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Abstract. The inspection and detection of damage in composite materials using Lamb waves 

are particularly effective because Lamb wave can propagate over relatively large distance and 

hence can cover a large area with few testing time and equipment. However, comparing to the 

dispersion features that have been investigated systematically in the literature, predicting 

simply and reliably the spatial attenuation, which is the decrease of the amplitude of the 

propagating wave with distance, is still a challenge especially for structures large enough to 

industrial scale. In this paper, a simple model able to predict Lamb wave attenuation for 

different frequencies, which takes three damping models, Hysteretic, Kelvin-Voigt and Biot 

models into account, is derived directly from dispersion equations. Experiments on a practical 

aeronautical component, a Fan Cowl Structure, are carried out to validate the developed 

model. The merits of the proposed method lie in the fact that it is derived directly from 

dispersion equations instead of relying on complex finite element models and are thus simple 

to compute. Despite its simplicity, it is still effective when predicting attenuation coefficient 

for geometrically complex structures such as the Fan Cowl Structure. 

1 INTRODUCTION 

One of the most important issues in engineering concerns the monitoring and the early 

detection and localization of structural damages in order to prevent catastrophic failures. This 

process is referred to as Structural Health Monitoring (SHM) and is expected to provide 

considerable improvements with respect to safety and maintenance costs. Over half a century, 

modern SHM techniques have attained maturity in engineering practice, playing a significant 

role in evaluating the integrity and durability of engineered structures and assets [1]. With 

efficient, continuous and automated SHM techniques it is possible to identify structural 

damage at an early stage so as to prevent further failure occurring, producing huge economic 

and human benefit [2]. A SHM system generally focuses on three aspects: i) identifying the 

existence, location and classification of damage, ii) evaluating the severity of damage and iii) 

predicting the residual service life of structure.  

Monitoring the health and integrity of complex aeronautical structures at the operation 

condition is mandatory. Among all kinds of SHM techniques, ultrasonic wave strategy based 

on Lamb waves is particularly effective in accomplishing this task because Lamb waves are 

able to propagate over relatively large distances and thus can cover a large with short testing 

time and few sensors. This benefit results in reduced labor and time to perform a test, and 



makes long range inspection possible [3]. 

The dispersion and attenuation property of Lamb wave are two essential factors that need 

to be considered carefully when inspecting a structure by means of Lamb waves. Contrasting 

with dispersion which is the velocity change with frequency and that has already received 

sound exploration over the past decades, understanding and modeling the attenuation of Lamb 

wave in composite materials is still an open challenge. Existing efforts are limited to 

simulation and small-scale experiments. Recently, the damping effect on dispersion curves in 

plates was investigated theoretically [4]. The theoretical model to calculate the attenuation 

coefficient in viscoelastic anisotropic lamina was established based on linear 3D elasticity [5]. 

Two alternatives for this purpose were achieved via semi-analytical finite element method [6] 

and spectral collocation method [7]. The Rayleigh damping model was adopted to investigate 

the attenuated Lamb wave propagation in composite structures [8,9]. This model was also 

adopted to investigate damage detection of composite structures [10]. 

However, the investigation of Lamb wave attenuation in practical aeronautical structures 

caused by viscoelastic damping has been scarcely studied after the authors made an overall 

literature survey. This is owing to the complicated service conditions of aeronautical 

structures, including complex geometry and boundary of the structure itself, varying 

environment temperature and noise contamination etc. However, knowledge of in situ 

attenuation of Lamb waves for these structures is very desirable to deploy SHM strategies to 

monitor them. To solve this issue, this paper establishes a predictive model of Lamb wave 

attenuation for practical aeronautical structures and the experiment on a large-scale structure 

has been conducted to validate the model. Being able to predict spatial attenuation in such 

complex aeronautic structures paves the way for potential applications such as transducer 

network design optimization and amplitude-based damage localization algorithms 

development. 

