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Abstract

Given a graph G, a 2-coloring of the edges of Kn is said to contain a balanced

copy of G if we can find a copy of G such that half of its edges is in each color class.
If there exists an integer k such that, for n sufficiently large, every 2-coloring of Kn

with more than k edges in each color contains a balanced copy of G, then we say that
G is balanceable. The smallest integer k such that this holds is called the balancing

number of G. In this paper, we define a more general variant of the balancing
number, the generalized balancing number, by considering 2-coverings of the edge
set of Kn, where every edge e has an associated list L(e) which is a nonempty subset
of the color set {r, b}. In this case, edges e with L(e) = {r, b} act as jokers in the
sense that their color can be chosen r or b as needed. In contrast to the balancing
number, every graph has a generalized balancing number. Moreover, if the balancing
number exists, then it coincides with the generalized balancing number. We give
the exact value of the generalized balancing number for all cycles except for cycles
of length 4k for which we give tight bounds. In addition, we give general bounds for
the generalized balancing number of non-balanceable graphs based on the extremal
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number of its subgraphs, and study the generalized balancing number of K5, which
turns out to be surprisingly large.

Mathematics Subject Classifications: 05C15, 05C35, 05C70

1 Introduction

Ramsey Theory studies the presence of ordered substructures in large, arbitrarily ordered
structures. For instance, the seminal Ramsey Theorem [16] states that, for every integer r,
every 2-coloring of the edges of Kn contains a monochromatic Kr whenever n is sufficiently
large (see [17] for more information on Ramsey Theory). However, it is also possible to
look for other kinds of ordered substructures. In this line, Bollobás (see [7]) conjectured
that, for any real 0 < ε 6

1
2
, and for large enough n, any 2-coloring of Kn with at

least ε
(

n
2

)

edges in each color contains a K2t where one of the colors induces a clique
of size t, or two disjoint cliques of size t. This conjecture was confirmed by Cutler and
Montágh in [7] and an asymptotically tight bound was obtained by Fox and Sudakov
in [10]. Making the connection to extremal problems in graphs, Caro, Hansberg and
Montejano [4] considered ε as a function of n tending to 0, and reconfirmed Bollobás
conjecture obtaining also a subquadratic bound on the number of edges that are required
in each color. Shortly after, Girão and Narayanan [12] showed that Ω(n2− 1

t ) edges from
each color are sufficient and, conditional on the Kővari-Sós-Turán conjecture for the Turán
number for complete bipartite graphs [14], they showed that this bound is sharp up to
the involved constants. An asymmetric version of this result has been considered in [5].
The notion of balanceability, which was introduced in [4], is enclosed within this setting,
as it is concerned with finding copies of a given graph G in 2-colorings of the edges of
Kn, the only condition being that the copy contains half of its edges in each of the color
classes R and B.

More formally, a 2-coloring of the edges of Kn is a mapping f : E(Kn) → {r, b}. We
can see a 2-coloring of the edges of Kn as a partition E(Kn) = R ⊔ B where we define
the color class R (resp. B) as the set of edges e such that f(e) = r (resp. such that
f(e) = b). Edges in R are called red, edges in B are called blue. Let G(V,E) be a simple,
finite graph; a 2-coloring R ⊔ B of the edges of Kn is said to contain a balanced copy of
G if we can find a copy of G such that its edge-set E is partitioned in two evenly divided
parts (E1, E2) with E1 ⊆ R, E2 ⊆ B; that is, such that ||E1| − |E2|| 6 1. Note that if |E|
is even, then the copy of G has exactly half of its edges in each color class.

Within the range of Ramsey Theory and Extremal Graph Theory, balanceability of
graphs deals with the question of the existence and the determination of the minimum
number (if it exists) of edges in each color class to guarantee the existence of a balanced
copy of a graph G in any 2-coloring of the edges of Kn, as well as with studying the
extremal structures.

Definition 1. Let G be a simple, finite graph. For n sufficiently large, if there exists an
integer k = k(n) such that every 2-coloring R ⊔ B of the edges of Kn with |R|, |B| > k

contains a balanced copy of G, then G is balanceable. The smallest such k is called the
balancing number of G and is denoted by bal(n,G).
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In their introductory paper [4], Caro, Hansberg and Montejano gave a structural
characterization of balanceable graphs. Beyond the computational question of deciding
whether a given graph is balanceable or not, there is also the theoretical problem of
optimizing the function k(n); that is, providing exact values or bounds for the Turán-
type parameter bal(n,G). Observe that bal(n,G) can also be seen as the maximum
number k(n) such that there is a 2-coloring of the edges of Kn with one of the colors
having precisely k(n) edges, and such that there is no balanced copy of G. The family of
such colorings would be the extremal configurations of this Turán-type parameter.

Several authors studied the problem of balanceability and the optimization problem of
determining the balancing number. Caro, Hansberg and Montejano proved in [3] that the
only nontrivial balanceable complete graph with an even number of edges is K4. They also
determined the balancing number of K4 [3], as well as of paths and stars, in [4], and studied
the balancing number for trees and amoebas in [4]. Caro, Lauri and Zarb [6] exhaustively
studied the balancing number of graphs on at most four edges. The first, third and fourth
authors studied the balanceability of several graph classes [8]. In [2, 9, 13], a closely related
problem is studied for spanning balanced subgraphs. In [1], colorings with arbitrary many
colors are studied and the corresponding 3-color balancing number of paths is determined
upon a constant factor. In this paper, we tackle the problem of finding the balancing
number of balanceable cycles (see Section 3.1).

Although the question of the existence of the balancing number is still open for many
graph classes, we are also interested in gauging how we may obtain balanceable copies
of a non-balanceable graph, under the relaxation of the 2-coloring we consider next. In
this paper, we extend the notion of balancing number by extending the class of colorings
under consideration to edge coverings. In this case, each edge receives a nonempty list of
colors, and we may choose one among them as needed in order to construct a balanced
copy of a graph G.

More formally, a 2-edge covering of Kn is a function L : E(Kn) → {{r}, {b}, {r, b}},
that induces two sets R and B, called its color classes, which are defined as follows:
R = {e ∈ E(Kn) | r ∈ L(e)} and B = {e ∈ E(Kn) | b ∈ L(e)}. As we can see,
R∪B = E(Kn), but the two color classes do not necessarily form a partition of the edges
of Kn. The edges in R ∩ B are called bicolored edges, in the sense that we can choose
their color as needed when looking for a balanced copy of a graph. This leads to a new
definition of a balanced copy of a graph, which is a generalization of the previous one:

Definition 2. Let L : E(Kn) → {{r}, {b}, {r, b}} be a 2-edge covering of Kn inducing
color classes R and B. For a given graph G(V,E), a balanced copy of G is a copy of G
whose edge-set has a partition E = E1⊔E2 such that E1 ⊆ R, E2 ⊆ B and ||E1|−|E2|| 6 1.

