Tong Fu 
  
Raphaëlle Chaine 
  
Julie Digne 
  
Anatomy changes and virtual restoration of statues

Keywords: 

Figure 1: Restoration and pose change of the Prince Paris statue. Through articulated model regression, we identify the anatomy and pose.

We then adapt parts from other statues after a change of morphology and use them to complete the input.

Introduction

The restoration of historical artefacts requires a comprehensive understanding of archaeology and art history. Many recommendations have been made for guiding the restoration process [ICO64]. Manual restorations being costly, invasive and sometimes even risky, museums are often reluctant to carry out such processes. On the contrary, a virtual restoration process gives restorers the possibility to build and test different hypotheses with minimum user intervention.

While research has mainly focused on reassembling fractured objects [ED17, HFG * 06], our work focuses on the virtual restoration of incomplete human statues, provided as 3D point sets. Our idea finds its roots in the work of Grossman et al. [GPT03] who discuss varying approaches to the restoration of ancient sculptures. In particular, they discuss restoration through the combination of ancient fragments, a technique widely used in the 18th and 19th centuries. Our virtual restoration follows this idea by harmoniously combining parts belonging to different statues after bringing them to a common pose and anatomy. The process contains 3 stages. First, we apply the FAKIR [FCD20] method to register an articulated model to the statue point set. Second, each input point is represented by its residual displacement above the registered anatomical model. This point set encoding is coupled with a skinning method to modify statue poses and proportions. All steps are achieved directly on the point cloud, avoiding thus tedious meshing steps and preserving the accuracy of initial sampling. This virtual restoration has two advantages: first, there is no limit to the number of restoration hypotheses that can be tested, second completion can be achieved using statues of different morphology and poses, avoiding thus adding an oversized arm to an undersized body. As a nod, we also illustrate that the technique of changing the pose of a statue can be used to generate new statues that could be used in the context of an animated film accompanying the description of a work in a museum. To summarize, our contributions are the following:

• A framework to realize a virtual restoration based on point set.

• A point set skinning process by using an articulated model combined with heightfield.

Related work

Pose and shape estimation A large body of works is dedicated to the estimation of a 3D human pose by registering a model to input data. This process is called rigging in animation research. Thus it is possible to register a skeleton into a mesh [BP07, TGB13]. Some works aim at pose and motion tracking from dynamic data.

[SHG * 11, WZC12, SBB10] register a skeleton to a depth video or a multi-view video using the silhouette information. But these approaches require a dynamic scene and cannot be applied to static data. Some human parametric mesh models [ASK * 2), these methods are doomed to fail. In contrast with learning techniques, the FAKIR algorithm [FCD20] estimates the pose and anatomy from a single point set using a simple articulated model and an inverse kinematic-based registration algorithm. Our method will rely on this algorithm that we will recall.

Pose change Once a skeleton is rigged, a skinning process can be used for pose change or animation purposes. Skinning methods aim at attaching the surface model to the skeleton by using weights that define the influence of the bones on the position of surface points. Then, when changing the pose of the skeleton, the attached surface should deform accordingly. Setting the right weights is an important question: while the profile of the weights is generally sketched by graphic designers [MTG03], there exist automatic weighting techniques that, for example, use heat diffusion [BP07, TGB13, ARM * 19]. Linear Blend Skinning [START_REF] Magnenat-Thalmann N | Joint-dependent local deformations for hand animation and object grasping[END_REF] is one of the most popular skinning approach. A mesh surface point is transformed by a linearly weighted combination of the moving bones it is attached to. This method suffers from a collapsing problem near rotating joints, which has been tackled using Pose Space Deformation [LCF00], Multi-Weight Enveloping [WP02], spherical Skinning [START_REF] Kavan | Spherical blend skinning: A real-time deformation of articulated models[END_REF] and Dual Quaternions Skinning [START_REF] Kavan | Skinning with dual quaternions[END_REF]. Taking a different perspective on the problem, Implicit skinning [VBG * 13] uses an implicit formulation of the surface that better supports pose changes and reprojects skinned vertices on the implicit model after each pose change. In this paper, we also use a proxy model but it is explicit. A recent skinning method [LL19] corrects artefacts of Linear Blend Skinning by locally estimating the rigid transformation that best restores the relative position of a vertex with respect to its neighbors using Laplacian differential coordinates. This method, designed for meshes, involves a definition of details in terms of Laplacian differences. In our approach, we rather define the detail as the residual over the registered anatomical model. [START_REF] Kavan | Elasticity-inspired deformers for character articulation[END_REF] decomposes a movement at a joint into swing and twist to diminish the artefacts of Linear Blend Skinng and Dual Quaternions Skinning. In our work, we also decompose the bone motion into a bending motion and a twisting rotation.