2 PREDICTIVE MODEL OF LAMB WAVE ATTENUATION 

2.1 Attenuation representation of Lamb wave 

When a Lamb wave mode is excited and propagates in a thin plate with infinite width, the 

displacement formula of the plate along the propagation direction can be expressed as follows 

[1]. 

𝑢𝑥(𝑥, 𝑡) = 𝐴𝑒𝑗(𝑘𝑥−𝜔𝑡)                                                   (1)

where, 𝐴 is the amplitude of wave at the origin point in temporal and spatial domain; 𝑘 and 𝜔 

are wavenumber and circular frequency respectively; 𝑥 and 𝑡  are the sensing distance and 

wave propagation time respectively; 𝑗 = √−1. 

It is supposed that as long as damping is considered the wavenumber is complex-valued, 

𝑘∗ = 𝑘𝑟 + 𝑗𝑘𝑖                                                        (2)

where, both 𝑘𝑟  and 𝑘𝑖  are real positive number. The superscript “*” denotes that the term 

correlated belongs to complex numbers space in this paper. 

Substituting Eq. (2) into Eq. (1) can result in the following formula. 

𝑢𝑥(𝑥, 𝑡) = 𝐴𝑒−𝑘𝑖𝑥𝑒𝑗(𝑘𝑟𝑥−𝜔𝑡)                                                (3)

Comparing Eq. (3) to Eq. (1), if the wavenumber is a complex number, the magnitude 

decays exponentially over the propagation distance, and this phenomenon is the so called 



attenuation behavior of Lamb wave. Thus, 𝑘𝑖 is defined as the attenuation coefficient in unit 

Np/m. Lamb wave attenuation is mainly caused by viscoelastic damping [6]. Hence, the 

damping models should be expounded firstly. 

2.2 Damping effects on Lamb wave attenuation 

There are generally two classical damping models to describe the viscoelasticity: 

Hysteretic (HR) model and Kelvin-Voigt (KV) model [11]. For both models, the Young 

modulus becomes a complex number 𝐸∗ presented in Eqs. (4) and (5) respectively, in which

the real part is defined as the storage modulus 𝐸 representing the storage of energy and the 

imaginary part reflects the loss of energy. Besides the two models, a less common damping 

model named Biot (BT) model is used to investigate the damping effect on Lamb wave 

attenuation as presented in Eq. (6). This model is mainly applied to highly damped aerospace 

structures [12]. 

𝐸∗ = 𝐸(1 − 𝑗𝛾𝐻𝑅) for Hystetetic model (4) 

𝐸∗ = 𝐸 (1 − 𝑗𝛾𝐾𝑉
𝑓

𝑓0
) for Kelvin − Voigt model (5) 

𝐸∗ = 𝐸 [1 +
2

𝜋
𝛾𝐵𝑇 ln √1 + (

2𝜋𝑓

𝜖
)

2

− 𝑗
2

𝜋
𝛾𝐵𝑇 arctan (

2𝜋𝑓

𝜖
)] for Biot model      (6) 

where, 𝛾𝐻𝑅, 𝛾𝐾𝑉 and 𝛾𝐵𝑇 are the damping ratio for HR, KV and BT model respectively; 𝜖 is 

the scaling factor for BT model; 𝑓0  is the reference frequency of KV model and it is set 

arbitrarily to be 250kHz in this paper. As this parameter is just a normalization parameter, 

setting arbitrarily its value is not an issue. If 𝛾𝐾𝑉 = 𝛾𝐻𝑅 and 𝑓 = 𝑓0, KV model is equivalent 

to HR model at the frequency 𝑓0 [11]. 