Note that some of the edges in the copy of G may be in R∩B; for example, if e ∈ E1

and e ∈ R ∩B then we say that we choose color r for the bicolored edge e.
Furthermore, for every finite graph G(V,E), if n > |V |, then Kn has a 2-edge covering

where we may find a balanced copy of G. Indeed, consider the 2-edge covering L of Kn

such that L(e) = {r, b} for every edge e. Observe that, in any copy of G, we may choose
the color r for half its edges and the color b for the rest. This allows us to define the
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generalized balancing number of a graph, as follows:

Definition 3. Let G(V,E) be a finite, simple graph. For n > |V |, the generalized balanc-
ing number of G, denoted by bal*(n,G), is the smallest integer k such that every 2-edge
covering L of Kn inducing the color classes R and B with |R|, |B| > k contains a balanced
copy of G.

As we can see, the generalized balancing number is a natural extension of the balancing
number. Indeed, every 2-coloring, represented by a partition E(Kn) = R⊔B, corresponds
to a 2-covering where every list L(e) has exactly one element. It is important to observe
that this extension does not add more complexity to the problem when bal(n,G) exists,
and in which case satisfies bal(n,G) = bal*(n,G) < 1

2

(

n
2

)

(for details, see Proposition 4 in
Section 2).

The main interest of the generalized balancing number is the study of non-balanceable
graphs, where we interpret having bal*(n,G) close to 1

2

(

n
2

)

as G being close to balanceable,
in the sense that a few more than 1

2

(

n
2

)

edges from each color (implying that there must
be a few bicolored edges) are sufficient to guarantee a balanced copy of G. We refer to
the needed number of edges that exceeds 1

2

(

n
2

)

in each color as the color excess of edges
in each color. For example, we prove in Section 3.2, that, for cycles C4k+2 of length
congruent to 2 modulo 4, which are not balanceable, a color excess of just 1 edge in each
color is sufficient for guaranteeing a balanced copy of C4k+2. In other words, we show that
bal*(n, C4k+2) =

1
2

(

n
2

)

, which is the smallest possible value for the generalized balancing
number of a non-balanceable graph. On the other hand, there are graphs for which a
much larger color excess in each color is necessary to guarantee a balanced copy of them.
Such is the case of K5 where the color excess is of order Θ(n

3

2 ); see Theorem 18.
One of the key elements of Theorems 7, 10, and 18 is the use of the extremal number

(or Turán number) of a graph family; recall that, given a graph family H and an integer
n, the number ex(n,H) is the highest number of edges in a graph of order n that does
not contain any (not necessarily induced) subgraph in H.

This paper is organized as follows: we first give, in Section 2, some general results about
the generalized balancing number and about its connection to the balancing number. We
then move on, in Section 3, to studying the balancing number of the balanceable cycles,
that is, odd cycles and cycles on 4k vertices, for k > 1, as well as the generalized balancing
number of non-balanceable cycles, i.e., cycles on 4k+2 vertices, where k > 2. We close in
Section 4 with the analysis of the complete graph K5, giving asymptotically tight bounds
for its generalized balancing number.

Note that, in all figures throughout the paper, edges in the color class R will be
depicted in red, and edges in the color class B will be depicted in blue.

2 Generalized balancing number: preliminaries and general re-

sults

In this section, we provide general bounds for the generalized balancing number, which are
relevant for graphs where the balancing number does not exist. In particular, Proposition 6
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says that looking at the number of bicolored edges suffices to get upper bounds; which,
in turn, leads to consider the Turán number for a particular class of graphs described in
Theorem 7. Before proceeding to these results, we provide a proof of the fact mentioned
in the introduction: if bal(n,G) exists for a graph G, then bal*(n,G) = bal(n,G).

Proposition 4. Let G be a graph and n be an integer. If bal(n,G) exists, then bal(n,G) =
bal*(n,G) < 1

2

(

n
2

)

.

Proof. Consider a graph G(V,E) and n for which bal(n,G) exists; in particular, n > |V |.
As we previously discussed, the class considered for bal*(n,G) extends the class of 2-
colorings; this implies that bal(n,G) 6 bal*(n,G). On the other hand, it is clear by
definition that bal(n,G) < 1

2

(

n
2

)

.
To establish the equality we prove that every 2-edge covering E(Kn) = R∪B satisfying

|R|, |B| > bal(n,G) has a balanced copy of G. Suppose that there is a 2-coloring E(Kn) =
R′ ∪B′ with R′ ⊂ R, B′ ⊂ B and |R′|, |B′| > bal(n,G), then a balanced copy of G under
the 2-coloring R′∪B′ also corresponds to a balanced copy of G under the 2-edge covering
R ∪ B. Hence, it remains to show that we may construct a coloring R′ ∪ B′ with such
properties. If |R \B| > bal(n,G), then we simply let R′ = R \B and B′ = B. Otherwise,
let R′ ⊂ R be an arbitrary subset such that R \R′ ⊂ B and |R′| = bal(n,G) + 1, then let
B′ = B \ R′. In either case we have R′ ⊂ R and B′ ⊂ B. The constraint on the size of
R′ and B′ is clearly satisfied also; for B′ in the latter case, observe that bal(n,G) < 1

2

(

n
2

)

implies |B′| =
(

n
2

)

− |R′| > bal(n,G) completing the proof that bal(n,G) = bal*(n,G).
Hence, every 2-edge covering E(Kn) = R∪B satisfying |R|, |B| > bal(n,G) has a balanced
copy of G.

Proposition 4 immediately implies the following statement:

Corollary 5. Let G(V,E) be a graph and n > |V | be an integer. If bal(n,G) does not
exist, then 1

2

(

n
2

)

6 bal*(n,G) <
(

n
2

)

.

The next result, which is the key for the main theorem of the section, uses a simple
relation between the sizes of the color classes and the necessary number of bicolored edges.

Proposition 6. Let G be a graph and let b be a positive integer. If every 2-list edge
coloring with at least b bicolored edges has a balanced copy of G then bal*(n,G) 6 1

2

(

n
2

)

+
⌈

b
2

⌉

− 1.

Proof. First, observe that an inclusion-exclusion argument gives that if R∪B are the color
classes of a 2-edge covering of Kn satisfying |R| = |B| = 1

2

(

n
2

)

+m, then there are exactly
2m bicolored edges. Consequently, for any 2-edge covering inducing color classes R and
B with |R|, |B| > 1

2

(

n
2

)

+
⌈

b
2

⌉

, there are at least b bicolored edges, and so, by hypothesis,
there is a balanced copy of G.

In the remainder of the paper we say that a 2-edge covering has a color excess of b
edges, referring to the number of edges in each color by which 1

2

(

n
2

)

is at least surpassed.
More precisely, we say that a 2-edge covering E(Kn) = R∪B has a color excess of b edges,
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if |R|, |B| > 1
2

(

n
2

)

+b. In such a case, since |R∩B| = |R|+|B|−|R∪B| = |R|+|B|−
(

n
2

)

> 2b,
it clearly follows that there have to be at least 2b bicolored edges.