When a model is rigged and skinned, it is possible to change its pose manually by interacting with some joints of the skeleton. Through the skinning weights, the mesh surface should deform accordingly. However, it is often tedious to design every single motion of each joint for each frame of an animation. As a consequence, research has focused on inferring the motion from some key joints and frames with given skeleton positions. In this inverse kinematics context, the Fabrik [START_REF] Aristidou | FABRIK: A fast, iterative solver for the inverse kinematics problem[END_REF] and CCD [START_REF]A combined optimization method for solving the inverse kinematics problems of mechanical manipulators[END_REF] algorithms define kinematic chains and aim at transforming each chain from its input pose to its target pose by updating pose parameters one after the other alternatively forward and backward along the chain. Shape Synthesis. Shape synthesis is often done by reusing parts of existing models [FKS * 04]. The idea is to retrieve suitable models from a database and warp them to conform with an incomplete model [PMG * 05,CK10]. More recently, a probabilistic representation for the components of a shape has been developed to suggest relevant components during an interactive assembly-based modeling session [CKGK11,KCKK12]. In our work, we propose a framework to statue shape synthesis by part combination, the choice of the parts being done manually while the part adaptation is automatic.

Method

Our goal is to replace missing parts of incomplete statues by deforming a point set of another statue. Our virtual restoration process contains three stages:

• Stage 1: Pose and anatomy estimation of statues. In this stage, we use FAKIR algorithm to register a sphere-mesh model to the target statue (the statue to be completed) and a sphere-mesh model to each of the statues used as candidates to complete the missing parts of the target statue. • Stage 2: Pose and anatomy changes. We use a dedicated skinning method to change the dimension and position of candidate statues by using the same dimension and pose as in the target statue. • Stage 3: Combination. We complete missing parts of the target statue by combining the corresponding parts of candidate statues.

Stage 1: Pose and anatomy estimation using FAKIR

The analysis of artistic statues shows huge differences in proportion compared to human body. Indeed artists tend to favor the aesthetic perception over proportion realism [Hus55,[START_REF] Newell | Gallo-roman religious sculpture[END_REF]. Figure 2 shows an example of such unrealistic statue of the Gallo-Roman eras. In this context, we cannot use learning-based methods that were trained on real human data-sets and instead rely on the FAKIR registration method [FCD20] to estimate the pose and anatomy of a statue. Indeed, FAKIR has few constraints, allowing to fit a sculpture which does not comply with realistic human proportions. Below we summarize the FAKIR algorithm.

We provide FAKIR with a human body template of 22 bones {B k (l k , r k )} k=1..22 . Each bone is a truncated cone closed by two spherical caps defined by two intrinsic parameters (length l and two radii r = {r 1 , r 2 }) and by one extrinsic parameter (vector Θ) to define the rotation with respect to its predecessor since the bones are organized into chains of consecutive bones sharing a common radius.

