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Abstract
DNA replication is a vital process in all living organisms. At each cell division, > 30,000 replication origins are activated 
in a coordinated manner to ensure the duplication of > 6 billion base pairs of the human genome. During differentiation and 
development, this program must adapt to changes in chromatin organization and gene transcription: its deregulation can 
challenge genome stability, which is a leading cause of many diseases including cancers and neurological disorders. Over the 
past decade, great progress has been made to better understand the mechanisms of DNA replication regulation and how its 
deregulation challenges genome integrity and leads to human disease. Growing evidence shows that gene transcription has 
an essential role in shaping the landscape of genome replication, while it is also a major source of endogenous replication 
stress inducing genome instability. In this review, we discuss the current knowledge on the various mechanisms by which 
gene transcription can impact on DNA replication, leading to genome instability and human disease.

Keyword DNA replication program · Replication stress · Genome instability · Cell cycle · Transcription–replication 
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ARS  Autonomously replicating sequence
BIR  Break-induced replication
BRCA1/2  Breast-related cancer antigen 1/2
CD  Co-directional
CDC45/6  Cell division control protein 45/6
CDK  Cyclin-dependent kinase
CDT1  CDC10-dependent transcript 1
CFS  Common fragile site
DDK  Dbf4-Dependent Kinase;
DDR  DNA damage response
DSB  DNA double-strand break
ER  Estrogen receptor
ERFS  Early-replicating fragile site
ESC  Embryonic stem cell
FA  Fanconi anemia

FISH  Fluorescence in situ hybridization
FXS  Fragile X syndrome
G4  G quadruplex
HO  Head-on
HR  Homologous recombination
MCM  Mini-chromosome maintenance
MiDAS  Mitotic DNA synthesis
NHEJ  Non-homologous end joining
NSPC  Neural stem/progenitor cell
ODP  Origin decision point
OGRE  Origin G-rich repeated elements
OK-seq  Okazaki fragment sequencing
ORC  Origin recognition complex
PCNA  Proliferating cell nuclear antigen
pre-IC  Pre-initiation complex
pre-RC  Pre-replication complex
RDC  Recurrent DSB cluster
RFC  Replication factor C
Rif1  Rap1-interacting factor 1
RPA  Replication protein A
RT  Replication timing
SDR  Significant delayed region
SNS  Small nascent strand
TAD  Topologically associated domain
TDP  Time decision point
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TRC   Transcription–replication conflict
TSS  Transcriptional start site
TTS  Transcription termination site
UTR   Untranslated transcribed region

Introduction

Humans start their life as a single cell that has to repeat-
edly divide to create the ~ 40 trillion cells that comprise the 
human body (Bianconi et al. 2013). It is essential that all 
the genetic information contained in the zygote is reliably 
transmitted to all daughter cells to guarantee proper devel-
opment. At each cell division, DNA replication involves 
the activation of tens of thousands of replication origins to 
ensure complete genome duplication. This program must be 
very robust and be able to adjust to the gene transcription 
programs and the chromatin organization of the different cell 
types that they are becoming. Furthermore, a huge level of 
DNA replication and cell division is necessary during the 
entire human life span to replace old, dead or damaged cells. 
If DNA replication fails, genome integrity is challenged and 
many diseases, such as cancers and neurological disorders, 
can arise (Ganier et al. 2019; Zeman and Cimprich 2014). It 
is therefore essential that this program is correctly accom-
plished. However, during the life span, large numbers of 
exogenous and endogenous replication stresses routinely 
challenge DNA integrity and lead to genome instability. In 
particular, growing evidence indicates that gene transcrip-
tion itself is an important, yet unavoidable endogenous 
replication stress, which can either suppress replication ini-
tiation, or can generate conflicts with the DNA replication 
process. In this review, we focus on transcription-mediated 
replication stress and its impact on human diseases. First, 
we describe the mechanisms of DNA replication initiation 
and control, as well as its relation to gene transcription. We 
then discuss the different mechanisms by which transcrip-
tion acts as a notable source of replication stress to induce 
genome instability. Finally, we explain how such transcrip-
tion-mediated replication stresses are involved in various 
human diseases.

Origin licensing and firing: a two‑step 
process

The nuclear genome must be correctly duplicated once 
and only once per mitotic cell division. To avoid genome 
re-replication, DNA replication is temporarily divided into 
two steps: (i) the origin licensing that takes place between 
mitosis and the beginning of the next interface, where all 
the possible replication origins are recognized and loaded 
with the pre-replication complex (pre-RC), and (ii) the 

origin firing that takes place during S phase (Fig.  1). 
Although most of the collected information comes from 
yeast, the major process seems to be highly conserved in 
other eukaryotes. In this section, we report mainly dynam-
ics from budding yeast and integrate with information 
from other eukaryotes.

The loading of the pre-RCs onto chromatin starts with 
the recognition of origins by a hetero-hexamer called ori-
gin recognition complex (ORC, ORC1-6) (Bell and Still-
man 1992), which further recruits other factors to form 
the pre-RCs. In yeast, replication origins are associated 
with specific sequences called autonomously replicating 
sequences (ARS) (Marahrens and Stillman 1992), while 
in higher eukaryotes the situation is less clear and rep-
lication origins are not defined by a specific sequence. 
Multiple techniques have been used to map replication 
origins and the results are not concordant, suggesting that 
we might be looking at different subsets of origins based 
on the limitations of the various approaches (see Prioleau 
and MacAlpine 2016; Ganier et al. 2019 for review). Ori-
gins identified with the small nascent strand (SNS) method 
seem to be enriched at transcriptional start sites (TSSs) 
(Sequeira-Mendes et al. 2009; Cadoret et al. 2008), origin 
G-rich repeated elements (OGRE) (Cayrou et al. 2012), G 
quadruplex (G4) (Besnard et al. 2012), high CpG and GC 
content regions (Cayrou et al. 2011; Delgado et al. 1998; 
Cadoret et al. 2008), while the OK-seq (Okazaki fragment 
sequencing) method has shown that origins preferentially 
position within the intergenic regions before and/or after 
gene bodies that are AT rich (Tubbs et al. 2018; Petryk 
et al. 2016) (Fig. 2).

Replication origins are also marked by epigenetic sig-
natures, such as H2A.Z and H4k20me2/3, the presence of 
which is needed for ORC1 recruitment (Beck et al. 2012; 
Long et al. 2020; Kuo et al. 2012). ORC binding is fol-
lowed by the recruitment of cell division control protein 6 
(CDC6), which stabilizes ORC binding (Speck and Still-
man 2007), and CDC10-dependent transcript 1 (CDT1). 
CDT1 is loaded onto chromatin together with the mini-
chromosome maintenance (MCM2-7) helicase complex 
through the interaction with ORC (Evrin et  al. 2009; 

Fig. 1  Origin licensing and firing occur over a two-step process. The 
first step of DNA replication, called origin licensing, consists of load-
ing the pre-replication (pre-RC) complex onto chromatin on all the 
potential replication origins along the genome. This occurs between 
the end of mitosis and G1 phase. The second part of the process takes 
place in S phase, where replication origins are activated through the 
recruitment of limiting factors that lead to the conversion of pre-RC 
to pre-IC (pre-initiation complex). This transition is regulated by 
the replication timing program that marks the order of replication of 
the genome, with origins in the early-replicating regions fired before 
those in the late-replicating regions. To avoid re-replication, compo-
nents of the pre-RC are segregated, exported or degraded, therefore 
impairing re-licensing

◂
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Maiorano et al. 2000; Nishitani et al. 2000). A second 
MCM complex is then loaded by ORC in an inverted ori-
entation to form MCM double-hexamer formation (Miller 
et al. 2019). This process completes origin ‘’licensing” 
(Fig. 1). The pre-RC is not stable on chromatin, and recent 
studies in yeast and Drosophila have suggested that gene 
expression can alter origin licensing by disassembling the 
pre-RC or by sliding the MCM complex away from the 
original loading position due to the passage of the RNA 
polymerase over transcribed genes (Gros et al. 2015; Pow-
ell et al. 2015). This process might explain the preferential 
localization of replication initiation sites within intergenic 
regions between active genes.