The following theorem uses the idea of exploiting the flexibility of bicolored edges.
Once we have a copy of G we have to choose the color of the bicolored edges, and we
do so according to the edges which have a unique color. In particular, if more than half
the edges of such a copy are bicolored, then we may distribute these between the two
color classes to balance the copy, regardless of the color of the rest of the edges. With
this perspective, a general bound on the generalized balancing number may be reduced
to guaranteeing that the 2-edge coverings have enough bicolored edges. To this aim, we
need to consider for a graph G, the family of all its subgraphs H 6 G, where the graph
H satisfies that V (H) ⊆ V (G) and E(H) ⊆ E(G), having half of the edges,

H(G) =

{

H : H 6 G, e(H) =

⌊

e(G)

2

⌋

, H has no isolated vertices

}

;

recall that an isolated vertex is a vertex of degree 0. We note at this point that
this family was already used in [2] to gain a similar insight in studying the existence of
balanced copies of spanning subgraphs of a 2-colored Kn.

Theorem 7. Let G(V,E) be a graph and n > |V | be an integer. Then we have

bal*(n,G) 6
1

2

(

n

2

)

+

⌈

ex(n,H(G))

2

⌉

.

Proof. Let G(V,E) be a graph, and let R and B be the color classes induced by a 2-edge

covering of Kn with |R|, |B| > 1
2

(

n
2

)

+ ⌈ ex(n,H(G))
2

⌉. This implies that there are at least
ex(n,H(G)) + 1 bicolored edges. In particular, since Kn is of order n, the subgraph of
Kn induced by the bicolored edges contains a graph in H(G), say H . Starting from H ,
we can complete with other edges to construct a copy of G. This copy has at least half
its edges that are bicolored, and thus we can make it balanced. Hence, we can find a
balanced copy of G, proving the upper bound on bal*(n,G).

Theorem 7 gives a general upper bound on the generalized balancing number of graphs
which, by Proposition 4, is only relevant when the balancing number does not exist. This
fairly general bound may be tight (up to the order of the second term ex(n,H(G))), as
is the case of K5. In Section 4, we will use this result to give an upper bound on the
generalized balancing number of K5, which will be matched with a lower bound of the
same order up to a relevant term. However this general upper bound can also be far
from the exact value of the generalized balancing number, as can be noticed already in
Section 3.2, where we determine the generalized balancing number of the unbalanceable
cycles.
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3 The balancing number and generalized balancing number of

cycles

In [8], it was observed that the cycle C4k is balanceable while the cycle C4k+2 is not.
We note here that all odd cycles are also balanceable, and provide exact values for their
balancing number. Moreover, we give tight bounds, up to the first order term, for the
balancing number of cycles of length 4k, for k > 1. Finally, we determine the generalized
balancing number of C4k+2, for k > 1.

3.1 Balanceable cycles

Theorem 9 below, which deals with odd-length cycles is a direct consequence of the
balanceability of paths of even length. We denote with Pk the path on k edges (and
thus k+1 vertices); the exact values of bal(n, Pk) are obtained in [4, Theorem 3.7] which
states the following.

Theorem 8. [4] Let k > 2 and n be integers with k even and such that n >
9
32
k2+ 1

4
k+1.

Then

bal(n, Pk+1) = bal(n, Pk) =

{

(k−2
4
)n− k2

32
+ 1

8
, for k ≡ 2 mod 4,

(k−4
4
)n− k2

32
+ k

8
+ 1, for k ≡ 0 mod 4,

Theorem 9 states the exact values of bal(n, C4k+α) as a direct consequence of the
previous theorem.

Theorem 9. Let k be a positive integer, let n >
9
2
k2 + 13

4
k+ 49

32
, and let α ∈ {−1, 1}. We

have the following:

bal*(n, C4k+α) = bal(n, C4k+α) = bal(n, P4k+α−1) = (k − 1)n− 1

2
(k2 − k − 1− α).

Proof. Let k be a positive integer. We first prove that the balancing number of odd cycles
is equal to the balancing number of paths with one edge less, proving at the same time
that odd cycles are balanceable. We will demonstrate the result only for C4k+1 (i.e for
α = 1) since the exact same arguments can be made for C4k−1.

First, we prove that bal(n, C4k+1) 6 bal(n, P4k). Assume that we have a 2-coloring
R⊔B of the edges of Kn with |R|, |B| > bal(n, P4k). This implies that there is a balanced
copy of P4k; that is, a path with an equal number of edges in R and in B. Regardless
of the color of the edge connecting the endpoints of the path, the addition of this edge
to the path creates a balanced cycle. Hence, we obtain the claimed upper bound on
bal(n, C4k+1).

Now, we prove that bal(n, P4k) 6 bal(n, C4k+1). Assume that we have a 2-coloring
R⊔B of the edges of Kn with |R|, |B| > bal(n, C4k+1). This implies that there is a balanced
copy of C4k+1; without loss of generality, assume that this cycle contains 2k red edges and
2k + 1 blue edges. The path obtained from the cycle by deleting one of the blue edges is
a balanced path of length 4k, completing the proof that bal(n, C4k+1) = bal(n, P4k).
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Finally, since we just proved C4k+α is balanceable, the equality bal*(n, C4k+α) =
bal(n, C4k+α) is clear from Proposition 4.

The problem of finding the exact value of the balancing number of cycles of length 4k
is more challenging; Theorem 10 below gives an upper and a lower bound for bal(n, C4k)
which are tight up to the first term, (k−1)n; note that, contrary to the case of odd-length
cycles, we need additional edges in each color class (of the order of k2) in order to give
an upper bound of bal(n, C4k) and therefore guarantee a balanced copy of C4k.

Theorem 10. Let k be a positive integer. For n >
9
2
k2+ 13

4
k+ 49

32
, we have the following:

(k − 1)n− (k − 1)2 6 bal*(n, C4k) = bal(n, C4k) < (k − 1)n+ 12k2 + 3k.

The next two lemmas directly prove the bounds of Theorem 10 for bal(n, C4k). Those
bounds show that the cycles C4k are balanceable, which, in turn, allows us to invoke
Proposition 4 in order to have the equality bal*(n, C4k) = bal(n, C4k).

First, we show that there is a natural 2-coloring avoiding any balanced cycle of length
4k which provides us with a lower bound for bal(n, C4k).

Lemma 11. For any n > 4k, we have bal(n, C4k) > (k − 1)n− (k − 1)2.

Proof. We will give a 2-coloring R⊔B of the edges of Kn with |B| > |R| = (k−1)n−(k−1)2

and without a balanced copy of C4k. To this aim, let V (Kn) = V1⊔V2, where |V1| = k−1
and |V2| = n−k+1, and we color the edges in E(V1, V2) with red, and the remaining edges
get the color blue. This coloring satisfies |R| = (k − 1)(n− k + 1) = (k − 1)n− (k − 1)2,
and it is not difficult to verify that |B| > |R| for any k > 1 and n > 4k. Furthermore,
any 4k-cycle in this coloring can have at most k − 1 vertices in V1 and thus have at most
2k−2 red edges. It follows that we cannot get a balanced copy of C4k, which implies that
bal(n, C4k) > (k − 1)(n− k + 1).