To measure the distance from the point set to the sphere-mesh, Fakir uses a distance function that is computed as a sum of per-bone functions. The one-bone distance function evaluates the distance between a bone and the points that are closer to that bone than to the other bones:

E k = ∑ p∈P k p -pk 2 (1)
In FAKIR, the quality and the speed of the minimization of all the distances are obtained by iteratively coupling one-bone distance by two, which amounts to optimizing iteratively the position of each joint in the model. Two-bone distance function thus evaluates the distance between a pair of consecutive bones and the points attached to them:

E k,k+1 = ∑ p∈P k p -pk 2 + ∑ p∈P k+1 p -pk+1 2 .
(2)

In both equations 1 and 2, P k is the set of points which are closest to bone B k , and pk is the projection of a point p on the bone B k . FAKIR is a kinematic registration process which loops forward and backward through the chains of bones to rotate and re-scale bones successively. For a chain of bones, the algorithm starts by one extremity of bone B k , keeps it fixed (roughly close to points that should correspond to it) while gradually rotating B k around the fixed extremity and while refining the intrinsic parameters of B k , by minimizing the one-bone distance. Then the algorithm moves to the next bone B k+1 , again using the one-bone distance function. After optimizing B k and B k+1 , the algorithm considers them as a pair of bones and adjusts their common joint position and radius while keeping the two other extremities fixed, by minimizing the two-bone distance function. Then the next pair of bones B k+1 and B k+2 is considered and the same steps are repeated. Once a chain of bones has been positioned and scaled over its length, FAKIR repeats the process forward and backward to refine bones' parameters, this time only considering optimization of two-bones energy functions, except for the chain extremity. After several iterations, FAKIR results into a registered model representing the pose and anatomy of a statue.

Stage 2: Pose change by point set details skinning

Once the anatomical model is registered to the statue point set, we exploit the relative position of the points with respect to the spheremesh model to change the pose and the elementary anatomy of a statue by modifying the extrinsic and intrinsic parameters of the bones respectively and by reporting the point set details above it. To do so, we need to attach the detail point set to its registered articulated model so that deforming the model will deform the point set accordingly. For that purpose, we propose to associate a basepoint on the articulated model to each of the original points, the originality of our approach being that those base-points may locally slide on the moving sphere-mesh to mimic the sliding of the skin on joints. For instance, some base-points can evolve from the conic section of a bone to the neighboring sphere, resulting in continuous deformation with better volume preservation than the usual linear blend skinning. In addition, special care is given to the twisting and bending rotations at each joint. The new position of the input points is then deduced from the new position of their corresponding base-points, by reporting their initial height. We will explain this heightfield skinning in section 3.2.1. For moving the base-points, we propose a new point set skinning method where the deformation at a joint is the combination of a twisting rotation and a bending rotation in section 3.2.2. Compared to existing animation approaches based on sphere-meshes, we work directly on the point set and not on a lower-resolution mesh to which a skinning algorithm can be applied after carefully setting weights. In our case the skinning is applied to the set of base-points on the spheremesh model with weights depending directly on the parameters of bones.

Heightfield skinning

Heightfield over the sphere-mesh model We propose to consider the skin of model as a set of detail-points, encoded as a set of heights on top of our articulated model, that will be transferred back on the model after pose or intrinsic parameters change. This approach is in line with displacement maps on top of polygonal models [START_REF] Policarpo | Realtime relief mapping on arbitrary polygonal surfaces[END_REF], but instead of defining a complete heightfield over the model, we define it only on base-points. The same base-point can correspond to several detail points, making it possible to handle layered details, i.e. folded surface sheets over the sphere-mesh model (see the Dancer with Crotales on Figure 5 and the dragon on Figure 4).

In the following, let us assume that the sphere-mesh model is registered to the point set. The heightfield value h of a point p is defined as a signed distance from p to its projection on the spheremesh base point p: p = p + h(p)n p, where n p is the normal to the sphere-mesh surface at p and p is the orthogonal projection on the bone p is assigned to. Hence the surface point set is decomposed into the set of base-points on the sphere-mesh and a residual orthogonal heightfield.

