of G, this
bound can be arbitrarily bad (as is the case for C4k+2). Hence, this extension opens many interesting
questions: for which graph classes is the general upper bound good? For those in which it is bad, what is
the exact value of the list balancing number? Which graphs are close to being balanceable, like C4k+2?
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