Similar to the proof idea of Theorem 9, an upper bound for bal(n, C4k) can be given
by constructing a balanced copy of C4k from a balanced copy of C4k−1. We will show
that, if this construction is not possible, then some structure for the 2-coloring of the
edges of Kn is forced, in which case we are able to find, in turn, a balanced 4k-cycle
by means of a long red path that is glued together with a long blue path, together with
some extra edges that close the cycle. To guarantee the existence of the long red path,
we make use of the extremal number for paths. Note that the additional edges (namely
(k − 1)n+ 12k2 + 3k − bal(n, C4k−1)) are necessary to guarantee this extremal number is
exceeded.

Lemma 12. For n >
9
2
k2 + 13

4
k + 49

32
, we have bal(n, C4k) 6 (k − 1)n+ 12k2 + 3k.

Proof. For k > 1 we have that 9
2
k2 + 13

4
k + 49

32
> 10k − 1; thus we may assume that we

can apply Theorem 9 and that n > 10k − 1, which is a sufficient assumption on n for all
forthcoming arguments.
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We first verify that the condition min{|R|, |B|} > (k − 1)n+ 12k2 + 3k is satisfiable;
this is

(

n
2

)

> 2(k − 1)n + 24k2 + 6k. Rearranging the terms, it suffices to verify that
n(n− 4k + 3) > 48k2 + 12k. Indeed, since n > 10k − 1 we have,

n(n− 4k + 3) > (10k − 1)(6k + 2) = 60k2 + 14k − 2 > 48k2 + 12k;

so we may consider any 2-coloring of the edges of Kn with |R|, |B| > (k−1)n+12k2+3k.
We now prove the lemma by contradiction. Let R⊔B be a 2-coloring of the edges of Kn

with |R|, |B| > (k−1)n+12k2+3k. Assume that this coloring has no copy of a balanced
4k-cycle. By Theorem 9 there is a balanced copy C of C4k−1 in this coloring. Without
loss of generality, we may assume that C consists of a cycle with 2k blue edges and 2k−1
red edges. This implies that C has, at some place, a red edge followed by two blue edges:
say C has consecutive vertices u0, u1, u2, u3 where u0u1 ∈ R and u1u2, u2u3 ∈ B.

Let V = V (Kn) and W = V (C). In what follows we will infer a structure among
the vertices in V \ W which will lead to a contradiction to the initial assumption that
there is no balanced 4k-cycle. The next three claims stem from the fact that some specific
structure outside of C would give a balanced 4k-cycle. Let X (resp. Y ) correspond to the
sets of vertices v ∈ V \W such that u1v ∈ R (resp. u1v ∈ B). Note that V \W = X ∪Y ,
though either X or Y may be empty. We will now strengthen the structure with three
claims.

Claim 13. For each v ∈ Y , uiv ∈ B for all 1 6 i 6 3.

Proof of Claim 13. Let v be a vertex in Y . By definition u1v ∈ B. If u2v ∈ R, then
we may extend C by replacing the edge u1u2 with the path u1vu2 to obtain a balanced
4k-cycle, a contradiction (see Figure 1a). It follows that u2v ∈ B. Now, applying a similar
argument (replacing u2u3 with the path u2vu3), we can conclude that u3v ∈ B. �

Claim 14. For each v ∈ X, u0v ∈ B and u2v ∈ R.

Proof of Claim 14. Let v be a vertex in X. By definition, u1v ∈ R. The same argument
than in the proof of Claim 13 gives that u2v ∈ R. Now, assume by contradiction that
u0v ∈ R. Then, we may extend C by replacing the edge u0u1 with the path u0vu1, and
thus obtain a balanced 4k-cycle, a contradiction (see Figure 1b). �

We now have a more constrained structure, which is depicted on Figure 2.

Claim 15. We have E(X, Y ) ⊆ R, and E(X) ∪ E(Y ) ⊆ B.

Proof of Claim 15. First, assume by contradiction that there are v, v′ ∈ X such that
vv′ ∈ R. By Claim 14, the path u0vv

′u2 consists of two red edges and one blue edge;
thus we may extend C by replacing u0u1u2 with the path u0vv

′u2 to obtain a balanced
4k-cycle, a contradiction (see Figure 3a). It follows that vv′ ∈ B for all v, v′ ∈ X.

Next, assume by contradiction that there are v, v′ ∈ Y such that vv′ ∈ R. By Claim 13,
the path u1vv

′u3 consists of two blue edges and one red edge; thus we may extend C by
replacing u1u2u3 with the path u1vv

′u3 to obtain a balanced 4k-cycle, a contradiction (see
Figure 3b). It follows that vv′ ∈ B for all v, v′ ∈ Y .
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u0

u1

u2

u3

C Y

(a) The proof of Claim 13: if, for any v ∈ Y ,
u2v ∈ R, then we can alter C to construct
a balanced 4k-cycle.

u0

u1

u2

u3

C X

(b) The proof of Claim 14: if, for any v ∈ X,
u0v ∈ R, then we can alter C to construct
a balanced 4k-cycle.

Figure 1: Strengthening the structure: Claims 13 and 14.

u0

u1

u2

u3

C

X

Y

Figure 2: The structure after Claims 13 and 14. All the edges from the uis to vertices in
X and Y follow this structure.

Finally, assume by contradiction that there are v ∈ X and v′ ∈ Y such that vv′ ∈ B.
Since u1v ∈ R (by definition) and u3v

′ ∈ B (by Claim 13), we can replace the path u1u2u3

by the path u1vv
′u3, and obtain a balanced 4k-cycle, a contradiction (see Figure 3c). It

follows that for each v ∈ X and v′ ∈ Y , vv′ ∈ R. �

We now use the structure we found in Claim 15 to find a contradiction. Recall that
n > 10k−1 which implies that |X∪Y | = |V \W | > n−4k+1 > 6k and so max{|X|, |Y |} >

3k.
For the remainder of the proof, we have two possibilities: either |X| 6 |Y | or |X| > |Y |.

However, note that those two cases are symmetrical since we will not care about the
specific colors of the edges between the vertices u0, u1, u2, u3 and X ∪ Y , but rather more
in general within and between the sets W,X, and Y .

Hence, without loss of generality, we assume that |X| 6 |Y |. This condition will imply
|X| < k. Indeed, assume by contradiction that |X| > k. Then, we can obtain a balanced
4k-cycle by taking a blue path of length k within Y , and then a red path of length k

closing the cycle by going back and forth 2k times between X and Y (which is possible
since |Y | > 3k and |X| > k). This contradiction implies that |X| < k.