In light of the complex Young modulus, no matter which damping model being used, the 

classical dispersion equations become complex equations: 

{

tan(𝛼𝑇
∗ ℎ)

tan(𝛼𝐿
∗ ℎ)

= −
4𝑘2𝛼𝐿

∗ 𝛼𝑇
∗

(𝛼𝑇
∗2−𝑘2)

2 for symmetric modes

tan(𝛼𝑇
∗ ℎ)

tan(𝛼𝐿
∗ ℎ)

= −
(𝛼𝑇

∗2−𝑘2)
2

4𝑘2𝛼𝐿
∗ 𝛼𝑇

∗ for anti − symmetric modes

       (7) 

where, ℎ  is the half thickness of plate. 𝛼𝐿
∗ = √

𝜔2

𝑐𝐿
∗2 − 𝑘2  and 𝛼𝑇

∗ = √
𝜔2

𝑐𝑇
∗2 − 𝑘2 ; 𝑐𝐿

∗ = √
𝜆∗+2𝜇∗

𝜌

and 𝑐𝑇
∗ = √

𝜇∗

𝜌
are the velocity of longitudinal and transverse mode respectively. 𝜆∗ =

𝐸∗𝜈

(1+𝜈)(1−2𝜈)
and 𝜇∗ =

𝐸∗

2(1+𝜈)
 are the Lame constants. 𝜈 and 𝜌 are the Poisson ratio and density 

respectively. 

The phase velocity 𝑐𝑝 is the quotient between circular frequency and real wavenumber. 

The group velocity 𝑐𝑔 is the partial derivative of circular frequency to real wavenumber. 

𝑐𝑝 =
𝜔

𝑘𝑟
(8) 

𝑐𝑔 =
𝜕𝜔

𝜕𝑘𝑟
=

𝑐𝑝
2

𝑐𝑝−𝜔
𝑑𝑐𝑝

𝑑𝜔

(9)



2.3 Numerical algorithm of predicting Lamb wave attenuation 

The solution of the real-valued dispersion equation forms the dispersion curve, which is 

usually expressed as two pairs (𝜔, 𝑐𝑝) and (𝜔, 𝑘). However, the task of solving the complex

dispersion equation is more complicated in the damped case because for the solution pair 
(𝜔, 𝑘∗) there are actually three real variables (𝜔, 𝑘𝑟 , 𝑘𝑖) given that 𝑘∗ = 𝑘𝑟 + 𝑗𝑘𝑖.

In order to overcome this issue, a two-step approach is proposed to work out the solution 

of the complex dispersion equation. In step 1, the solution pair (𝜔, 𝑘) for the real-valued 

equation 𝑓(𝜔, 𝑘) = 0 is obtained, which can be easily achieved via many mature algorithms 

[13]. In step 2, the first three points of (𝜔, 𝑘∗) are acquired by directly solving the complex-

valued equation 𝑓∗(𝜔, 𝑘∗) = 0, during which the first three points of (𝜔, 𝑘) are taken as the

initial guess because the real and complex solutions in (𝜔, 𝑘𝑟) plane mutually overlap at the

initial stage of the dispersion curve. This is true since the effect of damping is relative low, 

such that |𝑘𝑖| ≪ |𝑘𝑟|  and the strategy of searching the solutions of complex case in the

neighborhood of the real case is working. For subsequent solutions, a curve tracing technique 

should be used in order to avoid branch crossing of different modes and thus guarantee a 

stable solution [13]. Specifically, the initial guess for the current solution is quadratically 

extrapolated from the previous three accurate solutions firstly, and then the current solution is 

obtained by directly solving the complex-valued dispersion equation. The presented two-step 

procedures form the numerical algorithm of predicting attenuation coefficient as summarized 

in Figure 1. 

It should be noted that a strong complex equation solver is necessary for this algorithm. 

The authors hence employ the Levenberg–Marquardt based approach which is generally more 

efficient than Gauss-Newton method for solving a highly nonlinear equation to iteratively find 

the root of a complex equation from an initial guess [14]. 