To avoid re-replication when cells enter S phase, com-
ponents of the pre-RC are made inaccessible through post-
translational modifications that can cause their inactivation, 
export out of the nucleus and degradation, or as in the case 
of CDT1, segregation via an interaction with GEMININ 
(Ballabeni et al. 2013; Petersen et al. 2000, 1999; Nguyen 
et al. 2000; Li and DePamphilis 2002; Méndez et al. 2002). 
At the transition between G1 and S phase, fully formed pre-
RCs are phosphorylated at specific sites by Dbf4-dependent 
kinase (DDK) and cyclin-dependent kinase (CDK). These 
phosphorylation events lead to CDC45, treslin and Mdm2-
binding protein (MTBP) recruitment (Boos et al. 2013; 
Kumagai and Dunphy 2017; Heller et al. 2011; Ilves et al. 
2010; Jares and Blow 2000). Treslin phosphorylation leads 
to the recruitment of topoisomerase 2-binding protein 1 
(TOPBP1), RecQ-like helicase 4 (RECQL4), GINS com-
plex and Pol ε and the subsequent conversion of pre-RCs 
into pre-initiation complexes (pre-ICs) (Tanaka et al. 2007; 

Kumagai et al. 2011; Boos et al. 2011; Muramatsu et al. 
2010; Sangrithi et al. 2005). At this point, treslin, MTBP, 
RECQL4 and TOPBP1 are released and the active replisome 
is formed thanks to MCM10 loading (Kanke et al. 2012; 
Watase et al. 2012; Kanemaki and Labib 2006; Gambus 
et al. 2006). Finally, other proteins such as replication pro-
tein A (RPA), proliferating cell nuclear antigen (PCNA) and 
replication factor C (RFC) are loaded and DNA replication 
starts, called origin firing (MacNeill 2012) (Fig. 1).

Origins usage and replication timing

Of all the potential replication origins that are loaded with 
a pre-RC, only a subset will actually be fired. Most of these 
origins are licensed to work as a backup plan in case replica-
tive stress stalls the replication forks (Ge et al. 2007; Wood-
ward et al. 2006; Santocanale et al. 1999). Moreover, all 
replication origins do not fire at the same time, but instead 
they follow a cell-type specific spatio-temporal program, 
known as the replication timing (RT) program (Dimitrova 
and Gilbert 1999) (Fig. 2). In mammalian cells, this program 
is established during G1 phase, ~ 2 h after mitosis in a time 
window referred to as the time decision point (TDP) (Lu 
et al. 2010; Li et al. 2001, 2003; Wu et al. 2006; Dimitrova 
and Gilbert 1999). Interestingly, the establishment of the 
RT precedes the choice as to which origins are going to be 
used during S phase; that choice instead occurs later in G1 
phase during the origin decision point (ODP) (Dimitrova 
and Gilbert 1999; Li et al. 2003). The relation between TDP 
and ODP, and the corresponding mechanism(s) need to be 

Fig. 2  Origin distributions at early and late-replicating regions. 
Origin distribution differs between distinct regions of the 
genome. Within the early-replicating genome (Left panel), replication 
origins are enriched in intragenic regions between active genes. This 
effect might be because active transcription can cause disassembly of 

the pre-RC or sliding of the MCM complex away from the original 
loading position due to the passage of the RNA polymerase over tran-
scribed genes. In the late-replicating regions (Right panel), which are 
frequently associated with regions that lack gene transcription, repli-
cation origins are almost randomly distributed
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further investigated. RT establishment temporally corre-
sponds to the re-establishment of an organized nuclear archi-
tecture after mitosis, with the anchoring of chromosomes 
to the nuclear periphery (Dimitrova and Gilbert 1999; Li 
et al. 2001) and the establishment of topologically associated 
domains (TADs) and the A/B compartments (Dileep et al. 
2015). Likewise, RT domains have an extensive overlap with 
TADs and their being early or late-replicating corresponds to 
A or B compartments, respectively (Pope et al. 2014; Ryba 
et al. 2010).

Such a strong correlation between RT and the 3D genome 
structure led the field to hypothesize that these two processes 
might be coupled and that one might control the other. This 
hypothesis has been reinforced by the identification of Rif1 
(Rap1-interacting factor 1) as a nuclear structural protein 
that has an important role in RT regulation (Foti et al. 2016). 
Conversely, knock-outs or knock-downs of several other 
nuclear structural proteins, such as cohesin or CTCF, alter 
chromatin structure but not RT (Oldach and Nieduszynski 
2019; Rao et al. 2017; Sima et al. 2019; Nora et al. 2017). 
Moreover, it has been recently shown that Rif1 haploid cells 
show alterations in chromatin structure but normal RT, 
which indicates that although the two processes are coordi-
nated, they can be uncoupled (Gnan et al. 2019).

For years, the field has investigated the possibility that 
RT could reflect gene transcription. In general, early-rep-
licating regions are enriched with expressed genes, while 
late-replicating regions are not (Woodfine et  al. 2004) 
(Fig. 2). In addition, during development, regions switch-
ing RT from early-to-late (or late-to-early) are associated 
with genes whose expression is switched off (or on) (Hira-
tani et al. 2008). However, there are numerous exceptions: 
for example, regions containing expressed genes can also 
be replicated late, which challenges a direct link between 
RT and gene transcription (Rivera-Mulia et al. 2015). In 
addition, switching off genes at the β-globin locus fails to 
alter RT when chromatin accessibility is not modified, which 
also seems to go against this model (Cimbora et al. 2000). 
Indeed, the change in RT at the β-globin locus is associated 
with changes in accessibility, which seems to support the 
idea that RT is associated with chromatin accessibility rather 
than gene expression (Cimbora et al. 2000). In fact, early-
replicating regions are associated with open chromatin states 
(A compartment), while late-replicating regions are enriched 
in closed chromatin states (B compartment) (Pope et al. 
2014). In a recent article, Dileep and colleagues showed 
that changes in RT can precede or follow changes in gene 
transcription or be totally independent from it (Dileep et al. 
2019). It is therefore likely that both RT and gene transcrip-
tion are regulated by some common factors shared between 
the two processes.

How RT and origin usage are regulated is not fully 
understood, but they can be explained through a model of 