Using that decomposition, any skinning algorithm can be transformed into a heightfield skinning algorithm above a sphere-mesh. The base-points are skinned using the given algorithm and then the heightfield is added back to the modified base-points yielding the final point set (Algorithm 1). It is preferential to use a skinning algorithm where base-points remain on the sphere-mesh, otherwise we re-project them on the sphere-mesh, similarly to what is done with implicit skinning [VBG * 13].

Continuity: The positions of detail points continuously evolve with the parameters of sphere-mesh and there is no tearing of the surface. Indeed, a base-point can slide continuously along a bone and move from the conic part to the sphere part of the bone and conversely. Since the conic part is tangent to the sphere, both the basepoint and its normal evolve continuously even in case of cone to sphere or sphere to cone base point motion. Since the heightfield of a detail-point is either preserved or continuously scaled, the whole motion is continuous throughout the deformation. Naturally, some base-points may become hidden because of a local intersection of the two bones of a joint being bent. We chose to keep these local intersections, since it will not degrade the resulting outer envelop of the model, which remains visually satisfying as if the surface became flattened in the fold of a joint [VBG * 13]. Furthermore, if the base-point associated to a detail-point is hidden, the detail-point is also hidden in the fold of a joint. Figure 4 illustrates that our heightfield skinning can also be used for meshes by skinning the vertices heights, while keeping the connectivity fixed, at the risk of creating self-intersections or slivers, a risk shared by many mesh skinning methods (e.g. [START_REF] Guy | Sphere-meshes: Shape approximation using spherical quadric error metrics[END_REF]). Target pose and anatomy. Output: Point set P corresponding to the target changes.

1: Compute base point set P corresponding to P on the registered sphere-mesh and compute the set of height values h(P) 2: Apply point set skinning on the base points P 3: Deform P to the target pose and anatomy, yielding Psk 4: Re-project points of Psk on the sphere-mesh yielding P 5: Lift points P to the skin surface using the -possibly scaledinitial height of each point, yielding P .

Base-point skinning

The skinning approach that we apply to the base-points is an alternative to classical skinning approaches [BP07, TGB13]. It could also have been used directly on the point-set details. Figure 5 compares the result of using a heightfield over base-point skinning with using directly point set skinning. Thus, in the following we describe the method in a generic point set context for notation simplicity.

The general idea of skinning is to attach each point to one or more bones with weights measuring the influence of each bone on it. The position of point after a deformation is a weighted linear combination of the positions relative to its influencing bones. Linear Blend Skinning [START_REF] Magnenat-Thalmann N | Joint-dependent local deformations for hand animation and object grasping[END_REF], one of the most popular skinning method, causes some well-known collapsing problems at joints, in particular for large rotations. For example, the volume at joint is not preserved when it is bent around its axis (Figure 8a). Similarly, if we apply a twist around the axis of a bone while keeping its predecessor fixed, Linear Blend Skinning produces a folding of the joint around a singular point (Figure 9a). These flaws are avoided by Dual Quaternions Skinning [START_REF] Kavan | Skinning with dual quaternions[END_REF] which interprets a combination of rigid transformations as a rigid transformation, however artefacts still appear in the concavities (Figure 8).

We propose to deal with the pose change in a different way that breaks down the movement into its natural components. Similar as [START_REF] Kavan | Elasticity-inspired deformers for character articulation[END_REF], we consider that the motion between two bones at a joint is the combination of a twisting rotation around the axis of one of the bones and a bending rotation around an axis perpendicular to both bones' axes. From there, we introduce motion-dependent skinning weights: the weight of a point is not the same for twisting and bending rotations. The impact of bending on the base point set should naturally be limited to an area loosely enclosing the rotating sphere joint, while the impact of twisting obviously extends to the length of the bones adjacent to the twisted articulation. This is more coherent with the fact that underlying muscles are arranged along the bones and attached to the joints. In our approach, a point p ∈ P k can only be influenced by the bones adjacent to B k so that it has at least one and at most three weights.