Thus, we have a partition V = Y ⊔ (W ∪X) where all the edges within Y are blue and
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u0

u1

u2

u3

C

X

Y

(a) There are no red edges in
X.

u0

u1

u2

u3

C

X

Y

(b) There are no red edges in
Y .

u0

u1

u2

u3

C

X

Y

(c) There are no blue edges
between X and Y .

Figure 3: Strengthening the structure: Claim 15. In every case, we can use C to get a
balanced 4k-cycle, a contradiction.

|Y | > n− 5k + 2 (since |X ∪ Y | = n− 4k + 1 and |X| 6 k − 1). We will now study the
number of red edges in E(Y,W ∪X). Let H be the bipartite graph induced by the set of
red edges contained in E(Y,W ∪ X). We start by giving a lower bound on the number
of edges in H , which is the number of red edges in Kn minus the number of red edges in
E(W ∪X); recall that E(X) ∪ E(Y ) ⊆ B by Claim 15. Hence, we have:

|E(W ∪X) ∩ R| 6 e(W ) + e(W,X) <

(

4k − 1

2

)

+ k(4k − 1) = (4k − 1)(3k − 1)

and so, we have:

e(H) = |R| − |E(W ∪X) ∩ R| > (k − 1)n+ 12k2 + 3k − (4k − 1)(3k − 1)

> (k − 1)n+ 10k − 1.

However, ex(n, P2k−1) 6 (k − 1)n (see Theorem 5.5 in [11]), which means that, in a
graph with n vertices and at least (k − 1)n edges, there is a path on 2k − 1 edges. As
a consequence, there is a path P of length 2k − 1 edges in H . Since P has an even
number of vertices, we may assume that P = v1w1v2 . . . wk−1vkwk with all vi ∈ Y and all
wi ∈ W ∪X.

Let H ′ = (Y ′, X ′) be the subgraph of H induced by Y ′ = Y \ {v1, . . . , vk} and X ′ =
(W ∪ X) \ {w1, . . . , wk−1}. Observe that |X ′| = |W ∪ X| − (k − 1) 6 4k − 1 and using
the lower bound on e(H), we get

e(H ′) = e(H)− e(Y, {w1, . . . , wk−1})− e(W ∪X, {v1, . . . , vk})
> e(H)− (n− 5k + 2)(k − 1)− (4k − 1)k

= e(H)− (k − 1)n+ k2 − 6k + 2

> (k − 1)n+ 10k − 1− (k − 1)n+ k2 − 6k + 2

> 4k.

It follows that e(H ′) > |X ′| and, by the pigeonhole principle, there is a vertex w ∈ X ′

that has two neighbors v and v′ in Y ′.
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However, this allows us to construct a balanced 4k-cycle. Indeed, start from v1 and
take the path P all the way to vk (this gives us 2k − 2 red edges, then go to v and take
the path vwv′ (this gives one blue edge and two red edges), and finally take a path of
2k − 1 blue edges that ends back in v1 and using vertices x1, . . . , x2k−2 in Y ′. Note that
we can select the xi’s as distinct from the vi’s and from v and v′, since |Y | > 3k. This
cycle, shown on Figure 4, has 2k edges in each color class, thus we have a contradiction.

W ∪X Y

X ′ Y ′

w1
...

wk−1

wk

v1

...

vk

v

v′

w

x1

xℓ

Figure 4: Constructing a balanced 4k-cycle by using the structure between W ∪ X and
Y (we have ℓ = 2k − 2).

This contradiction proves the lemma.

3.2 Non-balanceable cycles

In this section, we obtain the exact value of the generalized balancing number for C4k+2,
for k > 1, which represents the class of non-balanceable cycles. This case is remarkable
because it suffices that each color class covers at least half the edges in Kn plus one
additional edge (i.e., the coloring has a color excess of 1), which implies the existence of
at least two bicolored edges regardless of the coloring. Moreover, the construction of the
balanced cycle in Theorem 17 uses the existence of at most one bicolored edge, justifying
the heuristic that the generalized balancing number (when it is at least 1

2

(

n
2

)

) provides a
measure of how close the graph is to being balanceable.

We note that the general upper bound from Theorem 7 gives us a sufficient condition
for the existence of 1

2

(

n
2

)

+ kn
2
+ O(1) bicolored edges to guarantee a balanced C4k+2.

Indeed, consider H = H(C4k+2), that is, the family of linear forests (i.e. unions of disjoint
paths) on 2k + 1 edges. Noting that ex(n,H) is equal to the extremal number of the
family containing all linear forests on n vertices and 2k + 1 edges, Theorem 1.5 in [15]
states that, for n sufficiently large:

ex(n,H) =

(

n

2

)

−
(

n− k

2

)

= kn− k(k + 1)

2
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Hence, Theorem 7 yields

bal*(n, C4k+2) 6
1

2

(

n

2

)

+

⌈

kn

2
− k(k + 1)

4

⌉

=
1

2

(

n

2

)

+
kn

2
+O(1).

We base the construction of the balanced cycle on the existence of one of two substruc-
tures that are called unavoidable patterns and are closely related to the characterization
of balanceable graphs; see [4, Theorem 2.4]. In fact, one of these substructures, if it
is large enough, naturally contains a balanced C4k+2; that is, the color of the bicolored
edges may be established before looking for the balanced cycle. However, for the second
substructure, the construction of the balanced cycle uses a bicolored edge to leverage the
fact that C4k+2 is not balanceable; that is, in such case the balanced copy always includes
a bicolored edge.

Theorem 16. [4] Let t be a positive integer. For n sufficiently large, there exists a
positive integer m = m(t) such that

ex2(n,Ft) = O(n2− 1

m ),

where Ft is the family of type-A and type-B colored K2t’s. A 2-edge-coloring of K2t is
a type-A if the edges of one of the colors induce a complete graph Kt and it is a type-B
if the edges of one of the colors induce a complete bipartite graph Kt,t.

Theorem 17. Let k be a positive integer. For n sufficiently large, we have

bal*(n, C4k+2) =
1

2

(

n

2

)

.

Proof. Since C4k+2 is not balanceable, by Corollary 5, we have bal*(n, C4k+2) >
1
2

(

n
2

)

. To
prove the equality, we simply have to consider a 2-edge covering of Kn inducing color
classes R and B where |R|, |B| > 1

2

(

n
2

)

+ 1 and find a balanced copy of C4k+2. Note that
there are at least 2 bicolored edges in the 2-edge covering. Let t be an integer verifying
t > 3k + 1.

For the first step, let us ignore the fact that we have bicolored edges: every bicolored
edge is set to a fixed color, making sure that both color classes remain balanced and thus
contain half (±1) the edges of Kn. This allows us to apply Theorem 16, which ensures
that, within Kn, there is a copy H of K2t such that there is a partition of its vertex set
V (H) = X ⊔ Y such that |X| = |Y | = t, and one of the following hold:

• H is of type-A: E(X) ⊆ R, and E(Y ) ∪ E(X, Y ) ⊆ B (or vice-versa).