differential affinity for limiting factors (Fig. 1). To date, lim-
iting factors have been identified in some organisms and 
include proteins that are essential for the assembly of the 
pre-IC, such as CDC45, DBF4/CDC7 (regulatory/catalytic 
subunit of DDK), RecQL4, Treslin, TOPBP1 and MTBP 
orthologs (Mantiero et al. 2011; Wu and Nurse 2009; Col-
lart et al. 2013; Wong et al. 2011; Tanaka et al. 2011). What 
regulates the affinity for these limiting factors to replica-
tion origins is still unclear, but probably multiple layers of 
regulation are in place. A first possibility lays on chromatin 
looping that clusters together origins being fired and leav-
ing backup origins on the periphery of the loops (Courbet 
et al. 2008). Along the same line, the order of firing could 
be regulated through chromatin accessibility. As discussed 
previously, the early-replicating regions have a more open 
chromatin state than the late-replicating regions (Pope et al. 
2014), which might make the late-replicating regions inac-
cessible at the beginning of the S phase. Moreover, some 
proteins globally regulate RT, in a way, controlling the 
accessibility of the limiting factors. One of these is RIF1, 
which is enriched at late-replicating regions: RIF1 counters 
DDK activity thanks to its interaction with PP1 (protein 
phosphatase 1), dephosphorylating components of the pre-
RC and limiting origin firing until late S phase (Cornac-
chia et al. 2012; Mattarocci et al. 2014; Poh et al. 2014; 
Hiraga et al. 2014; Sukackaite et al. 2017). In fission yeast, 
the shelterin complex (also called telosome) is involved in 
RT regulation of a subgroup of late origins through Rif1. 
Shelterin can recruit Rif1 on telomeric DNA, as Taz1 does, 
and also brings late-replicating regions into the proximity 
of Rif1 (Tazumi et al. 2012; Ogawa et al. 2018; Kanoh and 
Ishikawa 2001). Moreover, Rap1 and Poz1 (two members 
of the shelterin complex) depletion can impact RT in an 
indirect manner. In fact, these mutants exhibit abnormal tel-
omere elongation that delocalizes PP1 ortholog from the late 
Rif1-dependent and Taz1-independent regions to telomeres 
(Hasegawa et al. 2019). Fork head 1 and 2 (Fkh1/2) are two 
transcription factors that have also been reported to regulate 
RT in yeast. These factors group early origins into clusters to 
facilitate DDK activity (Knott et al. 2012; Fang et al. 2017) 
via a direct interaction between Fkh1/2 and Dbf4 (Fang et al. 
2017). Similarly, Ctf19 and Swi6 recruit DDK to pericen-
tromeric origins, allowing centromeres to replicate early in 
budding and fission yeasts (Hayashi et al. 2009; Natsume 
et al. 2013). In S. cerevisiae, two histone deacetylases, Sir2 
and Rpd3, control the RT of origins located within the ribo-
somal DNA (rDNA) array by tuning their ability to compete 
with single-copy origins for limiting factors (Yoshida et al. 
2014). Work is ongoing to identify additional factors and 
delineate the underlying mechanisms controlling the origin 
usage and RT. Such work will help us better understand the 
complex relationship between DNA replication, gene tran-
scription and chromatin organization.
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Transcription‑mediated replication stresses 
and genome instability

As described earlier, replication initiation control is a 
multi-step process ensuring that the entire genome can be 
replicated once and only once for each cell division. Gene 
transcription can interplay with the DNA replication pro-
gram at all stages, i.e., during the G1 phase for the origin 
setting (location, firing time etc.), or during the S phase for 
the origin activation, replication fork progress etc. Here, 
we describe in detail how gene transcription influences 
DNA replication that leads to genome instability in nor-
mal and pathological conditions, and in the contribution 
to human diseases.

Transcription–replication collision, R‑loop 
formation and genome instability

Once replication forks have been deployed, their pro-
gression can be challenged by numerous factors. One 
such factor is the presence of active transcription along 
the genome. Collisions between the replication fork and 
the transcription machinery can either be co-directional 
(CD) or head-on (HO) (Fig. 3). The latter can be more 
dangerous for genome integrity (Hamperl et al. 2017). 
OK-Seq, which helps identify the direction of replication 
fork movement, has revealed that origin firing occurs more 
frequently upstream of the TSSs of active genes, ensuring 
co-directional replication of the most highly transcribed 
regions of the genome (Petryk et al. 2016). A wildly local-
ized replication termination at the transcription termina-
tion sites (TTSs) of transcribed genes under unperturbed 
conditions was also revealed. Meanwhile, replication ter-
mination could redistribute to gene bodies under replica-
tion stress, causing increased gene 3′ end replication in an 
HO orientation (Chen et al. 2019), which strongly induces 
transcription–replication conflicts (TRCs).

Recently, numerous studies have revealed that TRCs are 
frequently associated with a specific structure known as 
R-loops (Fig. 3). R-loops are formed when RNA polymer-
ase progresses along the DNA double strands, with newly 
transcribed RNA re-annealed to the transiently accessible 
template strand: a DNA:RNA hybrid forms that displaces 
the non-template strand (Thomas et al. 1976) mainly in the 
presence of high GC content sequences (Sanz et al. 2016). 
Importantly, by analyzing the genome-wide distribution of 
R-loops by DNA:RNA hybrid immunoprecipitation and 
next-generation sequencing (DRIP-seq), Cimprich and 
colleagues revealed that R-loops form preferentially at 
regions with HO TRC (Hamperl et al. 2017). These data 

reinforce the idea that the CD bias of the human genome 
might help to minimize the accumulation of HO collisions 
and deleterious R-loops.

Cells can also regulate R-loops by opposing their for-
mation. As a matter of fact, R-loops preferentially form in 
the presence of negative supercoils, such as those formed 
in concomitance with RNA transcription. To resolve these 
tensions, cells use topoisomerases that rescue normal DNA 
tension and reduce the accumulation of R-loops (El Hage 
et al. 2010; Yang et al. 2014). Recently, P. Pasero, C.L. Chen 
and colleagues discovered that R-loop formation is enriched 
at TTSs for a subset of highly expressed genes located at 
early-replicating regions. Here, a higher level of HO colli-
sion is frequently associated with the accumulation of phos-
pho-RPA32 (S33), a hallmark of stalled forks. As a result, 
at these regions, an increase in DNA double-strand breaks 
(DSBs) and γ-H2AX, a histone mark around broken replica-
tion forks, have been observed in cells with topoisomerase 1 
(Top1) depletion (Promonet et al. 2020).

It should be noted that although the presence of R-loops 
on HO TRC can be deleterious, R-loops can also have 
important physiological roles in many normal cellular pro-
cesses, including the regulation of transcription termination, 
chromosome segregation and rearrangement events (Skourti-
Stathaki and Proudfoot 2014; Kabeche et al. 2018; Skourti-
Stathaki et al. 2011; Xu et al. 2017a). The R-loop balance in 
cells is therefore maintained via various strategies to protect 
genome stability. As mentioned, cells use topoisomerases 
to reduce topological stress and decrease harmful R-loop 
accumulation (Fig. 3). Cells also present RNase H 5′–3′ exo-
nucleases that can digest RNA from DNA:RNA hybrids. 
R-loops can also be prevented or resolved through helicases, 
such as DHX9 and Aquarius (AQR) (Sollier et al. 2014; 
Chakraborty and Grosse 2011), senataxin (SETX) (Groh 
et al. 2017) and PIF1 (Zhou et al. 2014). R-loop formation 
is also tightly regulated via spliceosome binding to RNA 
(Li and Manley 2005; Gómez-González et al. 2011; Li et al. 
2007; Pefanis et al. 2015), the presence of proteins coating 
RPA (Aguilera and García-Muse 2012; Nguyen et al. 2018) 
and the ATR-Chk1 pathway (Matos et al. 2020). Many stud-
ies have shown that mutations affecting these factors could 
induce R-loop-associated human diseases, which we discuss 
in more detail later.

Proteins of homologous recombination 
and non‑homologous end joining on stalled 
forks

As obstacles to replication fork progression, R-loops can 
induce genome instability and thus inevitably activate the 
DNA damage repair pathway. In particular, stalled forks 
deriving from TRCs activate Fanconi anemia (FA) DSB 
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pathway—a repair system involved in the resolution of 
R-loop-mediated replication fork collapse (Schwab et al. 
2015; García-Rubio et al. 2015). The disruption of criti-
cal FA complex members FANCD2, FANCA and FANCM 
impairs the restarting of stalled forks, and leads to gene 

instability and DNA damage from R-loop-mediated repli-
cation fork collapse (Schwab et al. 2015; García-Rubio et al. 
2015). These effects can be reverted by over-expressing 
RNase H1, a ribonuclease degrading DNA:RNA hybrid, 
reinforcing the idea that R-loops are responsible for fork 

Fig. 3  Transcription–replication conflicts lead to fork stalling and 
genome instability. Replication and transcription machineries share 
the same DNA template, which causes replication–transcription con-
flicts (TRCs). These conflicts can occur in a head-on or co-directional 
manner. Head-On TRC is generally considered as more deleteri-
ous to genome stability, and preferentially occurs around gene tran-
scription termination sites (TTS). The replication forks stall when 
they encounter RNA Pol II, which favors the transient formation of 
R-loops. Under normal conditions, harmful R-loop accumulation can 
be prevented by many factors, such as TOP1, SETX, BRCA1/2, and 

FANCM. Alternatively, this accumulation can be directly removed by 
RNase H, XRN2 and certain NER endonucleases like XPG/XPF. If 
the R-loops and stalled forks persist, the ATR-Chk1 pathway is acti-
vated and phosphorylates RPA at the stalled forks. Under topological 
stress, such as TOP1 depletion, DNA damage is induced, which leads 
to genome instability (Promonet et al. 2020). R-loops also frequently 
form at gene transcription start sites (TSS), while they do not seem to 
induce TRCs and are rather involved in other mechanisms, like tran-
scription regulation
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stalling at the HO TRC sites (Schwab et al. 2015). Interest-
ingly, a recent study revealed that SLX4, a tumor suppressor, 
drives (via its interaction with RTEL1) the recruitment of 
FANCD2 to RNA polymerase II to prevent endogenous tran-
scription-induced replication stress (Takedachi et al. 2020).

