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Abstract: This paper deals with the stabilization of a class of time-dependent linear au-
tonomous systems with a switched structure. For this aim, the switched dynamic system is
modeled by means of an implicit representation combined with a Linear-Quadratic (LQ) type
control design. The proposed control design stabilizes the resulting system for all of the possible
realizations of its locations. In order to solve the Algebraic Riccati Equation (ARE) associated
with the LQ control strategy one only needs the knowledge of the algebraic structure related
to the switched system. We finally prove that the proposed optimal LQ type state feedback
stabilizes the closed-loop switched system no matter which location is active. The proposed
theoretical approaches are illustrated by a numerical example.

Keywords: switched dynamic systems, implicit control systems, linear quadratic regulator
(LQR), Riccati equation, Lyapunov stability.

1. INTRODUCTION

In (Bonilla et al, 2015a) is shown that a wide class of time-
dependent autonomous systems with a switched structure
(Liberzon, 2003) can be adequately modeled by the state
space representation:

ẋ = Aqx+Bu , y = Cqx . (1.1)

B ∈ Rn×m is an injective matrix and the Aq and Cq have
the following structure (see e.g., (Narendra et al, 1994)):

Aq = A0 +A1D(q) and Cq = C0 + C1D(q), (1.2)

The system remains in a specific location,

q ∈ Q =
{

(q1, ..., qη) | qi ∈ Rn, i ∈ {1, ..., η}
}
, (1.3)

for all time instants t ∈ [Ti−1, Ti), where Ti ∈ R+, T0 = 0,
Ti−1 < Ti, for all i ∈ N, lim

i→∞
Ti =∞, and s : {[Ti−1, Ti) ⊂

R+, i ∈ N} → Q, s([Ti−1, Ti)) = q. Moreover, A0 ∈ Rn×n
and C0 ∈ Rp×n, A1 ∈ Rn×n̂ is an injective matrix and
C1 ∈ Rp×n̂ and D(q) ∈ Rn̂×n are surjective matrices with
the property D(0) = 0.

In (Bonilla et al, 2015b) authors additionally propose
a specific variable structure decoupling control strategy
based on the ideal proportional and derivative (PD) feed-
back control law. Finally a proper practical approximation
of the above ideal PD feedback is developed. Such feed-
back control strategies reject the initially given “variable
structure” and make it possible to establish the required
stability property of both control strategies.

In this paper we consider the stabilizing problem for a class
of time-dependent switched dynamic systems equipped
with a relative simple static state feedback. The paper is
organized as follows: in Section 2 we formally introduce
a class of switched systems and represent the given dy-
namics using the global implicit representation technique
from (Bonilla et al, 2019). Section 3 contains a proper
self-closed solution procedure for the main LQR design
problem under specific assumption of unknown location.
In Section 4 we show that the developed LQ type opti-
mal feedback control additionally stabilizes the switched
dynamic system. In Section 5 we discuss an illustrative
numerical example and Section 6 summarizes our paper.

2. NON-STATIONARY SWITCHED SYSTEM WITH
TIME-DRIVEN SWITCHING STRUCTURE

Let us consider the global implicit representation:

Eẋ = Ax+ Bu , y = Cx. (2.1)
Here

E =

[
E
0

]
, A =

[
A
Dq

]
, B =

[
B
0

]
, (2.2)

E = [I 0] , A =
[
A0 −A1

]
, C =

[
C0 −C1

]
and Dq =

[
D(q) I

]
.

(2.3)

We now assume that the locations set has a specific
structure described by the following Hypothesis.

H1. (Bonilla et al, 2015b) Given q0, q1, . . . , q` ∈ Q,
g = [g1 . . . g`]

T , g1, . . ., g` ∈ R+, the locations qi ∈ Q
belong to the convex set described as follows



Qq0(g) =

{
qi ∈ Q

∣∣∣∣ qi = q0 +
∑̀
j=1

γ(i, j)gjqj , i ∈ {1, , . . . , `}
}
,

(2.4)
and moreover, for each [Ti−1, Ti) ∈ s−1(q), γ(i, j) takes
constant values in the closed subset of R : [0, 1].

H2. (Bonilla et al, 2015b) There exist ∆0, ∆1, . . . , ∆`

such that

D(qi) = ∆0 −
∑̀
j=1

γ(i, j)gj∆j , (2.5)

where γ(i, j) and gj are determined by H1.