3 DATA-DRIVEN BASED STRUCTURAL PARAMETERS ESTIMATION METHOD 

It is evident from Figure 1 that in order to run the algorithm, the nine parameters should be 

provided in the first place. Normally, the thickness 𝑑, density 𝜌 and reference frequency 𝑓0 

can be obtained easily. The other six parameters should be estimated from the collected Lamb 

wave signals, by which the group velocity and attenuation coefficient can be identified easily. 

Thus, the approach to identify the two parameters is described firstly. 

3.1 Linear regression to identify group velocity and attenuation coefficient 

3.1.1 Identification of group velocity 

Under a specified frequency, a certain Lamb wave mode propagates in an isotropic plate or 

in an anisotropic plate but along a fixed direction with constant group velocity. Thus, the 

time-of-arrival (ToA) of Lamb wave is proportional to the sensing distance. 

𝑡𝑎 =
𝑥

𝑐𝑔
+ 𝑡0 (10) 

where, 𝑡𝑎  is the ToA; 𝑡0 is the initial time of wave excited from actuator; 𝑥 is the sensing 

distance; 𝑐𝑔 is the group velocity for the propagating mode. 

A series of 𝑡𝑎  versus propagation distance 𝑥 can be extracted from collected signals by 

indicating the time moment at the peak of the specified wave packet. If the scatter diagram 



(𝑥𝑖 , 𝑡𝑎,𝑖)  is plotted, these scatter points should align with a straight line. Thus, linearly 

regressing these scatter points can be used to identify group velocity that is the inverse of the 

slope of the regressed line according to Eq. (10). 

Figure 1: The flowchart of the numerical algorithm for predicting the attenuation coefficient 

3.1.2 Identification of attenuation coefficient 

Based on Eq. (3), the amplitude of wave exponentially decreasing over propagation 

distance is stated as following. 

𝑢𝑚 = 𝐴𝑒−𝑘𝑖𝑥                                                      (11)

Making logarithm operation at two sides of Eq. (11) results in the linear formulation. 

ln 𝑢𝑚 = −𝑘𝑖𝑥 + ln 𝐴                                               (12) 

This equation manifests that the attenuation coefficient 𝑘𝑖 can be identified from recorded 

signal by linearly regressing logarithmic amplitude of wave versus propagation distance, in 

which the attenuation coefficient is the negative of the slope of the regressed line. 
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3.2 The least square formulation for estimating material properties 

The identified group velocity and attenuation coefficient can be used to estimate structural 

material properties. 

3.2.1 Estimation of storage modulus and Poisson ratio 

The theoretical group velocity that can be calculated from classical dispersion equations is 

expressed as the function with respect to storage modulus 𝐸  and Poisson ratio 𝜈  if the 

frequency 𝑓 is given. 

𝑐𝑔 = 𝐺(𝐸, 𝜈; 𝑓)                                                       (13)

Once a series of group velocities under various frequencies are obtained from experiment, 

denoted as (𝑓𝑙 , �̃�𝑔,𝑙) (𝑙 = 1,2, ⋯ , 𝑚), the least square formulation can be used to estimate

storage modulus and Poisson ratio. 

arg min
𝐸,𝜈

∑ [𝐺(𝐸, 𝜈; 𝑓𝑙) − �̃�𝑔,𝑙]
2𝑚

𝑙=1                                       (14)

where the symbol “ ̃ ” means that the variable it applies is extracted from experimental data.

𝑚 is the number of excitation frequency during experiment. 

3.2.2 Estimation of damping parameters 

The theoretical attenuation coefficient 𝑘𝑖  is expressed as the function with respect to a 

general damping parameter 𝛾 if the frequency 𝑓 is given. 

𝑘𝑖 = 𝐾(𝛾; 𝑓)                                                       (15)

where, 𝛾 is 𝛾𝐻𝑅, 𝛾𝐾𝑉 and 𝛾𝐵𝑇, 𝜖 for HR, KV and BT model respectively. 