• H is of type-B: E(X) ∪ E(Y ) ⊆ R, and E(X, Y ) ⊆ B (or vice-versa).

Now, let e ∈ R ∩ B be one of the bicolored edges (the other one will not be needed at
all). We prove that whichever type of copy of K2t exists and wherever the bicolored edge
e is in Kn, we can find a balanced copy of C4k+2. There are four cases to consider.
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Case 1: H is of type-A. In this case, it is possible to construct the following balanced
(4k+2)-cycle: follow a red path of length 2k+1 in X, then go to Y through a blue edge,
follow a blue path of length 2k − 1 in Y , and finally close the cycle by going back to the
first vertex that we used in X (using another blue edge). Note that we did not make use
of any bicolored edge in this case.
Case 2: H is of type-B and e ∈ E(H). Then either e ∈ E(X) (or e ∈ E(Y ), but this is
symmetric), or e ∈ E(X, Y ). Let e = uv. Both subcases are depicted on Figure 5.

• Subcase 2.1: The bicolored edge e ∈ E(X). Let y ∈ Y . We construct a cycle of
length 4k+2 starting with the path uvy, following with a red path of length 2k+1
with all its vertices in Y , and then we alternate between Y and X passing through
2k−1 blue edges and closing the cycle in u. This cycle has 2k blue edges, 2k+1 red
edges, as well as the bicolored edge e. By considering the bicolored edge as being
blue, we have a balanced copy of C4k+2. This is depicted on Figure 5a.

• Subcase 2.2: The bicolored edge e ∈ E(X, Y ). Say u ∈ X and v ∈ Y . We construct
the following cycle: starting from vertex u, we go to v through the bicolored edge,
then alternate between Y and X following a blue path of length 2k+1, and complete
the cycle with a red path of length 2k inside Y that ends in u. This cycle has 2k+1
blue edges, 2k red edges, and the bicolored edge e. By considering the bicolored
edge as being red, we have a balanced copy of C4k+2. This is depicted on Figure 5b.

u

v y

...

... ...X YP2k+1

P2k−1

(a) Subcase 2.1: we consider the bicolored
edge uv as having the color b.

u v

... ...

...X Y

P2k+1

P2k

(b) Subcase 2.2: we consider the bicolored
edge uv as having the color r.

Figure 5: Illustration of Case 2 of the proof. The bicolored edge is depicted thick and
with both colors.

Case 3: H is of type-B, and e = uv with u ∈ V (H) and v ∈ V \ V (H). Assume, without
loss of generality, that u ∈ X. We construct the following path of length 4k: starting
from u, take a red path of length 2k in X, and complete it with a blue path of length
2k alternating vertices between X and Y . Let w ∈ X be the last vertex of this path, we
close the cycle with the path wvu. Now, if vw ∈ R (resp. vw ∈ B), then we consider the
bicolored edge as being in B (resp. in R). The cycle we constructed has 2k + 1 edges of
each color class, and thus it is a balanced copy of C4k+2.
Case 4: H is of type-B, and e = uv with u, v ∈ V \ V (H). There are two possible
subcases to study. Both subcases are depicted on Figure 6.
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• Subcase 4.1: There is a red edge ux (or vx) for some x ∈ X. We construct the
following cycle: for any vertex w ∈ X \ {x}, take the 3-path wvux, then follow with
a red path of length 2k − 1 in X, and, alternating between X and Y , close with a
blue path of length 2k that ends in w.

This cycle has 2k red edges and 2k blue edges between that are different from uv

and vw. If vw is red (resp. blue), then we consider uv as being blue (resp. red) and
have a balanced copy of C4k+2. This is depicted on Figure 6a.

• Subcase 4.2: All edges ux and vx are blue for every x ∈ X. For any two vertices
x, w ∈ X, we construct the following cycle: take the 3-path wvux, continue with a
red path of length 2k + 1 in X, then alternate vertices between X and Y building
a blue path of length 2k − 2 that finishes in w and closes the cycle (if k = 1, just
take w as the last vertex of the red path).

This cycle has 2k+1 red edges, 2k blue edges and the bicolored edge e, that can be
considered as being blue. Hence, we have a balanced copy of C4k+2. This is depicted
on Figure 6b.

u v

x w

... ...
...X YP2k−1

P2k

(a) Subcase 4.1: we consider the bicolored
edge uv as being in a color class different
from wv.

u v

x w

... ...
...X YP2k+1

P2k−2

(b) Subcase 4.2: we consider the bicolored
edge uv as having the color b.

Figure 6: Illustration of Case 4 of the proof on C14. The bicolored edge is depicted thick
and with both colors.

All the cases have been covered: if there is a bicolored edge in Kn and there is a copy
H of K2t of type A or B, then we can find a balanced copy of C4k+2, which proves the
result.

4 The generalized balancing number of K5

Using the characterization of balanceable graphs, it was proved that K5 is not balance-
able [3]. In this section, we provide lower and upper bounds for the generalized balancing
number of K5; surprisingly, these bounds are matching up to the relevant term. To clarify,
trivially, bal*(n,K5) >

1
2

(

n
2

)

and the estimates we obtain in the next theorem have an
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additional term of order ex(n, {C3, C4, C5}) = Θ(n
3

2 ). This implies that guaranteeing a
balanced copy of K5 requires a remarkably high color excess, implying that we always
need a very high amount of bicolored edges.

Theorem 18. Let c = 2
(√

2−1
2
√
2

)
5

2

. For any ε > 0 and n sufficiently large, we have

1

2

(

n

2

)

+ (1− ε)cn
3

2 6 bal*(n,K5) 6
1

2

(

n

2

)

+ (1 + ε)
1

4
√
2
n

3

2 .

Observe that c ≈ 0.016 while 1
4
√
2
≈ 0.177. The proof of Theorem 18 follows directly

from Corollary 21 and Lemma 22 that we state and prove below. For both arguments we
focus on the structure of the graph induced by the bicolored edges, where we take into
account the girth and the edge number. Recall that, for a graph G, the length of a smallest
cycle in G is called the girth and is denoted by g(G); if G has no cycles, then its girth is
defined to be infinity. Throughout this section we rely on ex(n, {C3, C4, C5}), the extremal
number for graphs of girth at least 6; more precisely, we exploit that ex(n, {C3, C4, C5})
is strictly increasing on n and that

ex(n, {C3, C4, C5}) = (1 + o(1))
1

2
√
2
n

3

2 , (1)

where the asymptotic expression is given in Theorem 4.5 of [11] also stated in the following
theorem.

Theorem 19 ([11]). For k = 2, 3 and 5 as n → ∞ we have

ex({C3, C4, . . . , C2k+1}) = (1 + o(1))
1

21+(1/k)
n1+(1/k).