3. THE MAIN LQ-TYPE OPTIMAL CONTROL
PROBLEM

Let us now formulate the following natural problem asso-
ciated with a dynamics.

Problem 1. Given a switched system represented by (1.1)
and (1.2) (viz (2.1)–(2.3) with a nonzero initial condition
x0, and one unknown q ∈ Q, determine a control design
such that the descriptor variable x tends to zero and
moreover, the following objective

J =

∫ ∞
0

(
xTQ(q)x+ uTRu

)
dt (3.1)

attains its minimal value, where Q(q) = Q(q)T ≥ 0 and R
= RT > 0.

For the concrete treatment of the above Problem 1 we
next follow Kailath (1980). Let us also refer to Lewis et
al (2012) for more technical details. We now define the
conventionally augmented objective associated with the
originally given costs functional:

Ja(x, u, λ) =

∫ ∞
0

(
H(x, u, λ, t)− λTEẋ

)
dt, (3.2)

where the system’s Hamiltonian H is defined as follows

H(x, u, λ, t) := L(x, u, t) + λT (Ax+ Bu), (3.3)

L(x, u, t) :=
1

2

(
xTQ(q)x+ uTRu

)
. (3.4)

The above formalism implies the associated Euler-Lagrange
equation (see Azhmyakov (2019) for details)

∂f

∂v
− d

dt

(
∂f

∂ (v̇)

)
= 0,

where: f = H−λTEẋ, and v ∈ {x, u, λ} have the following
constructive definition (Luenberger, 1969):

v = x : Q(q)x+ ATλ = −ET λ̇, (3.5)

v = λ : Eẋ = Ax+ Bu, (3.6)

v = u : u = −R−1BTλ. (3.7)

From (3.5)–(3.7) we next deduce the Hamiltonian equation[ Eẋ
ET λ̇

]
=

[
A −BR−1BT

−Q(q) −AT

] [
x
λ

]
. (3.8)

and from (2.2)–(3.8) we additionally obtain the following
useful expressions


[
E
0

]
ẋ[

ET 0
]
λ̇

 =


[
A
Dq

]
−
[
B
0

]
R−1

[
BT 0

]
−Q(q) −

[
AT DT

q

]
[x

λ

]
.

Taking into consideration the above relation (2.3), we have
the final expressions:
[
I 0
0 0

]
ẋ[

I 0
0 0

]
λ̇

 =


[
A0 −A1

D(q) I

]
−
[
B
0

]
R−1

[
BT 0

]
−Q(q) −

[
A
T

0 D
T

(q)

−AT1 I

]

[
x
λ

]
.

Let us now define x =

[
xc
x`

]
and λ =

[
λc
λ`

]
. Additionally

let us denote

Q(q) =

[
Qq 0
0 0

]
, Qq = Q

T

q ≥ 0. (3.9)

Taking into account the above formalism, we obtain the
formal consequences:I 0 0 0

0 0 0 0
0 0 I 0
0 0 0 0



ẋc
ẋ`
λ̇c
λ̇`

 =


A0 −A1 −BR−1BT 0
D(q) I 0 0

−Qq 0 −AT0 −DT
(q)

0 0 A
T

1 −I


xcx`λc
λ`


(3.10)

We next formally describe the constructive “separation
idea” and split (3.10) into two subsystems. The obtained
“dynamic part” has the following form[
ẋc
λ̇c

]
=

[
A0 −BR−1BT

−Qq −AT0

] [
xc
λc

]
+

[
A1 0

0 −DT
(q)

] [
x`
λ`

]
.

(3.11)

The resulting algebraic part of the proposed “separation”
has the corresponding representation:[

x`
λ`

]
=

[
−D(q) 0

0 A
T

1

] [
xc
λc

]
(3.12)

Now from (3.12) and (3.11) we can easily deduce the next
relations[

ẋc
λ̇c

]
=

[
A0 −BR−1BT

−Qq −AT0

] [
xc
λc

]
+

[
−A1 0

0 −DT
(q)

] [
−D(q) 0

0 A
T

1

] [
xc
λc

]
,

(3.13)

which are equivalent to the condition[
ẋc
λ̇c

]
=

[
(A0 +A1D(q)) −BR−1BT

−Qq −(A
T

0 +D
T

(q)A
T

1 )

] [
xc
λc

]
.