Therefore, if a series of attenuation coefficients under diverse frequencies are available 

from experiment, denoted as (𝑓𝑙 , �̃�𝑖,𝑙) (𝑙 = 1,2, ⋯ , 𝑚), the least square method can be also

used to estimate the damping parameter respectively for the three damping models. 

arg min
𝛾

∑ [𝐾(𝛾; 𝑓𝑙) − �̃�𝑖,𝑙]
2𝑚

𝑙=1 (16) 

It should be noted that during performing the least square model of estimating damping 

parameters, the storage modulus and Poisson ratio estimated through Eq. (14) should be used. 

When all the required parameters are available, they can be inputted into the algorithm stated 

in Figure 1 to predict attenuation coefficient. 

4 EXPERIMENTAL INVESTIGATION FOR A PRACTICAL AND 

GEOMETRICALLY COMPLEX AERONAUTICAL STRUCTURE 

4.1 Experimental setup and signal presentation 

A practical aeronautical structure, namely a fan cowl structure (FCS), is employed to 

validate the proposed Lamb wave attenuation coefficient prediction algorithm. The structure 

is made up of composite materials. Its thickness and density are 2.24mm and 1554kg/m3

respectively. The geometry and transducers layout are shown in Figure 2. There are in total 13 

piezoelectric lead zirconate titanate (PZT) transducers surface installed on the plate, among 

which PZT 1-6 and PZT 7-13 respectively align with an approximated straight line and are 

thus denoted as Group 2 and Group 3. Naturally, Group 1 includes all the PZTs. Since this 



structure is large enough and a typical structure in aeronautical engineering, it is suitable for 

study the Lamb wave attenuation in composite plates.  

During testing, input signal is chosen as a five-cycle sinusoid burst signal modulated by 

Hanning window. The central frequency varies from 50kHz to 250kHz with 5kHz increment. 

The signal from the function generator is passed through an amplifier for enlarging the 

voltage in order to produce Lamb wave signals powerful enough. In this experiment, the peak 

value of the excitation signal is ±50𝑉. The actuator yields diverse Lamb wave modes and 

other sensors receive the signal. The data acquisition system (DAS) is adopted to collect 

signal and then stored in laptop for latter usage. 

The sampling frequency is set to be 1MHz given that this value is the maximum capability 

of the DAS. In order to reduce noise, 10 repetition measurements are performed for each 

actuator excitation and then the 10 signals are processed with time averaging and wavelet 

denoising techniques. Figure 3 shows the typical Lamb wave signal in Group 2 in which PZT 

1 serves as the actuator and its signal is normalized to the same magnitude of order than the 

receivers. It is evident that the signal amplitude decreases with the increasing of propagation 

distance.  

Figure 2: The FCS structure 

Figure 3: Typical Lamb wave signal (100kHz) 

4.2 Dispersion curve identification for group velocity and attenuation coefficient 

4.2.1 Group velocity and attenuation coefficient identification 

~5𝑚 

~
3

𝑚
 

Group 2 

Group 3 Group 1 



The linear regression model described in section 3.1.1 is used to identify the group velocity 

at a given frequency. Taking the S0 mode of 100kHz as example, the experimentally 

measured scatter points between ToA and sensing distance are presented in Figure 4(a). The 

regressed lines for the three groups are also plotted based on these scatter points, for which 

the parameter 𝛼 = 0.05 is given to provide the confidence level (95%). In Table 1, the results 

including group velocity, the lower and upper bound of group velocity and the correlation 

coefficient of the three groups extracted from regression are listed. Combing Figure 4(a) and 

Table 1, it can be seen that the three kinds of sensor configuration produce pretty close group 

velocity identification result and meanwhile keep a very high correlation coefficient 0.99.  

Figure 4: Example of (a) group velocity identification and (b) attenuation coefficient identification via linear 

regression method. In this figure, 𝛼 is used to give the confidence level with 100(1 − 𝛼)%. 