Bending rotation with anisotropic weights. In order to overcome the artefacts that arise in the convex part of joints with Linear Blend Skinning, we use Dual Quaternions Skinning [START_REF] Kavan | Skinning with dual quaternions[END_REF]. The weights of a point p during a bending rotation follow a Gaussian profile of the distances from p to each of the bones that influence it. It is driven by a parameter εr controlling the size of the influence area (Figure 6). In our experiments, we automatically set εr larger than the average distance between the point set and our model. If the skinning process is used on base-points on a spheremesh, we set εr value for a joint as a function of its radius and the length of the adjacent bones : εr = 0.2 * min(r k+1 , l kr k+1r k , 0.5l k+1r k+1r k+2 ).

The weight ω j (p), relative to one of p's influencing bones B j writes:

ω j (p) = 1 c exp - p p j 2 2(εr/3) 2 (3)
where c is a normalizing factor ensuring that the weights sum to 1, and p j is the orthogonal projection of p onto B j , Hence if p is on bone B j (as is the case for base-points), p j = p. Figure 6 shows the weights profile along two bones. From yellow to red, the value of εr increases linearly.

However, it is possible to further improve the Dual Quaternions Skinning method, by noticing that if εr is large, the convex part behaves well with points sliding from the conic parts of both bones to the joint sphere, while an artefact is created in the concave part. On the contrary, if εr is close to 0, which corresponds to no skinning at all, a hole appears in the convex part, but a self-intersection is created in the concave part (Figure 7). Quite counter-intuitively, this self-intersection is much more visually satisfying than the thinning artefact observed otherwise. Indeed, only the outer envelop is visible and, when allowing self-intersection, this envelop is similar to the one obtained if a contact area was computed between the two bones [VBG * 13]. To get the most of the two possibilities, we propose to adapt εr so that it is close to 0 for points in the concave part and it reaches its larger value for points on the convex parts. More precisely, εr varies continuously with respect to an anisotropy angle (See Figure 6). Here, εr is deduced from the anisotropy angle as εr = cos α b ε r , with ε r controlling the influence area size. Therefore, the weight ω j (p) associated to point p and one of its influencing bone B j is: Here, the expression for ω(p) corresponds to a linear evolution of the rotation angle along the bone, but other types of influences could be designed. On Figures 9 and 10, we compare our method with Linear Blend Skinning and Dual Quaternions for a twisting rotation: the trace of the points initially aligned on a segment is much smoother with our approach. Combination of twist and bend. Twist and bend specific skinning are combined to get the skinning result for any rotation around a joint. We perform first the twisting rotation and then the bending rotation. The positions and the weights of the points relative to each bone are updated between these two specific rotations.

close-up

ω j (p) =        1 c exp - p p j 2 2(cos α b ε r 3 ) 2 if cos α b < 0 1 if cos α b ≥

Stage 3: Statue restoration by fragment combination

The last step of our virtual restoration process is to combine parts belonging to different statues after bringing them to a common pose and anatomy.

In the following, we note the registered model of the incomplete statue as Mt = {B k (l k t , r k t ), Θ k t } k=1,..,22 and the registered model of the complementary statue, that is chosen to combine with the incomplete statue, as

Mc = {B k (l k c , r k c ), Θ k c } k=1,..,22
. The size of a limb of missing parts is corrected by its existing symmetric limb after registration, if it exists. For example, we change the size of left arm of Wounded Amazon (Figure 14, fourth row) by the intrinsic parameters of its right arm. In case there is no clue for the size of a limb, such as for the missing arm, forearm and hand of the Esquiline Venus (Figure 14, first row), we use default human proportions. We change the overall elementary anatomy and pose of complementary model to match the incomplete statue using our heightfield skinning process. The pose for the missing parts is the same as the one in the complementary statue, unless some clue is given by some partial data. The position of one point p is computed by:

p = Skinning(Scale( lt lc , rc rt , rc rt )p)
where Scale is a scaling function to make the anatomy of the complementary statue correspond to the incomplete statue and Skinning is our heightfield skinning function. Re-scaling the complementary statue to adapt the incomplete statue is necessary for the reason that the morphology of two statues can be quite dissimilar. We show in Figure 11 a comparison of restoration results with and without morphology change. The leg we use to complete statue Spinario is too long and too large (See right image in Figure 11). After scaling the length and the radii with the parameters of the registered model, the restoration result is more satisfying.