(3.14)
Moreover, we also deduce (cf. (1.2)) the following:[

ẋc
λ̇c

]
=

[
Aq −BR−1BT
−Qq −ATq

] [
xc
λc

]
. (3.15)

The obtained relation (3.15) provides a basis for the
celebrated Algebraic Riccati Equation (ARE)

ATq P + PAq − PBR−1BTP +Qq = 0, (3.16)



where q is one unknown element of the given locations set
{q1, . . . , q`}.
Finally let us recall the common knowledge of the
feedback-type optimal control design for the generic LQ
problem (see for example Kailath (1980) and Lewis et al
(2012))

F∗ = R−1BTP , u = −F∗x . (3.17)

We next use the well-known facts from this section as a
theoretical basis for the stabilization approach we propose.

3.1 On the ARE Involved Solution Approach

Which location q is currently active being unknown implies
the conceptual difficulties in solving the ARE (3.16). Note
that the solvability property of the “switched” ARE under
consideration is assumed for every admissible location. For
the concrete treatment of (3.16) we next assume that Qq
has the same structure as in H1. That means

Qq = Q0 +
∑̀
j=1

gjγ(i, j)Qj , (3.18)

where Q0 = Q
T

0 > 0 and (see (2.5)):

Qj = (A1∆j)
TP0 + P0(A1∆j). (3.19)

P0 is a positive definite matrix and a solution of the ARE:

ATq P0 + P0Aq − P0BR
−1BTP0 = −Q0. (3.20)

From (1.2) and (3.16) we next conclude that

(A0 +A1D(qi))
TP + P (A0 +A1D(qi))− PBR−1BTP

+Qqi = 0
(3.21)

and taking into account the basic relation (2.5) and (3.18)
we finally get the useful relationA0 +A1

∆0 −
∑̀
j=1

gjγ(i, j)∆j

T

P+

P

A0 +A1

∆0 −
∑̀
j=1

gjγ(i, j)∆j

−
PBR−1BTP +

Q0 +
∑̀
j=1

gjγ(i, j)Qj

 = 0

(3.22)

viz :

(A0 +A1∆0)TP + P (A0 +A1∆0)− PBR−1BTP +Q0 =∑̀
j=1

gjγ(i, j)
[(
A1∆j

)T
P + P

(
A1∆j

)]
−
∑̀
j=1

gjγ(i, j)Qj .

(3.23)

Relations (3.19) and (3.23) imply the next formal conse-
quence

(A0 +A1∆0)TP + P (A0 +A1∆0)− PBR−1BTP +Q0

=
∑̀
j=1

gjγ(i, j)
(

(Ai∆j)
TP + P (Ai∆j)− (Ai∆j)

TP0

−P0(Ai∆j)
)
.

(3.24)

which finally involve (under assumption P = P0) the
resulting ARE of the following type:

(A0 +A1∆0)TP0 + P0(A0 +A1∆0)− P0BR
−1BTP0

+Q0 = 0
(3.25)

Let us note that the obtained ARE (3.25) does not include
any (unknown) active location. It depends only on the
given structure of (2.1). The essential parameters, namely,
(A0, A1, ∆0) determine the above equation structure. Let
us summarize the obtained result in the form of a theorem.

Theorem 1. Assume that all the technical conditions of
this Section are satisfied. Then the optimal feedback
solution to the main Problem 1, where Q(q) is given by
(3.9), (3.18) and (3.19), has the following form

F∗0 = R−1BTP0 , u = −F∗0x . (3.26)

Here P0 is solution of the ARE (3.25).

The presented analytic result constitutes a theoretical
basis for the stabilization problem studied in the next
section.

4. THE LQ BASED STABILIZATION OF SWITCHED
SYSTEMS

As a well-known stabilizability property of the classic
optimal LQ control design (see for example Lewis et al
(2012); Kailath (1980)), we next show that the generic
optimal control from Theorem 1 also stabilizes system
(1.1)–(1.3) even in the case of unknown locations q ∈ Q.