To verify that ex(n, {C3, C4, C5}) is strictly increasing on n, let mn be the function
ex(n, {C3, C4, C5}), and take a graph G on n− 1 vertices and mn−1 − 1 edges with girth
at least 6. Then we may construct a graph G′ on n vertices and mn−1 edges with girth
at least 6 by just adding to G a new vertex connected by an edge to any of the vertices
in G. This proves that mn−1 + 1 6 mn. By iteratively applying this argument, it follows
more generally that ex(n− k, {C3, C4, C5}) 6 ex(n, {C3, C4, C5})− k (mn−k 6 mn − k).

For the upper bound in Theorem 18, we use Theorem 7, which boils down to analysing
ex(n,H(K5)); this is done in the following theorem, where we show that ex(n,H(K5)) =
ex(n, {C3, C4, C5}).

Theorem 20. For n > 5, we have ex(n,H(K5)) = ex(n, {C3, C4, C5}).

Proof. Let H = H(K5), that is, the family of subgraphs of K5 that have 5 edges and no
isolates. Observe that H contains precisely six graphs; namely, the 5-cycle, the 4-pan1

(also called P , or the banner), its complementary P , the bull, the cricket and the diamond.
Those are depicted in Figure 7.

1The n-pan is an n-cycle with a pendant edge attached to a vertex of the cycle.
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C5 4-pan = P P bull cricket diamond

Figure 7: The family H(K5).

Observe that every graph from H has either a C3, a C4, or a C5. Hence, the class of
graphs of order n having girth at least 6 is contained in the class of the H-free graphs of
order n. This implies directly that ex(n,H(K5)) > ex(n, {C3, C4, C5}).

We will prove now the other inequality, that is, that every graph on n vertices and
more than ex(n, {C3, C4, C5}) edges contains a subgraph from H.

We use an induction argument. First, let us observe that m5 = 4, m6 = 6, m7 = 7
and m8 = 9 since the maximal graphs on n vertices of girth at least 6 are, respectively:
spanning trees (n = 5), C6 (n = 6), C7 and the 6-pan (n = 7), and finally, the graph
that consists of vertices a, b, c, d, e, f, e′, f ′ that are arranged in two cycles abcdefa and
abcde′f ′a (n = 8).

Consider n > 5 and any graph F on n vertices and with at least mn+1 edges; that is,
F has girth at most 5. We will prove that it contains a subgraph in H. We start with the
base cases n ∈ {5, 6, 7, 8}. Let F ′ be a subgraph of F on exactly mn + 1 edges. We will
prove that F ′, which has girth at most 5, contains a subgraph in H (and hence F does):

1. If n = 5, then F ′ has 5 edges, and so must have a subgraph in H.

2. If n = 6, then F ′ has 7 edges. Suppose every set of 5 vertices in F ′ induces a
graph of at most 4 edges. Since e(F ′) = 7, the vertex not contained in a given
5-set has to have degree at least 3. But this happens to every set of 5 vertices.
Hence, 2e(F ′) > 6 · 3 = 18, implying that e(F ′) > 9, a contradiction. Hence, there
is a 5-vertex set inducing a graph on at least 5 edges in F ′ and thus F ′ contains a
subgraph from H.

3. If n = 7, then F ′ has 8 edges and contains at least an induced cycle of length at
most 5. If F ′ contains an induced C5, then it trivially contains a subgraph from
H. If F ′ contains an induced C4, then since there are at least four remaining edges
and only three remaining vertices, this implies that at least one vertex from the
4-cycle has a neighbour among the other three vertices, which in turn implies that
F ′ contains a 4-pan, which is in H. If F ′ contains a triangle, then there are three
cases: first, there are at least two edges between the triangle and the remaining
vertices, and F ′ contains a bull, a cricket, or a diamond, which are in H; second,
there is no edge between the triangle and the 4 remaining vertices, which implies
that they must induce a diamond, which is in H; finally, if there is exactly one edge
between the triangle and one of the remaining vertices, say u, then u has to have
a neighbour in the other remaining vertices (since otherwise there would be four
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edges among three vertices, which is impossible), and F ′ contains the complement
of a 4-pan, which is in H.

4. If n = 8, then F ′ has 10 edges and contains an induced cycle of length at most 5.
If F contains an induced C5, then it trivially contains a subgraph from H. If F ′

contains an induced C4, then there are two cases: either there is at least one edge
between the 4-cycle and the remaining vertices, and thus F ′ contains a 4-pan, which
is in H; or the four remaining vertices have to induce a diamond, which is in H. If
F ′ contains a triangle, then there are two cases: either there are at least 2 edges
between the triangle and the remaining vertices, and thus F ′ contains either a bull
or a cricket, which are in H; or the five remaining vertices have at least 6 edges,
and by the argument in the case n = 5 implies that F ′ contains a subgraph in H.

For the induction step, we will use the following general argument. Suppose that F

is a graph on n vertices and at least mn + 1 edges; if F ′ may be constructed from F by
removing k vertices and k edges, then F ′ has (also) girth at most 5 since it has at least
mn−k > mn−k edges (recall that mn = ex(n, {C3, C4, C5}) is strictly increasing). If n > 9
and k 6 4 we may apply the induction hypothesis and infer that F ′ contains a subgraph
in H (and so does F ). In what follows we refer to this argument as the removal induction
hypothesis.

Now, assume that n > 9. First, if F contains a vertex of degree 1, then we can
remove it and apply the removal induction hypothesis. Thus, we may assume that F has
minimum degree at least 2. Recall that F has girth at most 5. There are three cases to
consider:
Case 1: F has girth 5. Naturally, F contains a subgraph in H; namely, C5.
Case 2: F has girth 4. We may consider a C4 in F . If all four vertices have degree 2, then
we can remove them from F and apply the removal induction hypothesis. Otherwise, at
least one of them has a third neighbour; the cycle together with such neighbor forms a
4-pan, that is F contains a subgraph of H.
Case 3: F has girth 3. We may consider a C3 in F . If all three vertices have degree 2,
then likewise we can apply the removal induction hypothesis. Otherwise, at least one of
them has a third neighbour u. However, u has degree at least 2, so u itself has another
neighbour; we then obtain either the diamond or the complement of the 4-pan as a
subgraph, both of which are in H.

This proves that F contains a subgraph in H whenever it has more than mn =
ex(n, {C3, C4, C5}) edges. Hence ex(n,H) 6 ex(n, {C3, C4, C5}).

By combining Theorems 7 and 20, we obtain the desired upper bound on bal*(n,K5).

Corollary 21. For any ε > 0 and n sufficiently large,

bal*(n,K5) 6
1

2

(

n

2

)

+ (1 + ε)
1

4
√
2
n

3

2 .
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Proof. Let ε > 0. For n sufficiently large, we have with Theorem 7, Theorem 20 and (1)
that

bal*(n,K5) 6
1

2

(

n

2

)

+

⌈

1

2
ex(n,H(K5))

⌉

=
1

2

(

n

2

)

+

⌈

1

2
ex(n, {C3, C4, C5})

⌉

6
1

2

(

n

2

)

+ (1 + ε)
1

4
√
2
n

3

2 .