Besides the core FA complex members, other factors 
involved in homologous recombination (HR) accumulate 
at DSBs, such as RAD52, RAD51, BRCA1 (also called 
FANCS), and BRCA2 (also called FANCD1), to regu-
late genome instability through R-loop resolution. Their 
recruitment can be reduced by RNase H overexpression 
at active transcription regions or through specific reporter 
systems (D’Alessandro et al. 2018; Yasuhara et al. 2018). 
For example, BRCA1 and BRCA2 prevent the potential 
harmful effects of R-loops by recruiting helicase SETX 
to R-loops (Hatchi et al. 2015; Zhang et al. 2017). In par-
ticular, BRCA1-dependent recruitment of SETX resolves 
R-loop structures preferentially at TTSs and suppresses 
DNA damage. Moreover, SETX depletion impairs RAD51 
recruitment and favors 53BP1 accumulation, a key DNA 
damage response (DDR) factor in non-homologous end join-
ing (NHEJ) (Cohen et al. 2018). These data suggest that 
DNA:RNA hybrids may favor HR factor accumulation to 
potentially facilitate the elimination of the hybrids so that 
HR could occur, likely counteracting NHEJ at DSBs within 
transcribed genes. Interestingly, a recent study revealed that 
53BP1 and BRCA1 counteract each other to control the 
time-dependent switch of the fork restart pathways: here, 
53BP1 promotes the fast and BRCA1 promotes the slow 
kinetics restart pathways, respectively (Xu et al. 2017b). On 
the other hand, BRCA2 depletion from cells also increases 
R-loop accumulation. BRCA2 might prevent R-loop forma-
tion by preventing replication fork collapse and recruiting 
the ssDNA binding protein, Rad51, to DSBs (Schlacher 
et al. 2011). Moreover, BRCA2 recruits RNA polymerase 
II-associated factor-1 (PAF1) to promoter-bound Pol II to 
enhance the pause and decrease of R-loop formation (Shivji 
et al. 2018).

G1 shortening induces abnormal initiation 
and genome instability within gene body

G1 phase is an important period for origin setting. Rap-
idly proliferating mammalian embryonic stem cells (ESCs) 
exhibit a short G1 phase that is < 2 h due to an unusual cell 
cycle structure (Savatier et al. 1994). Such a short G1 phase 
is considered a characteristic of ESCs that might help to 
inhibit differentiation and preserve their pluripotent state 
(Li et al. 2012). Several studies have reported that the short 
G1 phase in ESCs, before differentiating, is related to a 
unique mechanism of cell cycle regulation. In particular, 
ESCs express low cyclin D1 levels and no cyclin D2/D3, 

lack MAPK and pRB control (Jirmanova et al. 2002; Sava-
tier et al. 1996; White et al. 2005), lack pathways of p53-
p21 in response to DNA damage (Aladjem et al. 1998) and 
lack activity of cyclin E-Cdk2 and cyclin A-Cdk2 complexes 
throughout the cell (Stead et al. 2002; White et al. 2005). 
These findings highlight that cell proliferation control in 
ESCs is fundamentally different from that in differentiated 
somatic cell lineages (Coronado et al. 2013). Ample storage 
of the factors required for replication and relaxed chromatin 
structures in ESCs results in many more replication initia-
tion sites in S phase. Despite their short G1 phase, ESCs 
can effectively tolerate an accumulation of replication stress 
by extensive fork reversal and replication-coupled repair. 
This feature allows these cells to preserve genome stability, 
demonstrating that fast proliferating ESCs do not exhibit 
mechanisms to delay G2/M and G1/S transitions on incom-
plete replication (Ahuja et al. 2016).

Conversely, somatic cells have a longer G1 phase, which 
might help to ensure proper origin licensing to guarantee 
complete genome duplication. Therefore, G1 shortening in 
somatic cells, e.g., by overexpressing cyclin E, associated 
with an altered G1-S transition, may lead to deregulation of 
replication fork progression and DNA damage (Jones et al. 
2013). Cyclin E, a member of the cyclin family, has a critical 
role in controlling the G1-S transition. It binds CDK2 to form 
the cyclin E/CDK2 complex, which phosphorylates numer-
ous downstream proteins (such as RB, p27, p21) to regulate 
multiple cellular processes, thus allowing replication initia-
tion and S phase progression (Siu et al. 2012). Ekholm-Reed 
and colleagues demonstrated that overexpressing cyclin E 
can shorten the length of G1 phase from about 10–12 h to 
as little as 2–4 h (Ekholm-Reed et al. 2004). To deeply dis-
cern the detailed mechanisms related to the replication stress 
induced by cyclin E overexpression, Macheret and Halazonetis 
mapped DNA replication and transcription genome-wide in 
cells with abnormal cyclin E activation (Macheret and Hala-
zonetis 2018). By investigating the DNA replication initia-
tion profiles (HU-EdU-seq) from cells overexpressing cyclin 
E versus cells with normal cyclin E levels, they showed that 
cyclin E overexpression induces extra origins that are fre-
quently located within intragenic regions (Fig. 4). In addi-
tion, analysis of newly synthesized transcript profiles through 
EU-seq has revealed that these novel origins induced by G1 
shortening are often located at the 3′ ends of the gene body, 
showing lower levels of nascent transcripts in G1 cells due to 
G1 shortening. Importantly, a specific fork collapse has been 
observed around these origins that only appears under cyclin 
E overexpression, while fork collapse has not been observed 
for the constitutive origins (Fig. 4). Similar results have been 
obtained by overexpressing MYC. MYC-inducible activation 
leads to G1-phase shortening and to the firing of intragenic 
oncogene-induced (Oi) origins. Many of these Oi origins over-
lap with cyclin E-induced origins (Macheret and Halazonetis 
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2018). Moreover, overexpression of both genes can induce the 
firing of a novel set of replication origins within the 3′ gene 
body of highly transcribed genes that are usually suppressed 
by transcription during the G1 phase. The precocious entry 
into S phase, before all genic regions have been transcribed, 
allows the firing of origins within genes in cells with a short 
G1 phase (Macheret and Halazonetis 2018). Therefore, DNA 
replication stress resulted from extra intragenic origin firing 
caused by premature S phase entry is an important mechanism 
that leads to genomic instability in human cells.

Interestingly, under replication stress, i.e., under high dose 
HU treatment, cells can accumulate replication fork stalling 
and collapse within specific early-replicating regions known 
as early-replicating fragile sites (ERFSs) (Barlow et al. 2013). 
These sites are also enriched around replication origins con-
taining long (> 20 bp) Poly(dA:dT) tracts (Tubbs et al. 2018). 
Whether similar or different mechanisms generate ERFSs is 
still unknown and thus warrants further investigation.