Applying the optimal control feedback (3.26) to the
switched system representation (1.1), we obtain the fol-
lowing closed loop state space form

ẋ = Aqix−BF∗0x = (Aqi −BF∗0)x

= (Aqi −BR−1BTP0)x
(4.1)

Taking into consideration the previously derived formulae
(1.2) and (2.5) in (4.1), we also get:

ẋ = (A0 +A1(∆0 −
∑̀
j=1

gjγ(i, j)∆j)−BR−1BTP0)x

= F (∆j , P0)x ,
(4.2)

where: F (∆j , P0) , A0 + A1∆0 −
∑`
j=1 gjγ(i, j)A1∆j −

BR−1BTP0. Let us define the Lyapunov function:

V (x) = x(t)TP0x(t). (4.3)

The usual Lie derivative of (4.3) (along the trajectories of
system (4.2)) next implies:

V̇ (t) = ẋ
T

(t)P0x+ xT (t)P0ẋ

= xTFT (∆j , P0)P0x(t) + xT (t)P0F (∆j , P0)x

= xT
((

A0 +A1∆0

)T
P0 −

∑̀
j=1

gjγ(i, j)
(
A1∆j

)T
P0

−
(
BR−1BTP0

)T
P0

)
x+ xT

(
P0

(
A0 +A1∆0

)
−
∑̀
j=1

gjγ(i, j)P0

(
A1∆j

)
− P0

(
BR−1BTP0

))
x



V̇ (t) = xT
((

A0 +A1∆0

)T
P0 + P0

(
A0 +A1∆0

)
−P0BR

−1BTP0 −
∑̀
j=1

gjγ(i, j)
( (
A1∆j

)T
P0

+P0

(
A1∆j

) )
− P0BR

−1BTP0

)
x .

From (3.25) and (3.26) we deduce

V̇ (x) = −xT
(
Q0 +

∑̀
j=1

gjγ(i, j)
( (
A1∆j

)T
P0

+P0

(
A1∆j

) )
+ FT∗0RF∗0

)
x ,

V̇ (x) = −xT
([√

Q0 F∗0

] [
I 0
0 R

][√
Q0

FT∗0

]
+

∑̀
j=1

gjγ(i, j)
( (
A1∆j

)T
P0 + P0

(
A1∆j

) ))
x ,

where Q0 =

(√
Q0

)T (√
Q0

)
. Defining:

Q0 =
[√

Q0 F∗0

] [
I 0
0 R

] [√
Q0

FT∗0

]
, we finally get:

V̇ (x) = −xT
(
Q0+

∑̀
j=1

gjγ(i, j)
[(
A1∆j

)T
P0 + P0

(
A1∆j

)])
x.

(4.4)
The analytic relations obtained above constitute in fact a
formal proof of our next stability result 1

Theorem 2. Assume that all the technical assumptions of
this section are fulfilled. Then the system (4.1) is stable in
the sense of Lyapunov if one of the two following conditions
is satisfied:

λmin (Q0) + λmin

∑̀
j=1

gjγ(i, j)Qj

 > 0 , (4.5)

Q0 +
∑̀
j=1

gjγ(i, j)Qj > 0 , (4.6)

or if the pair

(√
Q0, (A0 +A1∆0)

)
is observable and one

of the following conditions holds true:

λmin (Q0) + λmin

∑̀
j=1

gjγ(i, j)Qj

 ≥ 0 , (4.7)

λmin (Q0) + λmin

∑̀
j=1

gjγ(i, j)Qj

 ≥ 0 . (4.8)

1 Let us also recall Theorem 5.10 of Chapter 6, Section 5 of Stewart
(1973), and Corollary 2.6-2 of Kailath (1980).

The obtained result provides a stability criterion for the
switched systems under consideration in absence of the
exact a priori information about a concrete switching
mechanism.

Starting from a model in the form (1.1), the procedure to
design the feedback is summarized as follows.

(1) Identify the parameters of the implicit representation
(2.1)–(2.5), in particular the matrices A0, A1, B, and
∆0.

(2) Choose matrices R and Q(q) in the form defined by
(3.9) and (3.18), satisfying one of the four conditions
of Theorem 2, namely, (4.5), (4.6), (4.7) or (4.8).

(3) Solve the Riccatti equation (3.25), and define the
feedback by (3.26).

5. NUMERICAL ASPECTS

In this section we apply the theoretical results (stability
results) developed in the previous parts of the manuscript
and study an illustrative example taken from Azhmyakov
(2019). Let us also refer to Bonilla et al (2019) for some
further examples and theoretical details. Consider now
the state space representation (1.1) determined by the
following matrices

Aq =

[
α β + 1

α+ 1 β

]
, B =

[
0
1

]
, Cq = [−α −β] . (5.1)

and with the locations (cf. (1.3)):

q ∈ Q =
{

(α, β)
∣∣ q1 = (−1.5, −0.8), q2 = (−1, −2),

q3 = (−1, 0), q4 = (−1, −3), q5 = (−1, −1)
}
.