The same strategy is designed to identify attenuation coefficient in section 3.1.2. Like 

Figure 4(a), the linear regression process is illustrated in Figure 4(b) under the same 

frequency 100kHz. The results extracted from Figure 4(b) are presented in Table 2, from 

which the dispersed scatter points can be observed. This is due to the difficulty to exactly 

extract the peak value of S0 mode wave packet given the low sampling frequency (1MHz) 

and noise contamination. Moreover, the lower correlation coefficient of Group 1 (smaller than 

0.6) manifests that the anisotropy of composite materials has an essential impact on 

attenuation since all propagation directions in Group 1 are mixed together whereas in Group 2 

and 3, there exists only one main direction. Thus, Group 2 and 3 are employed to complete 

this task in latter section. 

Table 1: Regression results for group velocity identification (corresponding to Figure 4(a)) 

Group 1 Group 2 Group 3 

𝑐𝑔

(m/s) 

𝑐𝑔 bound

(m/s) 
𝑅2 𝑐𝑔

(m/s) 

𝑐𝑔 bound

(m/s) 
𝑅2 𝑐𝑔

(m/s) 

𝑐𝑔 bound

(m/s) 
𝑅2

5308 [5258,5359] 0.99 5340 [5279,5402] 0.99 5291 [5257,5325] 0.99 

Table 2: The regression results for attenuation coefficient identification (corresponding to Figure 4(b)) 

Group 1 Group 2 Group 3 

𝑘𝑖

(Np/m) 

𝑘𝑖 bound

(Np/m) 
𝑅2 𝑘𝑖

(Np/m) 

𝑘𝑖 bound

(Np/m) 
𝑅2 𝑘𝑖

(Np/m) 

𝑘𝑖 bound

(Np/m) 
𝑅2

0.85 [0.66,1.04] 0.39 0.92 [0.81,1.03] 0.92 0.97 [0.80,1.13] 0.79 



4.2.2 Identified dispersion curves of group velocity and attenuation coefficient 

The group velocity and attenuation coefficient at each frequency can be identified by using 

the method shown in Figure 4(a) and (b) respectively. After that, the group velocity dispersion 

curves can be formed as shown in Figure 5(a), in which only the result of Group 1 is 

presented given that the three groups generate pretty close group velocity dispersion curves, 

and the attenuation coefficient dispersion curves are shown in Figure 5(b). Additionally, 

Figure 5(c) presents the respective correlation coefficients for group velocity and attenuation. 

There is no doubt that for group velocity identification all correlation coefficients are greater 

than 0.95. Hence the identified S0 mode group velocity dispersion curve is reliable. 

From the attenuation coefficient dispersion curves (Figure 5(b)) and its corresponding 

correlation coefficients (Figure 5(c)), the following findings are observed. Firstly, both groups’ 

curves present the same trend, i.e., attenuation increasing with frequency firstly and then 

decreasing. Secondly, the correlation coefficients of both groups at the initial several points 

(50-60kHz) are smaller than 0.6. This may be explained by tuning effect of Lamb wave, for 

which at the lower frequency range, the amplitude of S0 mode is too small to be easily 

extracted from experimental signals [15]. Finally, the correlation coefficient starts to diminish 

after 150kHz for both groups, which could be explained by the low sampling frequency and 

high frequency noise contamination. In later damping parameters estimation, only the 

identified attenuation coefficients of Group 3 in frequency range from 70kHz to 150kHz are 

used to be the training data when implementing Eq. (16). 

Figure 5: (a) the group velocity dispersion curve, (b) the attenuation coefficient dispersion curve and (c) 

correlation coefficient 



4.3 Estimation of material properties 

The experimentally identified dispersion curves of group velocity and attenuation 

coefficient are further employed to estimate the material properties via the least square 

method presented in section 3.2. Thus, the group velocity dispersion curve shown in Figure 

5(a) is firstly adopted to estimate the storage modulus and Poisson ratio. The initial and 

optimal values of both parameters are listed in Table 3. 