Transcription‑mediated suppression 
of initiation within large genes lead to CFS 
instability

Transcription–replication collisions and R-loop formation 
are not the only ways in which transcription can interfere 
with DNA replication. Common fragile sites (CFSs) are an 

example of this. These sites are under-replicated during mild 
replication stress, for example, in response to aphidicolin, a 
DNA-polymerase inhibitor that slows the progression of rep-
lication forks (Glover et al. 1984). CFSs can be visualized on 
metaphase spreads as ultrafine bridges between chromatids, 
gaps or breaks (Chan et al. 2009; Glover et al. 1984) that are 
hotspots for chromatid exchange (Glover and Stein 1987), 
chromosome deletions (Bignell et al. 2010; Pichiorri et al. 
2008) and amplifications (Hellman et al. 2002; Miller et al. 
2006). These regions are preferential sites for chromosome 
lesions (such as deletion and/or rearrangement) involved in 
oncogenesis, neurological disorders and viral DNA integra-
tion (see Le Tallec et al. 2014; Ozeri-Galai et al. 2014; Sarni 
and Kerem 2016; Debatisse and Rosselli 2019 for review). 
The study of CFSs is challenging due to the lack of precise 
genomic mapping. Traditionally, they have been mapped by 
conventional cytogenetic screening at a megabase scale. In 
lymphocytes, the number of CFSs ranges from ~ 20 (with 
break frequency ≥ 1%) to 230 (including CFSs with lower 
frequency) (Mrasek et al. 2010). Only a few of them have 
been mapped on a fine scale (several hundred kb) by molecu-
lar cytogenetic analysis combined with fluorescence in situ 
hybridization (FISH) (Savelyeva and Brueckner 2014), 
which is very time-consuming. Therefore, most collected 
data derive from isolated CFSs, which has resulted in some 
controversial results. In a recent study, CFSs were mapped 
genome-wide at a high resolution by Repli-Seq technique. 

Fig. 4  G1 shortening induces abnormal origin firing within active 
genes leading to genome instability. In normal cell cycles, the length 
of G1 is sufficient for transcription to inactivate origins across the 
entire length of genes (Top panel). When the length of G1 is greatly 
reduced due to oncogene expression (Bottom panel), there is insuf-
ficient time for transcription to inactivate all intragenic origins. This 

effect allows for the activation of oncogene-induced extra-origins, 
located within intragenic regions, and leads to chromosome breakage. 
G1 shortening, e.g., induced by cyclin E or Myc, leads to abnormal 
replication and genome instability, which might contribute to early 
cancer development
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The authors compared the RT of cells exposed to a low dose 
of aphidicolin to the RT of control cells to define the signifi-
cant delayed regions (SDRs), corresponding to CFSs (Brison 
et al. 2019). This first genome-wide analysis has shed light 
on the characteristics and mechanisms responsible for CFS 
instability, demonstrating that stress-induced delay/under-
replication is a hallmark of CFSs (Brison et al. 2019).

CFSs were long believed to be associated with particular 
sequences, such as stretches of AT-rich sequences that can 
form a secondary structure that blocks replication fork pro-
gression, impedes replication completion and leads to DNA 
breaks. However, recent studies have shown that CFS insta-
bility is cell-type specific, which indicates that it is directed 
by epigenetic features rather than by specific sequence 
motifs (Le Tallec et al. 2011). It has indeed been shown that 
such sequences at FRA3B (a well-studied CFS on chr3) do 
not overlap with its break boundaries (Durkin et al. 2008). 
CFSs are mid-late and late-replicating regions, but this is 
not enough to mark them (Le Beau et al. 1998; Palakodeti 
et al. 2004; Pelliccia et al. 2008; Hellman et al. 2000; Brison 
et al. 2019) as there are many more late-replicating regions 
than CFSs. Interestingly, most fine-mapped CFS cores are 
replicated in mid-late S phase (instead of late) in non-treated 
cells, and they become the latest replicating regions only 
after aphidicolin treatment (Brison et al. 2019). This finding 
suggests that other mechanisms rather than late-replication 
per se are responsible for their instability. Remarkably, CFSs 
are frequently associated with very long expressed genes 
(> 300 kb) or large transcription domains (sometimes with 
two or three overlapping genes), although even this is not 
always the case (Mitsui et al. 2010; Ohta et al. 1996; Rozier 

et al. 2004; Zhu et al. 2006; Helmrich et al. 2007; Denison 
et al. 2003; Bednarek et al. 2000; Brison et al. 2019). It has 
been suggested that CFSs might be caused by R-loop forma-
tion resulting from TRC (Helmrich et al. 2011). However, 
TRC seems unlikely as the delay of replication decreases 
gradually, in most cases, around both sides of CFS cores in 
a symmetrical way that is independent of gene orientation 
but instead reflects the firing time of the flanking origins 
(Brison et al. 2019). In addition, R-loops and fork stalling 
positions seem to only accumulate within highly active 
genes located at early-replicating regions, but not at large 
late-replicating genes associated with CFSs showing a mod-
est transcription level (Liu and Chen, unpublished results). 
More importantly, gene transcription–replication encounters 
are not necessary for CFS expression, as treatments with 
transcription inhibitors during S phase do not rescue CFS 
fragility (Brison et al. 2019). Taken together, these results 
indicate that mechanisms other than transcription–replica-
tion encounters are responsible for the strong correlation 
between large genes and CFSs.

Importantly, on FRA3B (Letessier et  al. 2011) and 
FRA16C (a CFS on chr16) (Ozeri-Galai et al. 2011), there 
is no (or few) activation of dormant origins to rescue stalled 
or slowed replication forks. This lack of activation might 
actually be due to the removal of replication origins by tran-
scription (Gros et al. 2015; Powell et al. 2015). Indeed, the 
occupancy of components of the pre-RC is low over large 
genes (> 300 kb) associated with CFSs (Miotto et al. 2016; 
Sugimoto et al. 2018). The genome-wide analyses of replica-
tion origin distribution obtained by OK-Seq or Bubble-Seq 
along fine-mapped CFSs also support a model by which 
transcription-dependent suppression of initiation across 
large genes generates ultra-long (several hundreds of kb) 
late-replicating origin-poor regions, which delays their rep-
lication upon stress (Brison et al. 2019) (Fig. 5a). Moreover, 
OK-Seq data have further revealed that, in most cases, two 
major initiation zones flank the large transcribed genes host-
ing CFSs, located immediately upstream or downstream of 
the gene, respectively. The unidirectional forks emanating 
from these initiation zones travel across several hundreds of 
kb to complete replication of the gene body (Brison et al. 
2019) (Fig. 5b). Replication could not be completed when 
the fork speed was reduced by aphidicolin treatment. The 
distance separating the initiation zones flanking the genes 
is therefore a major parameter for CFS setting.

Independently from its molecular causes, at the end of S 
phase, cells containing under-replicated regions link together 
the two sister chromatids (Fig. 5a). At this point, the resolu-
tion of these structures could be due to a series of endonu-
cleases (Guervilly et al. 2015; Naim et al. 2013; Ying et al. 
2013) that could be recruited to disassemble the replica-
tion forks (Deng et al. 2019), and can create single and/
or double-strand breaks that give the cells their last chance 

Fig. 5  Transcription-dependent suppression of initiation across large 
genes lead to CFS instability. a Schematic showing how gene tran-
scription shapes the replication landscape responsible for common 
fragile site (CFS) instability. CFSs are genomic regions that are rep-
licated during mid-late S phase. They are nested within large genes 
(> 300 Kb) whose transcription leads to the removal of pre-RC com-
plexes from the gene body, leaving it replicated by two long-travel-
ling unidirectional replication forks arising from its flanking regions. 
Under replication stress, DNA replication might not be completed 
within these regions. This results in a cruciform structure that must 
be resolved, otherwise it will lead to the expression of CFSs and 
genome instability. b The replication fork directionality (RFD) profile 
detected by Okazaki fragment sequencing (OK-Seq) along FRA16D 
CFS containing the large gene, WWOX (1.1 Mb). Each point shows 
the RFD values computed in 1 kb windows. The red and blue points 
indicate the regions that are predominantly replicated by rightward 
and leftward replication forks, respectively. The RFD profile agrees 
with the model shown in (a), with two strong initiation zones (identi-
fied as upward transitions on the RFD profile, indicated by the blue 
box) located at both extremities of the WWOX gene, and the gene 
body is replicated by long-travelling unidirectional replication forks 
(red and blue arrows, respectively). The under-replicated CFS core 
overlaps with the termination zone (downward transition on the RFD 
profile, indicated by a red box) at the gene center. A similar RFD pat-
tern is observed in most CFSs (Brison et al. 2019)

◂
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to repair the damage during the early stages of mitosis. 
Importantly, several recent studies have discovered that an 
E3 ubiquitin-protein ligase, TRAIP (TRAF interacting pro-
tein), makes an important contribution to driving replisome 
disassembly during mitosis and promoting fork breakage 
(Sonneville et al. 2019; Wu et al. 2019; Deng et al. 2019). 
This event might allow factors involved in mitotic DNA 
synthesis (MiDAS) (Minocherhomji et al. 2015), a form of 
break-induced replication (BIR), to have access to the under-
replicated CFSs (see Ovejero et al. 2020 for a review). The 
CFS is expressed if the broken DNA is not properly repaired.