(5.2)
Comparing with (1.2), we can observe that

A0 =

[
0 1
1 0

]
, A1 =

[
1
1

]
, B =

[
0
1

]
, Dq = [α β],

C0 = [0 0] , C1 = 1,
(5.3)

The conventional systems transfer functions of (1.1) and
(5.1) for each pair (α, β) are:

Fq(s) =
(β + 2)s− α

(s+ 1)(s− (α+ β + 1))
. (5.4)

5.1 Global Implicit Representation

The global implicit representation associated with (1.1)
and (5.1) can be formalized as 1 0 0

0 1 0
0 0 0

 ẋ−
˙̂x

 =

 α (1 + β) −1
(1 + α) β −1

0 0 1

[x−
x̂

]
+

0
1
−
0

u
y = [−α −β | −1]

[
x
−
x̂

]
,

(5.5)

viz (cf.
∑gir

0 (E,Ai,B, C). Moreover, we have 1 0 0
0 1 0
0 0 0

 ẋ =

 0 1 −1
1 0 −1
α β 1

x+

0
1
−
0


y = [0 0 | 1]x

(5.6)



i qi (α, β) γ(i, 1) γ(i, 2)

1 q1 (−1.5,−0.8) 1 4/15

2 q2 (−1,−2) 0 2/3

3 q3 (−1, 0) 0 0

4 q4 (−1,−3) 0 1

5 q5 (−1,−1) 0 1/3

Table 1. α, β values and the values of γ(i, j)

We now consider the systems controllability requirement
and examine the characteristic determinant of the control-
lability matrix for the pair (Aq, B) which is:

det [B Aqi] =

∣∣∣∣0 β + 1
1 β

∣∣∣∣ = −β − 1. (5.7)

The characteristic polynomial of Aq is:

|sI2 −Aqi | =
∣∣∣∣[s 0

0 s

]
−
[

α β + 1
α+ 1 β

]∣∣∣∣
= s2 − (α+ β)s− (α+ β + 1)

= (s+ 1)(s− (1 + α+ β)).

(5.8)

Hence, we are ready to calculate the eigenvalues of Aq

s1 = −1

s2 = 1 + α+ β
(5.9)

From (5.7), we obtain the controllability region associated
with the pair (Aq, B):

CR(Aqi,B) = {β ∈ R : β 6= −1}. (5.10)

From (5.8), we have the Hurwitz region of Aq:

HRAq = {(α, β) ∈ R2 : 1 + α+ β < 0}. (5.11)

Let us note that the locations set (5.2) has the same struc-
ture as H1, which implies the next constructive relation:

q ∈ Q(−α,−β) =
{

(α, β) ∈ Q
∣∣∣

(α, β) = (−α,−β) + γ(i, 1)(α− α)q1 + γ(i, 2)(β − β)q2,

γ(i, 1), γ(i, 2) ∈ [0, 1]
}

(5.12)
where

α = 1.5, β = 3, α = 1, β = 0. (5.13)

Moreover, we also have q0 = (−α,−β) = (−1, 0), q1 =
(−1, 0) and q2 = (0,−1). In Table 1 we present the values
of γ(i, j) and we additionally deduce:

∆0 = (−α,−β) = (−1, 0),
∆1 = −q1 = (1, 0), ∆2 = −q2 = (0, 1).

(5.14)

5.2 LQ Feedback Stabilization

We now solve the ARE (3.25) with

Q0 =

[
1 0
0 1

]
, and R = 1. (5.15)

Note that a concrete numerical solution procedure for the
resulting ARE can be easily found in

e
MATLABR and

Python numerical packages. From (5.3), (5.14) and (5.15)
we deduce that this solution of (3.25) has the following
form

P0 =

[
0.4765 0.2168
0.2168 1.1974

]
, (5.16)

Hence, the feedback (3.26) is:

F∗0 = R−1BTP0 = [0.2168 1.1974] , u = −F∗0x .
(5.17)

As proposed in Section 4, the above optimal LQ - type
control feedback is finally used for the system stability
design. From (5.3), (5.14) and (5.16) we can deduce
the concrete stability relations and the corresponding
numerical parameters

Q1 = (A1∆1)TP0 + P0(A1∆1) =

[
1.3867 1.4142
1.4142 0

]
,

Q2 = (A1∆2)TP0 + P0(A1∆2) =

[
0 0.6933

0.6933 2.8284

]
.