We will now obtain a lower bound for the generalized balancing number of K5. In
Lemma 22, we provide a 2-edge covering of Kn where the subgraph induced by the bicol-
ored edges is of girth at least 6. By analyzing all possible overlaps of a copy of K5 and
the bicolored edges, we prove that this 2-edge covering does not contain a balanced copy
of K5.

Lemma 22. Let c = 2
(√

2−1
2
√
2

)
5

2

. For any ε > 0 and n sufficiently large,

bal*(n,K5) >
1

2

(

n

2

)

+ (1− ε)cn
3

2 .

Proof. Suppose that there are integers k, k′ and m such that k 6 k′ 6 n and that there
exists a graph H on k vertices, m edges and girth at least 6. The precise values for these
integers will be specified, in terms of n and ε > 0 further on. First, using the assumptions
above, we construct a 2-edge covering of Kn and prove that it does not contain a balanced
copy of K5.

Let us partition the vertices of Kn in two parts X and Y such that |Y | = k′ (and thus
|X| = n− k′); assign the list {r} to every edge within X; assign the list {r, b} to m edges
in Y inducing a copy of H ; and finally assign the list {b} to every other edge within Y

and to every edge between X and Y .
We claim that no copy of K5 can be balanced in this covering. First, any copy of K5

with all its vertices in X has no blue edges and, thus, it cannot be balanced. Now, let G

be a copy of K5 with at least one vertex in Y and let x and y be the number of vertices
of G in X and Y , respectively; note that y > 1. Recall that bicolored edges form a graph
of girth at least 6 and so G has at most y − 1 bicolored edges in G and precisely

(

x
2

)

red (non-bicolored) edges. To conclude the proof that there is no balanced copy of K5

observe that if x > 4 then G has at most 4 blue edges, including bicolored ones. Whereas
if x 6 3, then G has at most

(

x
2

)

+ y − 1 6 x + y − 1 = 4 red edges, including bicolored
ones; thus, G may not be balanced.

It remains to prove that, given ε > 0, we may choose k, k′ and m so that the color
classes of the covering above have size at least 1

2

(

n
2

)

+ (1− ε)cn
3

2 ; as this would establish
the lemma.
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Fix ε > 0 and let α = 1− 1√
2
, β =

(

1− ε
2

) (

α
2

)
3

2 ; then let k = ⌈αn⌉, k′ =
⌈

αn+ βn
1

2

⌉

and m =
⌊

βn
3

2

⌋

. Observe that

m =
⌊

βn
3

2

⌋

6

(

1− ε

2

)(α

2

)
3

2

n
3

2 6

(

1− ε

2

)

(

k

2

)
3

2

6 ex(k, {C3, C4, C5});

where the last inequality holds for n large enough since ex(k, {C3, C4, C5}) = (1+o(1))(k
2
)
3

2

by Theorem 19. This establishes the existence of a graph H with girth at least 6, as
desired. Moreover, we have clearly k 6 k′ 6 n. Next, we will show that max{|R|, |B|} >
n2

4
+
(

1− ε
2

)

αβn
3

2 .
In the following expressions we avoid cumbersome notation by assuming that n is

large enough that we may omit rounding to integers; in particular we will simply write
n − k′ = (1 − α)n − βn

1

2 (to clarify, considering the precise expression of n − k′ would
only add, to |R| and |B|, terms of order O(n) which may be neglected).

We clearly have |R| =
(

n−k′

2

)

+m and |B| =
(

k′

2

)

+ k(n − k′). First, we consider the

size of R; using that m = βn
3

2 , we obtain

(

n− k′

2

)

+m =
1

2

(

(1− α)n− βn
1

2 )2 − (1− α)n+ βn
1

2

)

+ βn
3

2

=
(1− α)2n2

2
+ αβn

3

2 +
(β2 + α− 1)n

2
+

βn
1

2

2

>
n2

4
+ αβn

3

2 − n

2
;

where in the last inequality we used 1− α = 1√
2

and removed lower order positive terms.

In addition, we have εαβn
1

2 > 1 for n large enough, and so

αβn
3

2 − n

2
=

(

1− ε

2

)

αβn
3

2 +
n

2

(

εαβn
1

2 − 1
)

>
(

1− ε

2

)

αβn
3

2 ;

which in turn implies that |R| > n2

4
+ (1 − ε

2
)αβn

3

2 for n sufficiently large. Similar

computations for the size of B, in particular, using that α2

2
+ α(1− α) = 1

4
, yield

(

k′

2

)

+ k′(n− k′) =
1

2

(

(αn+ βn
1

2 )2 − (αn+ βn
1

2 )
)

+
(

αn+ βn
1

2

)(

(1− α)n− βn
1

2

)

=
n2

4
+ β(1− α)n

3

2 − (β2 + α)n

2
− β

2
n

1

2 .

In this case we use that 2− 4α = 4√
2
− 2 > 0, and so for n large enough we have

β(1− α)n
3

2 − β2n

2
− βn

1

2 = αβn
3

2 +
βn

3

2

2
(2− 4α− (β + αβ−1)n− 1

2 − n−1) > αβn
3

2 ;
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in particular, |B| > n2

4
+ (1− ε

2
)αβn

3

2 . Finally, by definition of β, we have that

(

1− ε

2

)

αβ = 2
(

1− ε

2

)2 (α

2

)
5

2

> (1− ε)c;

which, together with n2

4
>

1
2

(

n
2

)

, yields, for n large enough,

max{|R|, |B|} >
n2

4
+
(

1− ε

2

)

αβn
3

2 >
1

2

(

n

2

)

+ (1− ε)cn
3

2 .

5 Conclusion

In this paper, we studied the balancing number and the generalized balancing number of
several graph classes. First, we found the exact value for the balancing number of odd
cycles and gave upper and lower bounds for the balancing number of C4k which are tight
up to first order terms. The proofs are based on the following idea: from a balanced path,
we can construct a balanced cycle. We believe that the lower bound obtained by the
construction given in the proof of Lemma 11 is tight and that the upper bound obtained
in Lemma 12 could be improved by means of a carefully analysis of the color patterns
inside the set W .

We also introduced the generalized balancing number, an extension of the balancing
number. We did this by allowing edges to belong to both color classes, by way of replacing
the 2-edge coloring of Kn by a 2-edge covering. The goal is to understand exactly if non-
balanceable graphs are, in a way, close or far from being balanceable. For example, we
only need a color excess of one to guarantee a balanced copy of C4k+2, while significantly
more (Θ(ex(n, {C3, C4, C5})), which is in Θ(n

3

2 )) are required to guarantee a balanced K5.
Furthermore, while we determined a general upper bound for the generalized balancing
number of a graph G, based on the extremal number of subgraphs of G containing at
least half the edges of G, this bound can be arbitrarily bad (as is the case for C4k+2).
Hence, this extension opens many interesting questions: for which graph classes is the
general upper bound good? For those in which it is bad, what is the exact value of the
generalized balancing number? Which graphs are close to being balanceable, like C4k+2?
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