Transcription‑mediated replication stresses 
and human diseases

Defects in DNA replication processes can lead to various 
diseases. In the following sections, we will focus on some 
of the most common diseases.

Neurological disorders

R-loops can occur from a variety of cellular stresses, and 
lead to deleterious complications such as transcriptional 
irregularities, replication defects and genomic instability, 
relating to numerous pathologic conditions (reviewed in 
Richard and Manley 2017). Among them, various neurologi-
cal disorders, have been linked to R-loops and gene-specific 
repeat expansions (Table 1).

Trinucleotide repeat expansions within intergenic 
regions provide additional risk for harmful R-loop for-
mation that disrupts proper transcription and normal 
gene expression. For example, diseases like Hunting-
tin (HTT; Huntington’s disease), ataxin 1/2 (ATXN1/
ATXN2; spinocerebellar ataxias) and frataxin (FXN; 
Friedreich ataxia), all contain GC-rich or GAA trinucleo-
tide expansions that form R-loops in vitro and associate 
with disease (Reddy et al. 2011; Loomis et al. 2014). The 
mechanism of fragile X syndrome (FXS) is also related to 
the trinucleotide expansion in the 5′ UTR (Untranslated 
Transcribed Region) of the FMR1 gene, which leads to 
DNA methylation-mediated silencing of this locus (Groh 
et al. 2014; Colak et al. 2014). It favors the transcription-
dependent R-loops, which are resistant to degradation and 
co-localize with repressive H3K9me2 chromatin mark. By 
performing a nascent nuclear run-on analysis, Groh and 
colleagues showed that in FXS patient cells, R-loop over-
expanded repeats can block RNA polymerase II transcrip-
tion of the FXN gene. In affected patients, the FMR1 allele 
with a (CGG)n>200 expansion in the 5′ UTR is completely 
methylated and transcriptionally silenced (Santoro et al. 
2012; Groh et al. 2014). To test the role of such R-loop 
formation in trinucleotide expansion diseases, FMR1 

transcription has been reactivated by using the DNA 
methylation inhibitor 5-aza-29-deoxycytidine (5-azadC) 
(Groh et al. 2014). A fourfold increase in R-loops has been 
observed over the exon 1 region upstream of the expan-
sion in FXS cells, while in control cells, changes are not 
significant. This specificity of R-loop formation has been 
confirmed by RNase H treatment. These findings suggest 
that transcription-dependent R-loops are localized to the 
expanded (CGG) repeat region to regulate the expres-
sion of the FMR1 gene. Meanwhile, increasing R-loop 
formation leads to transcriptional repression of the FXN 
gene, suggesting a direct molecular association between 
R-loop formation and the pathology of Friedreich ataxia 
(FRDA) (Groh et  al. 2014). The formation of R-loops 
over expanded repeats might, therefore, favor FXN and 
FMR1 silencing, and might represent a common feature 
of nucleotide expansion-associated diseases, contributing 
to the corresponding pathology in vivo (Groh et al. 2014). 
Interestingly, FXS cells exhibit high levels of chromosome 
breaks, in particular, under replication stress (Chakraborty 
et al. 2019). More importantly, the FMRP, the protein 
product of FMR1, is required for abating R-loop accu-
mulation, thereby preventing chromosome breakage 
(Chakraborty et al. 2019). These data provide a detailed 
mechanism on the direct link between R-loop formation, 
replication stress and genome instability in FXS.

Active pathways that have a role in avoiding transcrip-
tion–replication collisions and R-loop accumulation could 
be altered, leading to DNA damage and human diseases 
including neurological disorders (reviewed in Zeman and 
Cimprich 2014). For example, dysfunctional TREX1 or 
RNase H is responsible for Aicardi–Goutières syndrome 
that is characterized by severe neurological dysfunction 
and a congenital infection-like phenotype (Lim et  al. 
2015). Mutations in aprataxin (APTX), a protein present 
in the same pathway as RNase H, induce the neurological 
disorder apraxia oculomotor ataxia 1 (AOA1), character-
ized by cerebellar degeneration (Tumbale et al. 2014). 
Neurodegenerative disorders have also been associated 
with the loss of DNA helicase that has a clear role in the 
replication stress response. Of note, loss of SMARCAL1, 
which functions at the interface of replication and tran-
scription (Baradaran-Heravi et al. 2012), leads to Schimke 
immuno-osseous dysplasia (SIOD), a multisystem disor-
der characterized by notable neurologic manifestations. 
Another example is the loss of the helicase SETX, which is 
involved in avoiding the formation of aberrant DNA:RNA 
hybrids. SETX has been associated with juvenile amyo-
trophic lateral sclerosis (ALS4) and ataxia–ocular apraxia 
(Moreira et al. 2004; Lavin et al. 2013). It should be noted 
that mature neurons are non-cycling cells; therefore, 
R-loops would either act on neurons in a replication-inde-
pendent manner, or on neuron precursors link to DNA 
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replication process. The extent by which R-loops contrib-
ute to these diseases via a replication-dependent and/or 
independent mechanism needs to be further investigated.

DSB repair through canonical NHEJ is important for 
the development of primary neural stem/progenitor cells 
(NSPCs) (Gao et al. 1998). Previous studies have dem-
onstrated the presence of recurrent endogenous DSBs 
using genome-wide translocation sequencing (HTGTS) 
(Chiarle et al. 2011; Frock et al. 2015), which is a sensi-
tive DNA break joining assay using “bait” DNA breaks 
introduced on different chromosomes to reveal endoge-
nous “prey” DNA breaks. Recurrent DSB clusters (RDCs) 
have been mapped in NSPCs in response to replication 
stress induction (Wei et al. 2016, 2018). The NSPC-RDCs 
are enriched in the gene bodies of large (> 100 kb), late-
replicating genes. Considering that these characteristics 
(i.e., large active genes at late-replicating regions) are 
often associated with CFSs, and most RDCs only present 
after aphidicolin treatment to induce a mild replication 
stress (Wei et al. 2016), a common mechanism (i.e., tran-
scription-dependent suppression of initiation across large 
genes) might underlie these events.