(5.18)
The spectra σj of the Qj , j ∈ {1, 2} also have the concrete
numerical expressions:

σ1 = {−0.8817, 2.2684}, and σ2 = {−0.1608, 2.9892}.
Hence

λmin(Q0) = 1,
λmin(Q1) = −0.8817, λmin(Q2) = −0.1608.

(5.19)

Finally, from (5.19) and (5.13), we get (cf. (4.5) with
g1 = (α− α) and g2 = (β − β)):

λmin(Q0) + (α− α)λmin(Q1) + (β − β)λmin(Q2)
= 1 + (0.5)(−0.8817) + (3)(−0.1608)
= 0.0767 > 0.

(5.20)
The above inequality implies the conventional Lyapunov
stability conditions (4.5).

Figure 1 depicts all the feasible points that satisfy the suf-
ficient condition. Analysing this Figure, we can conclude
that all the locations are inside the sufficiently big stability
region, where the formal analytic stability conditions are
expressed by (4.5).

-

6
β

−β =

−β =

−α =−α =

α
q1 : 1.2s+1.5

(s+1.3)(s+1)

q0 = q3 : 2s+1
s(s+1)

q5 : 1
s+1

q2 : 1
(s+2)(s+1)

q4 : 1−s
(s+3)(s+1)

Fig. 1. The region in blue is the open loop necessary
stability region, namely det(λE − Ai) is a Hurwitz
polynomial. The region depicted by the little circles is
the closed loop guaranteed Lyapunov stability region
(4.5).

5.3 Simulation Results

In this last part of the numerical section we deal with
the concrete simulation results when applying a random
switching signal i(t) with



Aq1 =

[
−1.5 0.2
−0.5 −0.8

]
, Aq2 =

[
−1 −1

0 −2

]
,

Aq3 =

[
−1 −1

0 0

]
, Aq4 =

[
−1 −2

0 −3

]
, Aq5 =

[
−1 0

0 −1

]
.

The generated signal i(t) involves a random switching
mechanism and hence the sub-systems and the realizations
of the switching times are unknown. Figure 2 shows the
time response under the initial condition x = [8 3]T and
the switching signal i(t).

x1(t)

t

x2(t)

t

y(t)

t

i(t)

t

Fig. 2. Time response of x1 and x2 under the initial
condition x = [8 3]T for the switching signal i(t).

Clearly, the effect caused by a concrete realization of the
switching mechanism implies changes on the states at
every time a location switching occurs. On the other side,
the system possesses the evident convergence properties
with respect to the equilibrium point.

Considering the numerical results for that concrete il-
lustrative example we can conclude that the resulting
switched system (1.1), (5.1), (5.2), and (5.17) closed by
the LQ-type optimal control is stable for every admissible
realisation of systems locations.

6. CONCLUDING REMARKS

In this paper, we have proposed an optimal stabilizing
state feedback for a wide class of switched dynamic models.
The obtained matrices of the state space representation
(1.1) associated to the class of switched system possess a
specific structure similar to (Narendra et al, 1994). More-
over, the admissible switching mechanisms have a generic
nature studied in Azhmyakov (2019). These switched dy-
namic models make it possible to consider the useful state
space representation (1.1)–(1.2) and the corresponding
global implicit representation (2.1)–(2.3). Note that the
combinatorial structure of the locations set in switched
systems we examined is in fact represented by the matrix
D(qi) (cf. (2.5)).

We firstly solve the conventional LQ optimization problem
with the standard objective (3.1). The obtained optimal
control feedback (3.17) naturally involves the necessary
solution of the related ARE of the type (3.16) which
in fact is formally undefined and depends on the given

unknown active location q. In order to solve this generic
undefined ARE we determine a specific structure of the
weight matrix Qq, namely, we define the same structures
as H1 and (2.5). This fact makes it possible to obtain the
ARE (3.25) which depends only on the known switching
structure of (2.1): in that specific case on the following
triplet: (A0, A1, ∆0). Finally, we are able to synthesize
the optimal stabilizing state feedback (3.26) as shown in
the main Theorem 1.

In fact, we have proven a kind of a “robustness” result with
respect to a possible (admissible) switching mechanism:
the LQ-type optimal control design from the main Theo-
rem 1 stabilizes system (1.1)–(1.3) under the assumption
of an unknown dynamic location q ∈ Q. Note that the
formal proof of Theorem 2 involves some recent results
from (Bonilla et al, 2015b).
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