At last, we integrate the selected parts into the incomplete statue. We assume that the selected parts and the statue to complete slightly overlap, which is necessary to blend harmoniously statue parts. In this overlap area, information must be merged.

Provided the details are not multi-layered above each spheremesh model in the overlap area, the part merging consists in removing the lower layer, creating a sharp boundary between the point sets, and then blending the points near the boundary. Recall that our sphere-mesh model is used as a basis surface to express the residual heightfield information h after the registration. We propose to use it to combine the data points. Let p be a point and p its projection on the sphere-mesh model, we call Qp be the subset of points of the two models that project on p, up to precision 3δ. The first step is to keep only the upper layer in the overlap area. To do so, we consider the subset Hp of the points in Qp whose height values are larger than hmaxρ, where hmax is the maximum height value for points in Qp, and ρ is the average distance to the nearest neighbor for the points in the overlap area. Then we replace the height value of p by a Gaussian-weighted average of the height values in Hp. The resulting height value of p is thus:

h(p) = 1 S ∑ q∈Hp e -p-q 2 2(3δ) 2 h(q) (6) 
with S a weight normalizing factor. This brings the points of the lower layer in the overlap area to the upper layer, creating a sharp boundary. Finally, the sharp boundary is smoothed by Gaussianweighted averaging of the heightfield values across the boundary. The default value of delta is set to 3δ = 10ρ. A high value of delta smoothes the merging area but can cause distortions. 

Results

In this section, we show the performance of our skinning method and results of virtual restoration. We developed our algorithm in C++, using OpenMP for computing point to bone distances in parallel. All experiments are run on an Intel Core i7-4790K CPU @ 4.00GHz.

We selected a set of statues from various sources. They are not all from the same archaeological period but the goal here is to illustrate the feasibility of our approach when one does not have a sufficiently rich set of data. Some of these models are incomplete and require restoration. Others are complete and can be used to complete or generate other statues.

Figure 13 shows the FAKIR registrations on four statues and compares resulting models after skeleton pose change and skinning with our method or skinning with Dual Quaternions. Our skinning method clearly improves the quality near bone joints. As can be seen in particular in the areas circled in red in the fourth column, our method suppresses or at least reduces the Dual Quaternions artefacts around the bone joints. Given a statue of 500000 points, FAKIR is performed on a subset of 10000 points, which takes about 5s. Then the skinning process is applied to the whole set of points and takes less than 1s, including computation of base points and re-projection.

In Figure 1, we show the process of completing a statue which lacks arms and legs. We can also change the pose of a statue after completion. For instance, we bring the Prince Paris statue to the pose of The Thinker statue. Indeed, sometimes the pose of a broken statue can not be deduced by its remain parts. In this case, we can give several hypotheses of its pose through our skinning algorithm.

Figure 14 shows the restoration of five other statues. The Esquiline Venus (first row) and the Venus de Milo (third row) are both missing arms while The Old Fisherman is missing legs (second row). The Wounded Amazon (fourth row) is missing an arm and the Spinario (fifth row) is missing a leg. The restoration method recovers plausible arms and legs in all five cases, leading to plausible restored statues. A limitation of our method is that sharp junction lines can be observed sometimes in the multi-layered area (See the Wounded Amazon in Figure 14). This due to the choice of δ in equation 6. We make a compromise between a smooth fusion and a preservation of styles of both parts. The arms we have chosen for the two Venus statues are from masculine statues. Although the morphologies are quite different, our restoration merges the two parts in a satisfying manner. The legs we have chosen for The Old Fisherman have a different sculpture style, but again, our merging process blends in these two parts nicely. In our results, the choice of the complementary statues and the style of the restoration results may not correspond to the style of original statues. An art restorer with an expert knowledge of the statue history and artistic context would naturally better choose the complementary statues and control the restoration style.