Other studies have suggested that TRC might also 
function in RDC formation (reviewed in Bouwman and 
Crosetto 2018). Importantly, several neurodevelopmental 
and neuropsychiatric disorders have been linked to NSPC 
RDC-containing genes and the activity of neural cell adhe-
sion and/or regulation of synapse formation. For example, 
molecules involved in cell–cell adhesion and neural devel-
opment and growth—including the cadherin-associated 
proteins Ctnna2 and Ctnnd2, Cdh13 Cadherin, Cadm2, 
the membrane proteins Csmd1 and Csmd3, the glycopro-
tein Lsamp, cell adhesion molecules Mdga2, Ntm, Sdk1, 
Npas3, members of the neurexin family Nrxn 1/3, and the 
excitatory neurotransmitter receptor Grik2—are associ-
ated with numerous diseases, including attention deficit 
hyperactivity disorder (ADHD) (Lesch et al. 2008), intel-
lectual disabilities (Belcaro et al. 2015; Motazacker et al. 
2007), schizophrenia (Børglum et al. 2014; Donohoe et al. 
2013), bipolar disorder (Ferreira et al. 2008; Nurnberger 
et al. 2014; Noor et al. 2014) and autism spectrum disorder 
(ASD) (Turner et al. 2015; Hu-Lince et al. 2005; Vaags 
et al. 2012; Casey et al. 2012). Interestingly, mutations 
linked to cerebellar ataxia and microcephaly syndrome 
have been found in the WW domain-containing oxidore-
ductase (WWOX) gene, within FRAD16, a well-studied 
CFS (Abdel-Salam et al. 2014; Mallaret et al. 2014). Like-
wise, the PARKIN (PARK2) gene, located within another 
CFS locus, FRA6E, is involved (via germline mutation) 
in Parkinson’s disease pathogenesis (Denison et al. 2003). 
Thus, the formation of RDCs and the CFS loci are highly 
associated with the gene fragility that underlies the most 
frequent neuronal disorders.

Cancer

The conflicts between replication and transcription are 
related to oncogene-induced replication stress and conse-
quently to genomic instability, which is a hallmark of cancer 
(Gaillard et al. 2015; Kotsantis et al. 2016; Jones et al. 2013) 
(Table 2). For example, increased transcriptional activity 
induced by H-RAS overexpression causes replication stress, 
which depends on R-loop accumulation (Kotsantis et al. 
2016). Using estrogen receptor-positive (ER +) breast can-
cer cells, Stork and colleagues showed that treating human 
breast cancer cells with estrogen (E2) promotes E2-activated 
transcription and an increase in DSBs together with R-loop 
formation, which colocalize particularly in regions of the 
genome containing estrogen-activated genes (Stork et al. 
2016). In addition, replication stress induced by oncogene 
activation during tumorigenesis is associated with increased 
replication initiation within intragenic regions, leading to 
conflicts between replication, transcription and genomic 
instability (Jones et al. 2013). As described earlier, cyclin 
E and its subunit CDK2 form the cyclin E/CDK2 complex, 
the activity of which can be regulated at multiple levels and 
seems to be involved in triggering DNA replication initia-
tion and in regulating genes important for proliferation and 
progression through the S phase (Ekholm-Reed et al. 2004). 
When deregulated, cyclin E is involved in tumorigenesis, 
and is overexpressed in many cancer types (Cooley et al. 
2010; Fukuse et al. 2000; Niu et al. 2015). Importantly, 
somatic cells can tolerate the replication stress induced by 
oncogenes such as cyclin E, for several cell cycles before 
going through chromosomal breakage (Neelsen et al. 2013) 
that could constitute an initiating event in cancer. Together 
with cyclin E, cyclin A2 (encoded by CCNE1 and CCNA2 
genes respectively) shows alterations that have been iden-
tified in a subgroup of hepatocellular carcinoma (HCC), 
named CCN-HCC: here, rearrangements of CCNE1 pro-
moter regions and recurrent fusions involving CCNA2 have 
been identified. CCN-HCC is characterized by the accumu-
lation of hundreds of tandem duplications and templated 
insertion cycles (Bayard et al. 2018). Under cyclin E overex-
pression, BIR, which is involved in DSB and damaged repli-
cation fork repair, is required for cell cycle progression (Cos-
tantino et al. 2014). Because chromosome rearrangements 
often occur during BIR upon oncogene activation (Smith 
et al. 2007), the rearrangements found in CCN-HCC together 
with the enrichment of breakpoints in early-replicated and 
actively transcribed regions might be associated with BIR 
mechanisms caused by replication stress.

The contribution of loss of BRCA1 and BRCA2 func-
tion on cancer development has been well established, 
particularly in breast and ovarian cancers. Tandem duplica-
tions (~ 10 kilobase length) frequently observed in BRCA1 
mutant breast and ovarian cancers generated by a replication 
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restart-bypass mechanism, which is completed by end join-
ing or by microhomology-mediated template switching 
(Willis et al. 2017). This finding supports that BRCA1 and 
BRCA2 have an important role in protecting the replica-
tion forks (Xu et al. 2017b; Schlacher et al. 2011). When 
lacking the protective effects that these genes confer against 
replication fork collapse, cells show an increase in DSBs. 
These cancer cells lacking BRCA1/2 are therefore more 
sensitive to PARP (poly ADP ribose polymerase) inhibi-
tors such as olaparib, rucaparib, niraparib or talazoparib, 
which can block another alternative repair pathway used by 
cells (reviewed in Ubhi and Brown 2019). PARP inhibitors 
are now used frequently as a targeted therapy for cancers 
with defective BRACA1/2 or other critical HR components, 
such as Rad51. Interestingly, the cancer-associated geno-
toxic stress that arises from mutations in BRCA1/2 can be 
partially rescued by overexpressing RNase H1 in cancer cell 
lines, suggesting that aberrant R-loop formation also con-
tributes to malignancy (Hill et al. 2014; Hatchi et al. 2015; 
Zhang et al. 2017).

In addition, Ewing’s sarcoma has been linked to damage-
induced transcription, an accumulation of R-loops related 
to transcriptional stress, and subsequent depletion of func-
tional BRCA1, all of which ultimately results in DNA dam-
age (Gorthi et al. 2018). Moreover, R-loops might have a 
role in the oncogenic c-MYC-Igh translocation commonly 
seen in Burkitt’s lymphoma and multiple myeloma. Here, 
the Tudor domain-containing protein 3 (TDRD3) forms a 
complex with TOP3B, is recruited to the c-MYC CpG island 
promoter to avoid R-loop accumulation and suppresses chro-
mosomal translocations (Küppers and Dalla-Favera 2001; 
Shou et al. 2000; Yang et al. 2014). Finally, cancer-derived 
somatic SLX4 mutations and HHS-associated germline 
RTEL1 mutations, abrogating the SLX4–RTEL1 interaction, 
affect the recruitment of FANCD2 at RNA Pol II to resolve 
R-loops from transcription-induced replication stress and 
contribute to cancer development (Takedachi et al. 2020).

As described previously, large genes expressed in 
NSPCs are prone to DSBs and translocations. Genes iden-
tified within RDCs are also frequently altered in different 
tumors (Wei et al. 2016). For example, LSAMP is con-
tained in a small region that is frequently deleted and it has 
been assigned a tumor suppressor role (Kresse et al. 2009). 
CDH13 cadherin is involved in cell–cell adhesion activity 
and neural growth, and is deleted in different tumor types 
(Kawakami et al. 1999; Kadota et al. 2010; Sato et al. 1998). 
The NRXN3 synaptic cell surface protein is altered in the 
medulloblastoma. In prostate cancer, CADM2 and CSMD3 
are rearranged and DGKB is involved in inter-chromosomal 
gene fusions (Berger et al. 2011; Maher et al. 2009). More-
over, a recent report found that CSMD3 and CSMD1 are 
included in a group of genes identified as the most frequently 
mutated in stomach adenocarcinoma (Wang et al. 2020). 

NPAS3, which helps to regulate genes that are involved in 
neurogenesis, is deleted in high-grade astrocytoma and glio-
blastoma (Moreira et al. 2011). Finally, the cell adhesion 
molecule BAI3 has been implicated in glioma progression 
(Kee et al. 2004).