The calculated group velocity dispersion curves for S0 and A0 mode using the optimal 

value and the experimentally identified data points are depicted in Figure 6. It can be seen that 

the calculated S0 mode group velocity dispersion curve agrees well with the experiment. 

Besides, the calculated S0 mode phase velocity dispersion curve is provided as well in this 

figure which totally overlaps with the calculated group velocity dispersion curve in the 

frequency range. Comparing the calculated S0 and A0 mode group velocity dispersion curves, 

it is easy to infer that A0 mode Lamb wave propagates at approximately the half speed of S0 

mode in the evaluated frequency range. Thus there is no any A0 mode group velocity can be 

identified from the experiment because of the abundant S0 mode wave reflections. 

Figure 6: Comparison between the calculated and identified dispersion curve of group velocity 

The experimentally identified attenuation coefficients are subsequently employed to 

estimate the damping parameters of the three damping models. The initial and optimal values 

are listed in Table 3, in which the optimal term 𝛾𝐾𝑉 and 𝜖 do not change from its initial value, 

which is caused by accident.  

Table 3: The estimated parameters of FCS 

𝐸 𝜈 𝛾𝐻𝑅 𝛾𝐾𝑉 𝛾𝐵𝑇 𝜖 

Initial value 50GPa 0.2 0.03 0.03 0.03 10 

Optimal value 44.4GPa 0.05 0.014 0.03 0.017 10 



4.4 Attenuation coefficient prediction for a wide frequency range 

All the required parameters are provided as inputs to the developed algorithm presented in 

Figure 1 and the attenuation coefficient for a wide frequency range is predicted as shown in 

Figure 7(a). The experimentally identified attenuation coefficient of Group 2 and 3 in the 

frequency range from 70kHz to 150kHz is provided as well for comparison. It can be seen 

that the predicted curves for HR and BT model agree well with the experimentally identified 

points with strictly linear trend. However, the curve of KV model presents the concave trend. 

Thanks to this reason, it is only suitable for predicting attenuation coefficient in a narrow 

frequency band for the current composite structure. 

The developed numerical algorithm in Figure 1 is further used to predict the wavenumber 

which is extracted from the real part 𝑘𝑟 of the complex solution as depicted in Figure 7(b). 

The identified wavenumber calculated via 𝑘 =
𝜔

𝑐𝑝
 is also provided for comparison, in which

𝑐𝑝 is replaced by 𝑐𝑔 given that the approximated relation (𝑐𝑝 ≈ 𝑐𝑔) from Figure 6. It can be 

seen that the theoretically calculated wavenumber dispersion curves for HR and KV model 

are consistent with the experimentally identified data points. But BT model predicts a minor 

smaller wavenumber in the evaluated frequency range than HR and KV model. The high 

coincidence between the predicted and identified wavenumber or group velocity reveals that 

the group velocity, phase velocity and wavenumber can be obtained more reliable from 

experiment or theoretical prediction than the attenuation coefficient.  

Figure 7: Prediction of (a) attenuation coefficient and (b) wavenumber at a wide frequency range 

5 CONCLUSIONS 

- In this article, a numerical algorithm to predict Lamb wave attenuation coefficient is

proposed firstly. This algorithm is derived directly from dispersion equations by

considering three damping models, HR, KV and BT model. The curve tracing

technique is adopted to enhance the reliability of solving the complex equation.

- The linear regression method is used to identify group velocity and attenuation

coefficient from experimentally measured Lamb wave signals. The least square

formulation is designed for estimating the storage modulus and Poisson ratio of

material as well as damping parameters of the three damping models.

- A comprehensive case study on a practical aeronautical structure validated that the



proposed attenuation coefficient prediction algorithm is feasible and effective. 

Comparing to group velocity, accurately identifying and predicting attenuation of 

Lamb wave in complex composite structures is more difficult and urgent. The 

presented outcomes in this article are an useful attempt. 
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