Conclusion and perspectives

We introduced a framework for virtual restoration of human statues. For that purpose, we proposed a point set skinning method to modify the pose of the statue and applied it to virtual restoration by part combination. We compared our skinning approach with existing approaches to highlight its benefits. Thereafter, we will focus on solving the following problems. Sometimes, the point cloud from the scan of a statue is incomplete, or some areas, occluded in the original statue, are revealed by the pose change, creating thus a hole in the point set. In that case an inpainting process is necessary which we want to investigate in a future work. Finally, our current approach to combine parts remains basic and does not take the style into consideration. As a future work, we would like to design a combination approach more respectful of the style of the different fragments. In addition, we plan to develop a user-friendly interface so that users can simply choose candidate statues and compare different restoration hypotheses. 
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 2 Figure 2: An example of a statue with unrealistic anatomy: A Gallo-Roman statue of a Gallic warrior (Avignon, France, picture: F. Philibert-Caillat )
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 3 Figure 3: FAKIR skeleton and sphere-mesh model. Bones are organized into 5 chains shown in different colors.
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 41 Figure 4: Pose change for a mesh with folded surface sheets by heightfield skinning.

Figure 5 :

 5 Figure 5: Heightfield skinning. From left to right: original point set; pose change with direct point set skinning; pose change with heightfield skinning.

Figure 6 :

 6 Figure 6: Skinning weights for the bending rotation around a joint. (a) the red curve represents the influence weights of the left bone B k and the blue curve represents the influence of the right bone B k+1 . The influence area of each bone is controlled by εr. (b): values of anisotropic εr on a bone. Points such that εr = 0 are shown in white.From yellow to red, the value of εr increases linearly.

Figure 7 :

 7 Figure 7: Influence of εr on the skinning resulting from a bending rotation. In the first figure, εr = 0. The value εr increases from left to right.

Figure 8 :

 8 Figure 8: Comparison of our anisotropic skinning method with Linear Blend Skinning and Dual Quaternions for a bending rotation. For a fair comparison, the two first methods use the Gaussian weight of Equation 3 which is made anisotropic in our anisotropic skinning. Dual Quaternions fix the volume collapse of Linar Blend Skinning near the convexity, but artefacts remain in the concave part, while our skinning method does not suffer from any of these flaws.
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 a Linear Blend Skinning (b) Dual Quaternions Skinning

Figure 9 :

 9 Figure 9: Twist motion: near blend Skinning and Dual Quaternions Skinning to be compared with our approach in figure 10 that uses twist specific weights. Green dots show points that were aligned before the twisting rotation.

Figure 10 :

 10 Figure 10: The blue curve represents the value of ω β . Points v k+1 and w k+1 define the range of the twisting effect of B k+1 . p is the projection of p on the skeleton line.

Figure 11 :

 11 Figure 11: The importance of morphology change in restoration. Left: restoration with scaling morphology of the leg part. Right: restoration using directly the original leg part.

Figure 12 :

 12 Figure 12: Overlap area. Left: blue points and red points come from different statues. Right: Merging result.

Figure 13 : 1 [

 131 Figure 13: Registration and pose changes of 4 statues: the Dancer with Crotales (first row), the Dancing Faun (second row), Aphrodite (third row) and the Old Man Walking (fourth row). First column: initial point set, second column: overlay of the registered model and the point cloud, third column: final point set in a modified pose by our skinning method, fourth column: skinning result with Dual Quaternions.

Figure 14 :

 14 Figure 14: Registration and restoration of 5 incomplete statues, Esquiline Venus (first row), Old Fisherman (second row), Venus de Milo (third row), Wounded Amazon (fourth row) and Spinario (fifth). First column: initial point set, second column: overlay of the registered model and the point set, third column: final restoration.
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