Deletions in CFSs are considered as one of the major 
common genetic variations observed during tumor devel-
opment. The first large gene discovered to be spanned by 
a highly unstable CFS region was fragile histidine triad 
(FHIT) that is located within FRA3B. FHIT alterations, 
such as deletions or loss of expression, have been observed 
in various tumors, including breast and B-cell lymphoma 
(Pandis et al. 1997; Kameoka et al. 2004). Another exam-
ple gene spanned by the CFS region is WWOX, which is 
located within the second most active common fragile site 
FRA16D (Bednarek et al. 2000; Ludes-Meyers et al. 2003) 
and is frequently deleted in several tumors (Krummel et al. 
2000; Paige et al. 2000). The third most frequent CFS locus 
is FRA6E, which contains the E3 ubiquitin gene PARK2: 
here, its inactivation can accelerate cell-cycle progression 
and induce cyclin D1 accumulation (reviewed in Glover 
et al. 2017). Like FHIT and WWOX, PARK2 is a tumor 
suppressor. Deletion of PARK2 has been described in vari-
ous cancers and causes a loss of its activity (Letessier et al. 
2007; Iwakawa et al. 2012; Denison et al. 2003). Loss of 
PARK2 activity can induce chromosome instability related 
to tumor formation. This effect might be due to an alteration 
of several mitosis regulators, such as Plk1, Aurora A/B, Cyc-
lin B1, Cdc20, and UbcH10, which are normally controlled 
by PARK2. These alterations can lead to mitotic defects, 
such as prometaphase-like arrest, anaphase and cytokinesis 
failure. Given that loss of PARK2 induces multiple chromo-
somal defects, it seems that PARK2 has an important role in 
maintaining genomic stability (Lee et al. 2015).

Several CFS-associated genes have protective roles 
by promoting the DDR, which is a critical mechanism to 
maintain genome stability. Indeed, the inactivation of sev-
eral tumor suppressors located within CFSs induces DDR 
de-regulation. In particular, the tumor suppressor FHIT as 
well as WWOX has a role in the DDR in regulating apop-
tosis, which is achieved through interactions with the pro-
apoptotic p53 family of transcription factors. Thus, loss of 
function of these tumor suppressors, together with other 
gene mutations, such as in p53, have an important role in 
enhancing the uncontrolled proliferation that promotes 
genome instability (reviewed in Hazan et al. 2016). Many 
other genes, such as CTNNA1/3, DLG2, DMD, GRID2, 
IL1RAPL1, LRP1B, NBEA and RORA, which span CFS 
regions, are well described and linked to different tumor 
types (reviewed in Gao and Smith 2015). The high number 
of large genes contained in the CFS regions can be explained 
by the transcription-mediated suppression of replication ini-
tiation within these large genes (Brison et al. 2019) (see 
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previous section for detail), creating large regions without 
replication initiations, and leading to genome instability 
under replication stress, as frequently observed in cancer.

Other pathological conditions

Transcription-mediated replication stress is also involved in 
a number of other pathological conditions, such as immu-
nodeficiencies, infertility, Prader–Willi and facial anoma-
lies syndromes (Table 3). In particular, genome instability 
induced by the co-transcriptional R-loop formation has been 
linked to FA, a genetic disease characterized by bone mar-
row failure and a strong predisposition to cancer. FA occurs 
following germline mutations that can occur in up to 22 
FA genes, including BRCA1/2 (Yamamoto et al. 2005; van 
Twest et al. 2017; Nepal et al. 2017). Of note, FANCD2, 
a core FA gene, accumulates at transcribed genes and has 
a role in resolving R-loop and transcription–replication 
conflicts by recruiting RNA processing factors (Schwab 
et al. 2015; García-Rubio et al. 2015). Particularly, mono-
ubiquitination of the FANCI–FANCD2 (ID2) heterodimer 
complex is due to FANCL ubiquitin E3 ligase activity occur-
ring during S phase and under conditions of replication 
stress (van Twest et al. 2017; Rajendra et al. 2014). Several 
reports have shown the presence of increased R-loops in FA 
mutant cells (Schwab et al. 2015; García-Rubio et al. 2015; 
Liang et al. 2019), demonstrating that FANCD2 mono-
ubiquitination is required to prevent their accumulation 
and colocalization with R-loops in an actively transcribed 
genomic region. Although BRCA1 and BRCA2 also belong 
to the FA gene family, surprisingly, breast or ovarian cancer 
rarely, if ever, develop in FA patients. It should be noted 
that FA is primarily an autosomal recessive genetic disor-
der, in which two mutated alleles are required to cause the 
disease, while BRCA1/2 defects linked to breast or ovarian 
cancer are mostly found in heterozygote carriers. Patients 
with homozygous BRCA2 depletion  (BRCA2−/−) gener-
ally die from complications of aplastic anemia well before 
the age of developing breast or ovarian cancer. In addition, 
FA patients carrying BRCA1 biallelic mutations have not 
been identified, suggesting biallelic loss of BRCA1 might 
be lethal to the embryo (reviewed in D’Andrea 2010). It is 
not completely clear how the loss of a single DNA-repair 
pathway can induce bone marrow failure, developmental 
abnormalities and a predisposition to cancer in FA patients; 
we anticipate that this point will continue to be a hot topic 
in the field.

Prader–Willi syndrome (PWS) is a genetic disorder that 
is caused by the loss of paternal gene expression in the 
15q11-q13 chromosomal region, due to small deletions of 
the SNORD116 locus. Interestingly, R-loops form within the 
G-rich repeats of the SNORD116 locus, inducing nucleo-
some displacement in a transcription-dependent manner Ta
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and chromatin decondensation of the paternal allele (Pow-
ell et al. 2013). The SNORD116 locus mediates the effects 
of topotecan, which induces an increase in R-loops and 
stalling of transcriptional progression. Among the genetic 
syndromes characterized by immunodeficiency related to 
R-loop formation, centromeric region instability and facial 
anomalies syndrome (ICF) have been described. This syn-
drome is caused by mutations in the DNA methyltransferase 
3B (DNMT3B) and sub-telomeric hypomethylation associ-
ated with atypically short telomere length. Transcription of 
telomeric repeat-containing RNA (TERRA) has an impor-
tant role in regulating telomere length and its replication. 
Mature TERRA RNA forms DNA:RNA hybrids with the 
C-rich DNA template: these telomeric hybrids are present in 
telomerase-positive cancers (Arora et al. 2014). Moreover, 
in ICF cells, telomere shortening or loss, increases TERRA 
transcription levels, indicating that telomere hybrids are 
involved in promoting instability at the telomeric ICF 
regions. Indeed, Sagie and colleagues demonstrated that 
telomere hybrids enhance telomere shortening together with 
other unknown factors that regulate the length of telomeres, 
suggesting the contribution of epigenetic modifications (e.g., 
compromised methylation by DNMT3B) in telomere-spe-
cific length regulation (Sagie et al. 2017). Understanding the 
relationship between DNA:RNA hybrids, replication stress 
and genome instability in these disorders, and how to use 
such relationships to find additional targeted therapies, need 
to be further investigated in future studies.

Conclusion and perspectives

In conclusion, studies over the past few years have pro-
vided new and important insights into replication stress and 
genome instability. Increasing evidence supports that gene 
transcription has an essential role in shaping the landscape 
of human genome replication, while it is also a major source 
of endogenous replication stress inducing genome instabil-
ity and leading to human diseases. Transcription-mediated 
replication stresses present at both early and late-replicating 
regions via two major mechanisms: head-on transcription 
replication conflicts frequently occur at the transcription 
termination sites of highly expressed genes in the early-rep-
licating regions, while transcription-dependent suppression 
of initiation across large genes creating large origin-poor 
regions is responsible for CFS instability in the late-repli-
cating regions. Due to technical limitations, most studies 
have only used cell lines as their model system. Ongoing 
development on high-throughput single-molecule (Müller 
et al. 2019; Klein et al. 2017) and single-cell (Dileep and 
Gilbert 2018; Takahashi et al. 2019) approaches to study 
the DNA replication program will provide novel tools to 
directly address these questions using patient samples. We 

expect that this advancement will bring new insights into the 
detailed mechanisms by which transcription-mediated repli-
cation stress impacts on genome instability and human dis-
eases. These will help to better select the patients who will 
likely respond to a given targeted therapy (such as PARP, 
ATR or TOP1 inhibitors) targeting factors involving in the 
corresponding processes, and further develop new targeted 
therapies to better fight against cancers and other human 
diseases.
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